
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright


Author's personal copy

Computers and Mathematics with Applications 55 (2008) 2012–2017
www.elsevier.com/locate/camwa

High-order nonlinear solver for multiple roots

B. Netaa,∗, Anthony N. Johnsonb

a Naval Postgraduate School, Department of Applied Mathematics, Monterey, CA 93943, United States
b United States Military Academy, Department of Mathematical Sciences, West Point, NY 10996, United States

Abstract

A method of order four for finding multiple zeros of nonlinear functions is developed. The method is based on Jarratt’s
fifth-order method (for simple roots) and it requires one evaluation of the function and three evaluations of the derivative. The
informational efficiency of the method is the same as previously developed schemes of lower order. For the special case of double
root, we found a family of fourth-order methods requiring one less derivative. Thus this family is more efficient than all others. All
these methods require the knowledge of the multiplicity.
Published by Elsevier Ltd

Keywords: Nonlinear equations; High order; Multiple roots; Fixed point

1. Introduction

There is a vast literature on the solution of nonlinear equations and nonlinear systems, see for example
Ostrowski [1], Traub [2], Neta [3] and references there. Here we develop a high-order fixed point type method to ap-
proximate a multiple root. There are several methods for computing a zero ξ of multiplicity m of a nonlinear equation
f (x) = 0, see Neta [3]. Newton’s method is only of first order unless it is modified to gain the second order of conver-
gence, see Rall [4] or Schröder [5]. This modification requires a knowledge of the multiplicity. Traub [2] has suggested
the use of any method for f (m)(x) or g(x) =

f (x)
f ′(x)

. Any such method will require higher derivatives than the corre-
sponding one for simple zeros. Also the first one of those methods requires the knowledge of the multiplicity m. In
such a case, there are several other methods developed by Hansen and Patrick [6], Victory and Neta [7], and Dong [8].
Since in general one does not know the multiplicity, Traub [2] suggested a way to approximate it during the iteration.

For example, the quadratically convergent modified Newton’s method is

xn+1 = xn − m
fn

f ′
n

(1)

and the cubically convergent Halley’s method [9] is

xn+1 = xn −
fn

m+1
2m f ′

n −
fn f ′′

n
2 f ′

n

(2)

∗ Corresponding author.
E-mail address: byneta@gmail.com (B. Neta).

0898-1221/$ - see front matter Published by Elsevier Ltd
doi:10.1016/j.camwa.2007.09.001



Author's personal copy

B. Neta, A.N. Johnson / Computers and Mathematics with Applications 55 (2008) 2012–2017 2013

where f (i)
n is short for f (i)(xn). Another third-order method was developed by Victory and Neta [7] and is based on

King’s fifth-order method (for simple roots) [10]

wn = xn −
fn

f ′
n

xn+1 = wn −
f (wn)

f ′
n

fn + A f (wn)

fn + B f (wn)

(3)

where

A = µ2m
− µm+1

B = −
µm(m − 2)(m − 1) + 1

(m − 1)2 (4)

and

µ =
m

m − 1
. (5)

Yet two other third-order methods developed by Dong [8], both require the same information and both are based on a
family of fourth-order methods (for simple roots) due to Jarratt [11]:

xn+1 = xn − un −
f (xn)(

m
m−1

)m+1
f ′(xn − un) +

m−m2−1
(m−1)2 f ′(xn)

(6)

xn+1 = xn −
m

m + 1
un −

m
m+1 f (xn)(

1 +
1
m

)m
f ′

(
xn −

m
m+1 un

)
− f ′(xn)

(7)

where un =
f (xn)
f ′(xn)

.

Our starting point here is Jarratt’s method [12] given by the iteration

xn+1 = xn −
f (xn)

a1 f ′(xn) + a2 f ′(yn) + a3 f ′(ηn)
(8)

where un is as above and

yn = xn − aun

vn =
f (xn)

f ′(yn)

ηn = xn − bun − cvn .

(9)

Jarratt has shown that this method (for simple roots) is of order 5 [12] if the parameters are chosen as follows

a = 1, b =
1
8
, c =

3
8
, a1 = a2 =

1
6
, a3 =

2
3
. (10)

It requires one function- and three derivative-evaluation per step. Thus the informational efficiency (see [2]) is 1.25.
Since Jarratt did not give the asymptotic error constant, we have employed Maple [13] to derive it,

1
24

A5 +
1
2

A4 A2 −
1
4

A2
3 +

1
8

A2
2 A3 + A4

2,

where Ai are given by (14) with m = 1.



Author's personal copy

2014 B. Neta, A.N. Johnson / Computers and Mathematics with Applications 55 (2008) 2012–2017

2. New higher order scheme

We would like to find the six parameters a, b, c, a1, a2, a3 so as to maximize the order of convergence to a root ξ

of multiplicity m. Let en, ên, εn be the errors at the nth step, i.e.

en = xn − ξ

ên = yn − ξ

εn = ηn − ξ.

(11)

If we expand f (xn), and f ′(xn) in Taylor series (truncated after the N th power, N > m) we have

f (xn) = f (xn − ξ + ξ) = f (ξ + en) =
f (m)(ξ)

m!

(
em

n +

N∑
i=m+1

Ai e
i
n

)
(12)

or

f (xn) =
f (m)(ξ)

m!
em

n

(
1 +

N∑
i=m+1

Bi−mei−m
n

)
(13)

where

Ai =
m! f (i)(ξ)

i ! f (m)(ξ)
, i > m

Bi−m = Ai (14)

f ′(xn) =
f (m)(ξ)

(m − 1)!
em−1

n

(
1 +

N∑
i=m+1

i

m
Bi−mei−m

n

)
. (15)

To expand f ′(yn) and f ′(ηn) we use some symbolic manipulator, such as Maple [13], we find

f ′(yn) =
f (m)(ξ)

(m − 1)!
êm−1

n

(
1 +

m + 1
m

B1ên +
m + 2

m
B2ê2

n + · · ·

)
(16)

ên = en − aun =

(
1 −

a

m

)
en +

a

m2 B1e2
n +

[
2a

m2 B2 −
a(m + 1)

m3 B2
1

]
e3

n + · · ·

=
1
2

en +
1

2m
B1e2

n +
1
m

[
B2 −

m + 1
2m

B2
1

]
e3

n + · · · (17)

where, for simplicity, we chose

a =
m

2
. (18)

Thus

f ′(yn) =
f (m)(ξ)

(m − 1)!
em−1

n (c0 + c1en + c2e2
n + c3e3

n + · · ·) (19)

where

c0 = 21−m

c1 =
3m − 1

m
2−m B1

c2 =

[
4 − 2m

m2 B2
1 +

3(3m − 2)

2m
B2

]
2−m

c3 =

[
25m − 21

4m
B3 +

m2
− 21m + 34

2m2 B1 B2 −
m3

− 12m2
− 13m + 48

6m3 B3
1

]
2−m .

(20)



Author's personal copy

B. Neta, A.N. Johnson / Computers and Mathematics with Applications 55 (2008) 2012–2017 2015

The error in ηn is given by

εn = en − bun − cvn = λen +
2b + ĉ(m − 1)

2m2 B1e2
n

+

[
8b + (5m − 6)ĉ

4m2 B2 −
4b(m + 1) − (3m2

− 7)ĉ

4m3 B2
1

]
e3

n + · · · (21)

where

ĉ = 2m−1c,

λ = 1 −
b + ĉ

m
.

(22)

We now expand f ′(ηn) in terms of en

f ′(ηn) =
f (m)(ξ)

(m − 1)!
εm−1

n

(
1 +

m + 1
m

B1εn +
m + 2

m
B2ε

2
n + · · ·

)
=

f (m)(ξ)

(m − 1)!
em−1

n (d0 + d1en + d2e2
n + · · ·) (23)

where

d0 = λm−1

d1 =
λm−2 B1

m3

{
(m2

+ b2)(m + 1) − bm(m + 3) + (m + 1)ĉ2
+

[
2b(m + 1) − m

m2
− 6m − 3

2

]
ĉ

}
d2 = −

λm−3

32m5 B2
1 [α1b + β1ĉ + γ1ĉ2

+ δ1ĉ3
] +

λm−3

m5 B2[α2 + β2ĉ + γ2ĉ2
+ δ2ĉ3

+ γ3ĉ4
]

(24)

where

α1 = 16[2m(m + 1)b2
− m2(m − 7)b + 2m2(m + 1)]

β1 = 8m[6b2(m + 1)(m + 3) + b(m3
− 15m2

− m − 1) − m(m − 1)(m2
− 2m − 7)],

γ1 = 4[8bm2(m + 1) + m(m − 1)(m3
− 6m2

− 3m − 16) + 4m2(m − 1)]

δ1 = 16m2(m − 1)

α2 = 32[b4(m + 2) − 4b3m2
+ 2b2m(m + 4)(2m − 1) − 2bm3(m + 5) + m5(m + 2)]

β2 = 8[16b3(m + 2) − 48b2m(m + 2) − bm2(5m2
− 51m − 98) + m3(5m2

− 27m − 26)]

γ2 = 8[24b2(m + 2) − 48bm(m + 2) − m2(5m2
− 35m − 42)]

δ2 = 128[b(m + 2) − m(m + 1)]

γ3 = 32(m + 2).

(25)

Now substitute (13), (15), (19) and (23) into (8) and expand the quotient fn/(a1 f ′(xn) + a2 f ′(yn) + a3 f ′(ηn)) in
Taylor series, we get

en+1 = en −
fn

a1 f ′(xn) + a2 f ′(yn) + a3 f ′(ηn)

= C1
1 en + C1

2 B1e2
n + (C1

3 B2
1 + C2

3 B2)e
3
n + (C1

4 B3
1 + C2

4 B1 B2 + C3
4 B3)e

4
n + · · · (26)

where the coefficients C j
i depend on the parameters b, c, a1, a2, a3. These 5 parameters can be used to annihilate the

coefficients of en, e2
n, e3

n and one of the terms in e4
n . Thus the method is of order p = 4. Actually, except for m = 2,

we used b = a = m/2 and thus we have only 4 parameters at our disposal. This is sufficient to obtain fourth-order
methods.



Author's personal copy

2016 B. Neta, A.N. Johnson / Computers and Mathematics with Applications 55 (2008) 2012–2017

Table 1
Results for Example 2

n x f x f

0 0.8 0.1296 0.6 0.4096
1 1.00074058 0.21954564(−5) 1.02772277 0.31600247(−2)
2 1.00000014 0.750396(−13)

Because of the complexity of the above equations, we have listed the parameters for m = 2, 3, 4, 5 and 6. All these
methods are of fourth order.

m 2 2 3 4 5 6

a 1 4
3

3
2 2 5

2 3

b free free free 2 5
2 3

c free 1−b
3

3
5 −

b
4 0.06478279184 0.0217372041 0.0082119760

a1 −
1
2

1−2b
2

25
108 b −

43
72 −0.4374579865 −0.4303454005 −0.3681491853

a2 2 3(b − 1) 4 −
25
72 b 7.90412890309 18.8154365391 39.6876826792

a3 0 2 −
125
72 −5.9128176652 −15.8940830499 −35.6993794378

r1 −
1
2

2
9 b −

13
18

5b
1296 −

37
108 −0.2362609294 −0.1647909926 −0.1201790024

r2
3
8

7
8 −

b
2

25
81 −

5b
972 0.1546752539 0.1013867224 0.07303104907

r3
1
8

1
8

2
25 0.08352683535 0.06967247928 0.05702535018

The error is given by

en+1 = (r1 B1 B2 + r2 B3
1 + r3 B3)e

4
n (27)

where r1, r2, and r3 are given in the above table for each m. For m = 3, we can choose the free parameter b to equal
a = 3/2.

To summarize, we managed to obtain a fourth-order method requiring one function- and three derivative-evaluation
per step. The informational efficiency of these methods is 1, as all the above mentioned methods for multiple roots.
The efficiency index is 1.4142 which is lower than the third-order methods. In the case m = 2 we found a method that
will require only two derivative-evaluations (a3 = 0) and thus the informational efficiency is 4/3 and the efficiency
index is 1.5874. We could not find such efficient methods for higher m.

3. Numerical experiments

In our first example we took a quadratic polynomial having a double root at ξ = 1

f (x) = x2
− 2x + 1. (28)

Here we started with x0 = 0 and the convergence is achieved in 1 iteration. In the second example we took a
polynomial having two double roots at ξ = ±1

f (x) = x4
− 2x2

+ 1. (29)

Starting at x0 = 0.8, our method converged in 1 iteration. When we start at x0 = 0.6, our method required 2 iterations.
The results are given in Table 1.

Similar results were obtained when starting at x0 = −0.8 and x = −0.6 to converge to ξ = −1.
The next example is a polynomial with triple root at ξ = 1

f (x) = x5
− 8x4

+ 24x3
− 34x2

+ 23x − 6. (30)



Author's personal copy

B. Neta, A.N. Johnson / Computers and Mathematics with Applications 55 (2008) 2012–2017 2017

Table 2
Results for Example 3

n x f

0 0 −6.
1 0.95239072 −0.23148417(−3)
2 0.99999683 −0.63(−16)

Table 3
Results for Example 4

n x f x f

0 0.1 0.11051709(−1) 0.2 0.48856110(−1)
1 0.12654311(−4) 0.16013361(−9) 0.17709827(−3) 0.31369352(−7)
2 0.3739(−20) 0 0.14341725(−15) 0

Table 4
Results for Example 5

n x f

0 0 19.
1 1.46056319 9.725126111
2 1.00101187 0.368806435(−4)
3 1. 0.

The iteration starts with x0 = 0 and the results are summarized in Table 2. Another example with a double root at
ξ = 0 is

f (x) = x2ex . (31)

Starting at x0 = 0.1 our method converged in 1 iteration, but when we start at x0 = 0.2, our scheme converged in 1
iteration. The results are given in Table 3. The last example having a double root at ξ = 1 is

f (x) = 3x4
+ 8x3

− 6x2
− 24x + 19. (32)

Now we started with x0 = 0 and the results are summarized is Table 4.

References

[1] A.M. Ostrowski, Solutions of Equations and System of Equations, Academic Press, New York, 1960.
[2] J.F. Traub, Iterative Methods for the Solution of Equations, Prentice Hall, New Jersey, 1964.
[3] B. Neta, Numerical Methods for the Solution of Equations, Net-A-Sof, California, 1983.
[4] L.B. Rall, Convergence of the Newton process to multiple solutions, Numer. Math. 9 (1966) 23–37.
[5] E. Schröder, Über unendlich viele Algorithmen zur Auflösung der Gleichungen, Math. Ann. 2 (1870) 317–365.
[6] E. Hansen, M. Patrick, A family of root finding methods, Numer. Math. 27 (1977) 257–269.
[7] H.D. Victory, B. Neta, A higher order method for multiple zeros of nonlinear functions, Int. J. Comput. Math. 12 (1983) 329–335.
[8] C. Dong, A family of multipoint iterative functions for finding multiple roots of equations, Int. J. Comput. Math. 21 (1987) 363–367.
[9] E. Halley, A new, exact and easy method of finding the roots of equations generally and that without any previous reduction, Phil. Trans. R.

Soc. London 18 (1694) 136–148.
[10] R.F. King, A family of fourth order methods for nonlinear equations, SIAM J. Numer. Anal. 10 (1973) 876–879.
[11] P. Jarratt, Some fourth order multipoint methods for solving equations, Math. Comp. 20 (1966) 434–437.
[12] P. Jarratt, Multipoint iterative methods for solving certain equations, Comput. J. 8 (1966) 398–400.
[13] D. Redfern, The Maple Handbook, Springer-Verlag, New York, 1994.


