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Finding multiple zeros of nonlinear functions pose many difficulties for many of the itera-
tive methods. A major difficulty in the application of iterative methods is the selection of
initial guess such that neither guess is far from zero nor the derivative is small in the vicin-
ity of the required root, otherwise the methods would fail miserably. Finding a criterion for
choosing initial guess is quite cumbersome and therefore, more effective globally conver-
gent algorithms for multiple roots are still needed. Therefore, the aim of this paper is to
present an improved optimal class of higher-order methods having quartic convergence,
permitting f 0(x) = 0 in the vicinity of the required root. The present approach of deriving
this optimal class is based on weight function approach. All the methods considered here
are found to be more effective and comparable to the similar robust methods available in
literature.

� 2013 Elsevier Inc. All rights reserved.
1. Introduction

Finding the multiple roots of nonlinear equations efficiently and accurately, is a very interesting and challenging problem
in computational mathematics. It has many applications in engineering and other applied sciences. We consider an equation
of the form
f ðxÞ ¼ 0; ð1:1Þ
where f : D � R! R be a nonlinear continuous function on D. Analytical methods for solving such equations are almost non-
existent and therefore, it is only possible to obtain approximate solutions by relying on numerical methods based on itera-
tive procedures. So, in this paper, we concern ourselves with iterative methods to find the multiple root rm with multiplicity
m > 1 of a nonlinear Eq. (1.1), i.e. fi(rm) = 0, i = 0,1,2,3, . . .,m � 1 and fm(rm) – 0 (a condition for x = rm to be a root of multi-
plicity m). These multiple roots pose difficulties for root-finding methods as function does not change sign at even multiple
roots, precluding the use of bracketing methods, limiting one to open methods.

Modified Newton’s method [1]
xnþ1 ¼ xn �m
f ðxnÞ
f 0ðxnÞ

; n P 0 ð1:2Þ
is an important and basic method for finding multiple roots of nonlinear Eq. (1.1). It is probably the best known and most
widely used algorithm for solving such problems. It converges quadratically and requires the prior knowledge of multiplicity
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m. However, a major difficulty in the application of modified Newton’s method is the selection of initial guess such that nei-
ther guess is far from zero nor the derivative is small in the vicinity of the required root, otherwise the method fails miser-
ably. Finding a criterion for choosing initial guess is quite cumbersome and therefore, more effective globally convergent
algorithms are still needed. Furthermore, inflection points on the curve, with in the region of search, are also trouble some
and may cause the search to diverge or converge to undesired root. In order to overcome these problems, we consider the
following modified one-point iterative scheme
xnþ1 ¼ xn �m
f ðxnÞ

f 0ðxnÞ � pf ðxnÞ
: ð1:3Þ
In order to obtain quadratic convergence, the entity in the denominator should be largest in magnitude. For p = 0 and m = 1,
we obtain the classical Newton’s method. The error equation of scheme (1.3) is given by� �
enþ1 ¼
�pþ c1

m
e2

n þ O e3
n

� �
; ð1:4Þ
where en ¼ xn � rm; ck ¼ m!
k!

f ðkÞðrmÞ
f ðmÞðrmÞ

; k ¼ 2;3; . . .

This work is an extension of the one-point modified family of Newton’s method [2,3] for simple roots. Recently, Kumar
et al. [4] have also derived this family of Newton’s method geometrically by implementing approximation through a straight
line. They have proved that for small values of p, slope or angle of inclination of straight line with x–axis becomes smaller, i.e.
as p ? 0, the straight line tends to x–axis. This means that next approximation will move faster towards the desired root.

As the order of an iterative method increases, so does the number of functional evaluations per step. The efficiency index
[5,6] gives a measure of the balance between those quantities, according to the formula p

1
d, where p is the order of conver-

gence of the method and d the number of functional evaluations per step. According to the Kung–Traub conjecture [7], the
order of convergence of any multipoint method cannot exceed the bound 2n�1, called the optimal order. Nowadays, obtain-
ing an optimal multipoint method for multiple roots having quartic convergence and converges to the required root even
though the guess is far from zero or the derivative is small in the vicinity of the required root is an open and challenging
problem in computational mathematics. But till the date, we do not have any optimal method of order-four that can over-
come these problems, in the case of multiple roots.

The contents of this paper unfold the material in what follows. Section 2 presents a brief look at the existing multipoint
families of higher-order methods for multiple roots, where it is followed by Section 3 wherein our main contribution lie. We
develop a general class of higher-order methods, which will converge in case the initial guess is far from zero or the deriv-
ative is small in the vicinity of the required root. Some new families of higher-order methods are also proposed. In Section 4,
we have proved the order of convergence of our proposed scheme. Section 5 includes a numerical comparison between pro-
posed methods without memory and the existing robust methods available in literature and finally, the concluding remarks
of the paper have been drawn.

2. Brief literature review

In recent years, some modifications of Newton’s method for multiple roots have been proposed and analyzed by Kumar
et al. [8], Li et al. [9,10], Neta and Johnson [11], Sharma and Sharma [12], Zhou et al. [13], and the references cited therein.
There are, however, not yet so many fourth or higher-order methods known that can handle the case of multiple roots.

In [11], Neta and Johnson have proposed a fourth-order method requiring one-function and three derivative evaluations
per iteration. This method is based on Jarratt’s method [14] given by the iteration function
xnþ1 ¼ xn �
f ðxnÞ

a1f 0ðxnÞ þ a2f 0ðynÞ þ a3f 0ðgnÞ
; ð2:1Þ
where8

un ¼ f ðxnÞ

f 0 ðxnÞ ;

yn ¼ xn � aun;

vn ¼ f ðxnÞ
f 0 ðynÞ

;

gn ¼ xn � bun � cvn:

>>>><
>>>>:
Neta and Johnson [11] gave a table of values for the parameters a,b,c,a1,a2,a3 for several values of m. But they do not give a
closed formula for general case.

Inspired by the work of Jarratt [14], Sharma and Sharma [12] present the following optimal variant of Jarratt’s method
given by8
yn ¼ xn � 2m
mþ2

f ðxnÞ
f 0 ðxnÞ ;

xnþ1 ¼ xn � m
8 ðm3 � 4mþ 8Þ � ðmþ 2Þ2 m

mþ2

� �m
f 0 ðxnÞ
f 0 ðynÞ
� 2ðm� 1Þ � ðmþ 2Þ m

mþ2

� �m
f 0ðxnÞ
f 0 ðynÞ

� �
f 0 ðxnÞ
f 0ðynÞ

h i
:

<
: ð2:2Þ
More recently, Zhou et al. [13] have developed many fourth-order multipoint methods by considering the following iterative
scheme:
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yn ¼ xn � t f ðxnÞ
f 0 ðxnÞ ;

xnþ1 ¼ xn � f ðxnÞ
f 0ðxnÞQ

f 0 ðynÞ
f 0 ðxnÞ

� �
;

8<
: ð2:3Þ
where8

t ¼ 2m

mþ2 ;

QðuÞ ¼ m;

Q 0ðuÞ ¼ �1
4 m3�mðmþ 2Þm;

Q 00ðuÞ ¼ 1
4 m4 m

mþ2

� ��2m
;

>>>>><
>>>>>:

ð2:4Þ
and u ¼ m
mþ2

� �m�1
.

However, all these multipoint methods are the variants of Newton’s method and the iteration can be aborted due to the
overflow or leads to divergence, if the derivative of the function at an iterative point is singular or almost singular, which
restrict their applications in practical.

Therefore, construction of an optimal multipoint method having quartic convergence and converge to the required root
even though the guess is far from zero or the derivative is small in the vicinity of the required root is an open and challenging
problem in computational mathematics. With this aim, we intend to propose an optimal scheme of higher-order methods in
which f0(x) = 0 is permitted at some points in the neighborhood of required root. The present approach of deriving this opti-
mal class of higher-order methods is based on weight function approach. All the proposed methods considered here are
found to be more effective and comparable to the existing robust methods available in literature.

3. Construction of novel techniques without memory

In this section, we intend to develop a new modified optimal class of higher-order methods for multiple roots, which will con-
verge even though f0(x) = 0, is permitted at some point. For this purpose, we consider the following two-step scheme as follows:
yn ¼ xn � 2m
mþ2

f ðxnÞ
f 0 ðxnÞ�pf ðxnÞ ;

xnþ1 ¼ xn � f ðxnÞ
f 0ðxnÞ�pf ðxnÞQ

f 0 ðynÞþhf 0 ðxnÞ
tf 0 ðxnÞ�pf ðxnÞ

� �
;

8<
: ð3:1Þ
where p, t and h are three free disposable parameters and Q f 0 ðynÞþhf 0 ðxnÞ
tf 0 ðxnÞ�pf ðxnÞ

� �
is a real-valued weight function such that the order

of convergence reaches at the optimal level four without using any more functional evaluations. Theorem 4.1 indicates that

under what conditions on the disposable parameters in (3.1), the order of convergence will reach at the optimal level four.

4. Order of convergence

Theorem 4.1. Let f : D # R! R be a sufficiently smooth function defined on an open interval D, enclosing a multiple zero of f(x),
say x = rm with multiplicity m > 1. Then the family of iterative methods defined by (3.1) has fourth-order convergence when
t ¼ 1
mþ1 ;

h ¼ � m
2þm

� �m
;

QðlÞ ¼ m;

Q 0ðlÞ ¼ �m3 m
2þmð Þ

�m

4ð1þmÞ ;

Q 00ðlÞ ¼ m4 m
2þmð Þ

�2m

4ð1þmÞ2
;

jQ 000ðlÞj <1;

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

ð4:1Þ
where l ¼ m
mþ2

� �m�1
and it satisfies the following error equation
enþ1 ¼
ð2þmÞ�3m

6m10 3ð�64Q 000ðlÞm3mð1þmÞ3 �m5ð2þmÞ3mð24� 4mþ 4m2 þ 3m3 þm4ÞÞpc2
1

h

þ2ð32Q 000ðlÞm3mð1þmÞ3 þm5ð2þmÞ3mð12� 2mþ 2m2 þ 2m3 þm4ÞÞc3
1 þ 6c1ð32Q 000ðlÞm3mð1þmÞ3p2

�m5ð2þmÞ3mðð�12þ 2m� 2m2 �m3Þp2 þm4c2ÞÞ þ
1

ð2þmÞ2
f�64Q 000ðlÞm3mð1þmÞ3ð2þmÞ2p3

þm5ð2þmÞ3mðð2þmÞ2pð�24þ 4m� 4m2 �m3 þm4Þp2 þ 6m4c2Þ þ 6m6c3Þg
i
e4

n þ OðenÞ5; ð4:2Þ
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where en and ck are already defined in Eq. (1.4).

Proof. Let x = rm be a multiple zero of f(x). Expanding f(xn) and f0(xn) about x = rm by the Taylor’s series expansion, we have
f ðxnÞ ¼
f ðmÞðrmÞ

m!
em

n 1þ c1en þ c2e2
n þ c3e3

n þ c4e4
n

� �
þ O e5

n

� �
; ð4:3Þ
and
f 0ðxnÞ ¼
f ðm�1ÞðrmÞ
ðm� 1Þ! em�1

n 1þmþ 1
m

c1en þ
mþ 2

m
c2e2

n þ
mþ 3

m
c3e3

n þ
ðmþ 4Þ

m
c4e4

n

� �
þ O e5

n

� �
; ð4:4Þ
respectively. h

From Eqs. (4.3) and (4.4), we have
f ðxnÞ
f 0ðxnÞ � pf ðxnÞ

¼ en

m
þ p� c1ð Þe2

n

m2 þ
p2 � 2pc1 þ ð1þmÞc2

1 � 2mc2
� �

e3
n

m3

þ
p3 þ ð3þ 2mÞpc2

1 � ð1þmÞ2c3
1 � 4mpc2 þ c1ð�3p2 þmð4þ 3mÞc2Þ � 3m2c3

� �
e4

n

m4 þ OðenÞ5; ð4:5Þ
and in the combination of Taylor series expansion of f 0 xn � 2m
mþ2

f ðxnÞ
f 0 ðxnÞ�pf ðxnÞ

� �
about x = rm, we have
:

f 0ðynÞ ¼ f 0 xn �
2m

mþ 2
f ðxnÞ

f 0ðxnÞ � pf ðxnÞ

� �

¼ f ðmÞðrmÞem�1
n

m
2þm

� �m
ð2þmÞ

m!
þ

m
2þm

� �m
�2 �2þmþm2
� �

pþ �4þ 2mþ 3m2 þm3
� �

c1
� �

en

m2m!

0
B@

þ
m

2þm

� �m
�4 �2þmþm2
� �

p2 � 2 8� 4m� 4m2 þm3 þm4
� �

pc1 � 4ð�2þmÞc2
1 þm2ð�8þ 4mþ 4m2 þm3Þc2

� �
e2

n

m4m!
þ Oðe3

nÞ

1
CA

ð4:6Þ
Furthermore, we have
f 0ðynÞ þ hf 0ðxnÞ
tf 0ðxnÞ � pf ðxnÞ

¼
hmþ m

2þm

� �m
ð2þmÞ

mt
þ

p hm2 � m
2þm

� �m
ð2þmÞð�2t þmð�1þ 2tÞÞ

� �
� 4 m

2þm

� �m
tc1

� �
en

m3t2

þ 1
m5t3 �p2 �hm3 þ m

2þm

� �m

ð2þmÞ �4t2 þm2ð�1þ 2tÞ þ 2mtð�1þ 2tÞ
� �� ��

þpt �hm3 þ m
2þm

� �m

4mð�1þ tÞ � 16t þm3ð�1þ 2tÞ þm2ð�2þ 6tÞ
� �� �

c1

þ4
m

2þm

� �m

2þm2� �
t2c2

1 � 8m2 m
2þm

� �m

t2c2

�
e2

n þ OðenÞ3: ð4:7Þ
Since it is clear from (4.7) that f 0 ðynÞþhf 0 ðxnÞ
tf 0 ðxnÞ�pf ðxnÞ

� �
� l is of order en, where l ¼ hmþ m

2þmð Þ
m
ð2þmÞ

mt . Hence, we can consider the Taylor’s

expansion of the weight function Q in the neighborhood of l. Therefore, we have
Q
f 0ðynÞ þ hf 0ðxnÞ
tf 0ðxnÞ � pf ðxnÞ

� �
¼ QðlÞ þ f 0ðynÞ þ hf 0ðxnÞ

tf 0ðxnÞ � pf ðxnÞ

� �
Q 0ðlÞ þ 1

2!

f 0ðynÞ þ hf 0ðxnÞ
tf 0ðxnÞ � pf ðxnÞ

� �2

Q 00ðlÞ

þ 1
3!

f 0ðynÞ þ hf 0ðxnÞ
tf 0ðxnÞ � pf ðxnÞ

� �3

Q 000ðlÞ þ O e4
n

� �
: ð4:8Þ
Using 4.5, 4.7 and 4.8 in the scheme (3.1), we have the following error equation
enþ1 ¼ en �
f ðxnÞ

f 0ðxnÞ � pf ðxnÞ
Q

f 0ðynÞ þ hf 0ðxnÞ
tf 0ðxnÞ � pf ðxnÞ

� �
¼ 1� QðlÞ

m

� �
en

þ QðlÞð�pþ c1Þ
m2 þ

Q 0ðlÞ p �hm2 þ m
2þm

� �m
ð2þmÞð�2t þmð�1þ 2tÞÞ

� �
þ 4 m

2þm

� �m
tc1

� �
m4t2

0
B@

1
CAe2

n

þ 1
m5 A1 �

1
2m2t4 A2 þ 2Q 0ðlÞmtA3

� �� �
e3

n þ O e4
n

� �
; ð4:9Þ
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where
A1 ¼
Q 0ðlÞð2þmÞ�mðp� c1Þð�hm2ð2þmÞmpþmmðð2þmÞpð�mþ 2ð�1þmÞtÞ þ 4tc1ÞÞ

t2

� QðlÞm2 p2 � 2pc1 þ ð1þmÞc2
1 � 2mc2

� �
;

A2 ¼ Q 00ðlÞ pðhm2 þmmð2þmÞ1�mðmþ 2t � 2mtÞÞ � 4
m

2þm

� �m

tc1

� �2

;

A3 ¼ p2ðhm3ð2þmÞm �mmð2þmÞð�m2 þ 2ð�1þmÞmt þ 4ð�1þmÞt2ÞÞ � hm3ð2þmÞmptc1

þmmtðc1ð�mð4þmð2þmÞÞpþ 2ð�8þmð1þmÞð2þmÞÞpt þ 4ð2þm2Þtc1Þ � 8m2tc2Þ:
For obtaining an optimal general class of fourth-order iterative methods, the coefficients of en; e2
n, and e3

n in the error Eq. (4.9)
must be zero simultaneously. After simplifying the Eq. (4.9), we have the following equations involving of Q(l), Q0(l), and
Q00(l)
QðlÞ ¼ m;

QðlÞð�pþc1Þ
m2 ¼ � Q 0 ðlÞ p �hm2þ m

2þmð Þ
m
ð2þmÞð�2tþmð�1þ2tÞÞ

� �
þ4 m

2þmð Þ
m

tc1

� �
m4t2 ;

A1 ¼ 0;

A2 ¼ 0;

A3 ¼ 0;

8>>>>>>>>><
>>>>>>>>>:

ð4:10Þ
respectively.
Solving the above equations for Q(l), Q0(l), Q00(l), t, and h, we get
t ¼ 1
mþ1 ;

h ¼ � m
2þm

� �m
;

QðlÞ ¼ m;

Q 0ðlÞ ¼ �m3 m
2þmð Þ

�m

4ð1þmÞ ;

Q 00ðlÞ ¼ m4 m
2þmð Þ

�2m

4ð1þmÞ2
;

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

ð4:11Þ
where l ¼ hmþ m
2þmð Þ

m
ð2þmÞ

mt .
After using the recently obtained values of t ¼ 1

mþ1 and h ¼ � m
2þm

� �m
in l ¼ hmþ m

2þmð Þ
m
ð2þmÞ

mt , we further get l ¼ m
mþ2

� �m�1
.

Using the above conditions, the scheme (3.1) will satisfy the following error equation
enþ1 ¼
ð2þmÞ�3m

6m10 3ð�64Q 000ðlÞm3mð1þmÞ3 �m5ð2þmÞ3mð24� 4mþ 4m2 þ 3m3 þm4ÞÞpc2
1

h

þ2ð32Q 000ðlÞm3mð1þmÞ3 þm5ð2þmÞ3mð12� 2mþ 2m2 þ 2m3 þm4ÞÞc3
1 þ 6c1ð32Q 000ðlÞm3mð1þmÞ3p2

�m5ð2þmÞ3mðð�12þ 2m� 2m2 �m3Þp2 þm4c2ÞÞ þ
1

ð2þmÞ2
f�64Q 000ðlÞm3mð1þmÞ3ð2þmÞ2p3

þm5ð2þmÞ3mðð2þmÞ2pð�24þ 4m� 4m2 �m3 þm4Þp2 þ 6m4c2Þ þ 6m6c3Þg
i
e4

n þ OðenÞ5; ð4:12Þ
where jQ000(l)j <1 and p 2 R is a free disposable parameter.
This reveals that the general two-step class of higher-order methods (3.1) reaches the optimal order of convergence four

by using only three functional evaluations per full iteration. The beauty of our proposed optimal general class is that it will
converge to the required root even f0(x) = 0 unlike Jarratt’s method and existing robust methods. This completes the proof of
the Theorem 4.1.

Note: Selection of parameter ‘p’ in family (3.1)
The parameter ‘p’ in family (3.1) is chosen so as to give the largest value of denominator. In order to make this happen, we

take
p ¼
þve; if f ðxnÞf 0ðxnÞ 6 0;
�ve; if f ðxnÞf 0ðxnÞP 0:

�
ð4:13Þ
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5. Some special cases

Finally, by using specific values of t and h, which are defined in Theorem 4.1, we get the following general class of higher-
order iterative methods given by
yn ¼ xn � 2m
mþ2

f ðxnÞ
f 0 ðxnÞ�pf ðxnÞ ;

xnþ1 ¼ xn � f ðxnÞ
f 0ðxnÞ�pf ðxnÞQ

ðmþ1Þ ðf 0ðynÞ� m
mþ2ð Þ

m
f 0ðxnÞ

� �
f 0 ðxnÞ�ðmþ1Þpf ðxnÞ

� �
;

8><
>: ð5:1Þ
where Q
ðmþ1Þ ðf 0 ðynÞ� m

mþ2ð Þ
m

f 0 ðxnÞ
� �

f 0 ðxnÞ�ðmþ1Þpf ðxnÞ

� �
is a weight function which satisfies the conditions defined in Theorem 4.1. Now, we shall

consider some particular cases of the proposed scheme (5.1) depending upon the weight function Q(x) and p as follow:
Case 1. Let us consider the following weight function
QðxÞ ¼
mð1þmÞ m

2þm

� �m

x
�mðm� 2Þ

2
: ð5:2Þ
It can be easily seen that the above mentioned weight function Q(x) satisfies all the conditions of Theorem 4.1. Therefore, we
obtain a new optimal general class of fourth-order methods given by
yn ¼ xn � 2m
mþ2

f ðxnÞ
f 0 ðxnÞ�pf ðxnÞ ;

xnþ1 ¼ xn �
m ð�2þmÞf 0 ðynÞþ m

2þmð Þ
m
ð�mf 0 ðxnÞþ2ð1þmÞpf ðxnÞÞ

� �
f ðxnÞ

2 m
2þmð Þ

m
f 0 ðxnÞ�f 0ðynÞ

� �
ðf 0 ðxnÞ�pf ðxnÞÞ

:

8><
>: ð5:3Þ
This is a new general class of fourth-order optimal methods having the same scaling factor of functions as that of Jarratt’s
method and does not fail even f0(x) = 0. Therefore, these techniques can be used as an alternative to Jarratt’s technique or
in the cases where Jarratt’s technique is not successful. Furthermore, one can easily get many new methods by choosing
the different values of the disposable parameter p.

Particular example of optimal family (5.3)
(i) For p = 0, family (5.3) reads as
yn ¼ xn � 2m
mþ2

f ðxnÞ
f 0 ðxnÞ ;

xnþ1 ¼ xn �
m ð�2þmÞf 0 ðynÞ�m m

2þmð Þ
m

f 0 ðxnÞ
� �

f ðxnÞ

2f 0 ðxnÞ m
2þmð Þ

m
f 0ðxnÞ�f 0 ðynÞ

� � :

8><
>: ð5:4Þ
This is a well-known Li et al. method (30) [10].
Case 2. Now, we consider the following weight function
QðxÞ ¼ m� 3m2

2
�

27ð1þmÞ2 m
2þm

� �2m

� 8ð1þmÞ m
2þmð Þ

m

m

� �
xþ ð1þmÞ m

2þmð Þ
m

m

� � : ð5:5Þ
It can be easily seen that the above mentioned weight function Q(x) satisfies all the conditions of Theorem 4.1. Therefore, we
obtain another new optimal general class of fourth-order methods given by
yn ¼ xn � 2m
mþ2

f ðxnÞ
f 0 ðxnÞ�pf ðxnÞ ;

xnþ1 ¼ xn � mf ðxnÞ
2ðf 0 ðxnÞ�pf ðxnÞÞ 2� 3m� B1

B2

� �
:

8<
: ð5:6Þ
where
B1 ¼ 54m
m

2þm

� �2m

ðf 0ðxnÞ � pð1þmÞf ðxnÞÞ2;

B2 ¼ �mf 0ðynÞ þ
m

2þm

� �m

ðð8þmÞf 0ðxnÞ � 8pð1þmÞf ðxnÞÞ
� �

� �mf 0ðynÞ þ
m

2þm

� �m

ðð�1þmÞf 0ðxnÞ þ pð1þmÞf ðxnÞÞ
� �

:

This is again a new general class of fourth-order optimal methods and one can easily get many new methods by choosing
different values of the disposable parameter p.
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Particular example of optimal family (5.6)

(i) For p = 0, family (5.6) reads as
yn ¼ xn � 2m
mþ2

f ðxnÞ
f 0 ðxnÞ ;

xnþ1 ¼ xn �
mf ðxnÞ m2ð�2þ3mÞff 0 ðynÞg

2�B3 f 0 ðxnÞf 0 ðynÞþB4ff 0ðxnÞg2ð Þ
2f 0 ðxnÞ ð�1þmÞ m

2þmð Þ
m

f 0ðxnÞ�mf 0ðynÞ
� �

mf 0ðynÞ� m
2þmð Þ

m
ð8þmÞf 0 ðxnÞ

� � :

8><
>: ð5:7Þ
where
B3 ¼ m
m

2þm

� �m

ð�14þ 17mþ 6m2Þ;

B4 ¼
m

2þm

� �2m

ð16þ 16mþ 19m2 þ 3m3Þ:
This is a new fourth-order optimal multipoint iterative method for multiple roots.
Case 3. Now, we consider the following weight function
QðxÞ ¼ Ax2 þ Bxþ C:
Then
Q 0ðxÞ ¼ 2Axþ B; Q 00ðxÞ ¼ 2A; Q 000ðxÞ ¼ 0:
According to Theorem 4.1, we should solve the following equations:
Al2 þ Blþ C ¼ m;

2Alþ B ¼ �m3 m
2þmð Þ

�m

4ð1þmÞ ;

2A ¼ m4 m
2þmð Þ

�2m

4ð1þmÞ2
;

Q 000ðlÞ ¼ 0:

8>>>>>><
>>>>>>:

ð5:8Þ
After some simplification, we get the values of A, B and C as follows:
A ¼ m4 m
2þmð Þ

�2m

8ð1þmÞ2
;

B ¼ � 3m3 m
2þmð Þ

�m

4ð1þmÞ ;

C ¼ mð1þmÞ

8>>>><
>>>>:

ð5:9Þ
and thus we obtain the following family of iterative methods:
yn ¼ xn � 2m
mþ2

f ðxnÞ
f 0 ðxnÞ�pf ðxnÞ ;

xnþ1 ¼ xn �
mf ðxnÞ m

2þmð Þ
�2m

8ðf 0 ðxnÞ�pf ðxnÞÞðf 0 ðxnÞ�ð1þmÞpf ðxnÞÞ2
m3ff 0ðynÞg

2 � 2m2 m
2þm

� �m
� ðf 0ðxnÞð3þmÞ � 3f ðxnÞð1þmÞpÞf 0ðynÞ

h

þ m
2þm

� �2m
ðff 0ðxnÞg2 8þ 8mþ 6m2 þm3

� �
� 2f ðxnÞf 0ðxnÞð8þ 16mþ 11m2 þ 3m3Þpþ 8ff 0ðxnÞg2ð1þmÞ3p2Þ

	
:

8>>>>><
>>>>>:

ð5:10Þ
This is again a new general class of fourth-order optimal methods and one can easily get many new methods by choosing
different values of the disposable parameter p.

Special case of optimal family (5.10)

(i) For p = 0, family (5.10) reads as
yn ¼ xn � 2m
mþ2

f ðxnÞ
f 0 ðxnÞ ;

xnþ1 ¼ xn �
m m

2þm½ Þ
�2m

f ðxnÞ
8ff 0 ðxnÞg3 m3ff 0ðynÞg

2 � 2m2 m
2þm

� �m
ð3þmÞf 0ðxnÞf 0ðynÞ þ m

2þm

� �2m
8þ 8mþ 6m2 þm3
� �

ff 0ðxnÞg2
� 	

:

8><
>:

ð5:11Þ
This is a well-known Zhou et al. method (11) [13].



V. Kanwar et al. / Applied Mathematics and Computation 222 (2013) 564–574 571
Case 4. Since p is a free disposable parameter in scheme (5.1). Therefore, for p = 0 in scheme (5.1), we get
yn ¼ xn � 2m
mþ2

f ðxnÞ
f 0 ðxnÞ ;

xnþ1 ¼ xn � f ðxnÞ
f 0ðxnÞQ

ðmþ1Þðf 0 ðynÞ
f 0ðxnÞ � ðmþ 1Þ m

mþ2

� �m� �
:

8<
: ð5:12Þ
This is a well-known Zhou et al. family of methods [13].

Remark 1. The first most striking feature of this contribution is that we have developed one point family of order two and
multipoint optimal general class of fourth-order methods for the first time which will converge even though the guess is far
from root or the derivative is small in the vicinity of the required root.
Remark 2. Here, we should note that one can easily develop several new optimal families of higher-order methods from
scheme (5.1) by choosing different type of weight functions, permitting f0(x) = 0 in the vicinity of the required root.
Remark 3. Li et al. method and Zhou et al. family of methods (method (5.11)) are obtained as the special cases of our pro-
posed schemes (5.3) and (5.10) respectively.
Remark 4. One should note that all the proposed families require one evaluations of the function and two of it’s first-order
derivative viz. f(xn), f0(xn) and f0(yn) per iteration. Theorem 4.1 shows that the proposed schemes are optimal with fourth-
order convergence, as expected by Kung-Traub conjecture [7]. Therefore, the proposed class of methods has an efficiency
index which equals 1.587.
Remark 5. If at any point during the search, f0(x) = 0, Newton’s method and it’s variants would fail due to division by zero.
Our methods do not exhibit this type of behaviour.
Remark 6. Further, it is investigated that our proposed scheme (5.1) gives very good approximation to the root when jpj is
small. This is because that, for small values of p, slope or angle of inclination of straight line with x–axis becomes smaller, i.e.
as p ? 0, the straight line tends to x–axis. This means that our next approximation will move faster towards the desired root.
For large values of p, the formula still works but takes more number of iterations as compared to the smaller values of p.
6. Numerical experiments

In this section, we shall check the effectiveness of the new optimal methods. We employ the present methods, namely,
family (5.3) and family (5.6) for jpj = 1 denoted by, MLM, MM respectively to solve nonlinear equations. We compare them
with existing robust methods namely, Rall’s method (RM) [1], method (5.11) (ZM1), Zhou et al. method (12) (ZM2) [13],
method (2.2) (SM), Li et al. method (69) (LM1) [9] and method (5.4) (LM2) respectively. For better comparisons of our pro-
posed methods, we have given two comparsion tables in each example: one is corresponding to absolute error value of given
nonlinear functions (with the same total number of functional evaluations =12) and other is with respect to number of iter-
ations taken by each method to obtain the root correct up to 35 significant digits. All computations have been performed
using the programming package Mathematica 9 with multiple precision arithmetic.

Example 6.1. Consider the following 6 � 6 matrix
A ¼

5 8 0 2 6 �6
0 1 0 0 0 0
6 18 �1 1 13 �9
3 6 0 4 6 �6
4 14 �2 0 11 �6
6 18 �2 1 13 �8

2
666666664

3
777777775
:

The corresponding characteristic polynomial of this matrix is as follows:
f1ðxÞ ¼ ðx� 1Þ3ðx� 2Þðx� 3Þðx� 4Þ: ð6:1Þ
Its characteristic equation has one multiple root at x = 1 of multiplicity three. It can be seen that (RM), (ZM1), (ZM2), (SM),
(LM1) and (LM2) methods do not necessarily converge to the root that is nearest to the starting value. For example, (LM1)
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and (LM2) with initial guess x0 = 1.6 diverge while (ZM1), (ZM2), (SM) converge to the root after finite number of iterations.
Similarly, (RM), (ZM1), (ZM2), (SM), (LM1) and (LM2) with initial guess x0 = 1.7 are divergent. Our methods do not exhibit
this type of behaviour.
f(x)
 x0
 RM
 ZM1
 ZM2
 SM
 LM1
 LM2
 MM jpj = 1
 MLM jpj = 1
Comparison of different iterative methods with the same total number of functional evaluations (TNFE=12)

f1(x)
 0.4
 1.48e � 110
 5.20e � 353
 4.12e � 358
 2.02e � 361
 2.62e � 365
 3.68e � 367
 9.37e � 557
 4.01e � 550
0.6
 2.75e � 136
 3.22e � 446
 1.01e � 451
 2.84e � 455
 2.20e � 459
 2.56e � 461
 1.09e � 702
 1.55e � 696

1.3
 6.11e � 121
 6.29e � 307
 8.88e � 310
 1.67e � 311
 2.76e � 313
 4.70e � 314
 9.53e � 607
 5.39e � 594

1.6
 1.04e � 29
 6.66e + 12
 8.20e + 3
 1.34e � 17
 CUR
 CUR
 1. 01e � 2
 3.23e � 6

1.7
 D
 D
 D
 D
 D
 1.06e � 16
 2.90e � 25
 9.44e � 1
Comparison of different iterative methods with respect to number of iteration

f1(x)
 0.4
 6
 4
 4
 4
 4
 4
 3
 3
0.6
 6
 4
 4
 4
 4
 4
 3
 3

1.3
 6
 4
 4
 4
 4
 4
 3
 3

1.6
 8
 11
 9
 6
 D
 D
 7
 7

1.7
 D
 D
 D
 D
 D
 6
 6
 8
Example 6.2. Consider the following 5 � 5 matrix
B ¼

29 14 2 6 �9
�47 �22 �1 �11 13
19 10 5 4 �8
�19 �10 �3 �2 8

7 4 3 1 �3

2
6666664

3
7777775
:

The corresponding characteristic polynomial of this matrix is as follows:
f2ðxÞ ¼ ðx� 2Þ4ðxþ 1Þ: ð6:2Þ
Its characteristic equation has one multiple root at x = 2 of multiplicity four. It can be seen that all the mentioned methods
fail with initial guess x0 = � 0.4. Our methods do not exhibit this type of behaviour.
f(x)
 x0
 RM
 ZM1
 ZM2
 SM
 LM1
 LM2
 MM jpj = 1
 MLM jpj = 1
Comparison of different iterative methods with the same total number of functional evaluations (TNFE=12)

f2(x)
 �0.4
 F
 F
 F
 F
 F
 F
 1.51e � 143
 8.46e � 79
1.0
 7.41e � 244
 2.628e � 151
 1.52e � 151
 1.05e � 151
 3. 72e � 614
 1.58e � 616
 6.72e � 653
 2.68e � 656

1.1
 5.11e � 259
 1.908e � 681
 1.57e � 682
 2.99e � 683
 3. 07e � 684
 1.18e � 684
 7.20e � 687
 2.78e � 690

2.9
 3.49e � 302
 1.56e � 929
 7.32e � 931
 9.23e � 932
 4.74e � 933
 1.29e � 933
 1.06e � 709
 1.86e � 674
Comparison of different iterative methods with respect to number of iteration

f2(x)
 �0.4
 F
 F
 F
 F
 F
 F
 4
 4
1.0
 6
 3
 3
 3
 3
 3
 3
 3

1.1
 6
 3
 3
 3
 3
 3
 3
 3

2.9
 5
 3
 3
 3
 3
 3
 3
 3
Example 6.3. f3(x) = sin2x.

This equation has an infinite number of roots with multiplicity two but our desired root is rm = 0. It can be seen that (RM),
(ZM1), (ZM2), (SM), (LM1) and (LM2) methods do not necessarily converge to the root that is nearest to the starting value.
For example, (RM), (ZM1), (ZM2), (SM), (LM1) and (LM2) methods with initial guess x0 = � 1.51 converge to
15.7079 . . . ,12069.9989 . . . ,493.2300 . . . , 6.2832 . . . , � 3.1416 . . . , � 3.1416 . . . , respectively, far away from the required
root zero. Similarly, (RM), (ZM1), (ZM2), (SM), (LM1) and (LM2) methods with initial guess x0 = 1.51 converge to
12069.9989 . . . ,493.2300 . . . , � 6.2832 . . . , 3.1416 . . . and 3.1416 . . . respectively. Our methods do not exhibit this type of
behaviour.
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f(x)
 x0
 RM
 ZM1
 ZM2
 SM
 LM1
 LM2
 MM jpj = 1
 MLM jpj = 1
Comparison of different iterative methods with the same total number of functional evaluations

f3(x)
 �1.51
 CUR
 CUR
 CUR
 CUR
 CUR
 CUR
 1.27e � 318
 8.39e � 288
� 0.6
 1.90e � 638
 4.33e � 532
 2.35e � 536
 1.99e � 538
 2. 55e � 540
 2.55e � 540
 1.13e � 342
 2.35e � 326

0.3
 1.10e � 1102
 4.42e � 957
 8.50e � 959
 1.19e � 959
 1.73e � 960
 1.73e � 960
 8.19e � 454
 1.77e � 433

1.51
 CUR
 CUR
 CUR
 CUR
 CUR
 CUR
 1.27e � 318
 8.34e � 288
Comparison of different iterative methods with respect to number of iteration

f3(x)
 �1.51
 CUR
 CUR
 CUR
 CUR
 CUR
 CUR
 3
 3
�0.6
 4
 3
 3
 3
 3
 3
 3
 3

0.3
 4
 3
 3
 3
 3
 3
 3
 3

1.51
 CUR
 CUR
 CUR
 CUR
 CUR
 CUR
 3
 3
Example 6.4. f4(x) = (e�x + sinx)3.
This equation has an infinite number of roots with multiplicity three but our desired root rm =

3.1830630119333635919391869956363946. It can be seen that (ZM1), (ZM2), and (SM) methods do not necessarily
converge to the root that is nearest to the starting value. For example, (RM), (ZM1), (ZM2) and (SM) methods with initial
guess x0 = 1.70 converge to undesired root 6.2813 . . .,40.8407 . . . , 7875.9727 . . . ,1060394.3347 . . . , while (LM2) converge to
the required root after finite number of iteration but (LM1) diverges to the required root. Similarly, (RM), (LM1) and (LM2)
methods with initial guess x0 = 4.40 converges to undesired root 12.2912 . . . , 267.0353 . . . and 9.4248 . . . respectively while
(ZM1), (ZM2) and (SM) methods are divergent. Our methods do not exhibit this type of behaviour.
f(x)
 x0
 RM
 ZM1
 ZM2
 SM
 LM1
 LM2
 MM jpj = 1
 MLM jpj = 1
Comparison of different iterative methods with the same total number of functional evaluations

f4(x)
 1.70
 CUR
 CUR
 CUR
 CUR
 D
 3.51e + 2
 1.44e � 278
 1.25e � 278
2.50
 1.61e � 221
 3.33e � 444
 9.60e � 445
 4.62e � 445
 2.23e � 445
 1.64e � 445
 2.56e � 469
 3.40e � 466

3.80
 1.27e � 260
 7.18e � 424
 1.52e � 424
 6.15e � 425
 2. 51e � 425
 1.73e � 425
 7.96e � 523
 2.94e � 521

4.40
 CUR
 D
 D
 D
 CUR
 CUR
 6.18e � 405
 4.60e � 395
Comparison of different iterative methods with respect to number of iteration

f4(x)
 1.70
 CUR
 CUR
 CUR
 CUR
 D
 14
 4
 4
2.50
 5
 3
 3
 3
 3
 3
 3
 3

3.80
 5
 4
 4
 4
 4
 3
 3
 3

4.40
 CUR
 D
 D
 D
 CUR
 CUR
 4
 4
Example 6.5. f5(x) = (5tan�1x � 4x)8.
This equation has an finite number of roots with multiplicity eight but our desired root is

rm = 0.94913461128828951372581521479848875. It can be seen that (RM), (ZM1), (ZM2), (SM), (LM1) and (LM2) methods
do not necessarily converge to the root that is nearest to the starting value. For example, all the mentioned methods with
initial guess x0 = 0.5 fail to converge the required root but our methods converge the required root after finite number of
iteration.
f(x) x
0 R
M Z
M1 Z
M2 S
M L
M1 L
M2 M
M jpj = 1 M
LM jpj = 1
Comparison of different iterative methods with the same total number of functional evaluations

f5(x) 0
.5 F
 F
 F
 F
 F
 F
 1
.79e � 11 2
.04e � 19
0
.7 2
.58e � 238 1
.63e � 248 1
.63e � 248 1
.63e � 248 1
. 75e � 248 1
.81e � 248 4
.43e � 448 1
.66e � 447

1
.0 3
.59e � 685 1
.308e � 2296 2
.23e � 2297 5
.43e � 2298 5
.49e � 2300 1
.75e � 2300 3
.28e � 2515 6
.92e � 2513

1
.2 1
.43e � 379 9
.26e � 1136 2
.04e � 1136 6
.05e � 1137 1
.09e � 1138 3
.98e � 1139 4
.11e � 1396 1
.01e � 1393
Comparison of different iterative methods with respect to number of iteration

f5(x) 0
.5 F
 F
 F
 F
 F
 F
 7
 6
0
.7 7
 5
 5
 5
 5
 5
 4
 4

1
.0 5
 3
 3
 3
 3
 3
 3
 3

1
.2 6
 3
 3
 3
 3
 3
 3
 3
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