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Abstract

Time-dependent dispersive shallow water waves in an unbounded domain are considered. The in5nite domain
is truncated via an arti5cial boundary B, and a high-order non-re(ecting boundary condition (NRBC) is
imposed on B. Then the problem is solved by a 5nite di6erence scheme in the 5nite domain bounded
by B. The sequence of NRBCs proposed by Higdon is used. However, in contrast to the original low-order
implementation of the Higdon conditions, a new scheme is devised which allows the easy use of a Higdon-type
NRBC of any desired order. In addition, a procedure for the automatic choice of the parameters appearing in
the NRBC is proposed. The performance of the scheme is demonstrated via a numerical example.
c© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

In various 5elds of applications one is often interested in solving a wave problem computationally
in a domain which is much smaller than the actual domain where the governing equations hold. Two
important examples are regional models in meteorology and problems of scattering from objects in
underwater acoustics. See, e.g., the monographs [3,2] for discussion on these problems and on
associated solution techniques.

One of the several methods that exist for solving a wave problem in a limited computational
domain is that of using nonre(ecting boundary conditions (NRBCs). In this method, the original
domain is 5rst truncated by introducing an arti5cial boundary B, which encloses the computational
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domain �. Then a special boundary condition is applied on B. This boundary condition must be
nonre(ecting, namely it should not give rise to re(ections when waves that propagate from within
� impinge on it. Boundary conditions that generate no spurious re(ection in all cases are called
“perfectly nonre(ecting,” or “perfectly absorbing,” or simply “exact.” (See [4] for a review of
such NRBCs.) Most NRBCs are approximate, namely they do generate some amount of re(ection.
However, as long as the re(ection error is small (say, of the same order of magnitude as the
discretization error) the NRBC is considered adequate. The simplest NRBC is the Sommerfeld-like
boundary condition, which has the same form as the Sommerfeld radiation condition that holds at
in5nity. In the last three decades several improved NRBCs that reduce the spurious re(ections have
been proposed. See more details in [3].

In some cases, typically in meteorology, the boundary conditions used on B must also contain in-
formation obtained previously from a “global model.” The latter is de5ned over a much larger domain
than � (e.g., an atmospheric layer above the entire sphere representing the earth) but involves a much
coarser discretization. Ways to incorporate such global information in a NRBC are discussed in [2].

A closely related approach to that of using a NRBC is the method of absorbing layers. Here
a whole layer adjacent to the truncating boundary B is arti5cially introduced. In this layer the
governing equations are modi5ed in a special manner to annihilate spurious re(ections. Most notably,
the perfectly matched layer (PML) is a perfectly absorbing layer for all waves. PML was originally
invented in the context of electromagnetic waves [1], but has recently been extended to other 5elds,
including shallow water waves with dispersion and advection [22].

To design a NRBC, one usually assumes that the governing equations in the exterior are linear.
This does not prevent the NRBC from being used with nonlinear equations inside �. In terms of
the complexity of designing accurate NRBCs, one can distinguish between three types of linear
wave problems: time-harmonic wave problems, nondispersive time-dependent wave problems, and
dispersive wave problems. The prototype governing equations for these problems are, respectively,
the Helmholtz equation, the scalar wave equation, and the Klein–Gordon equation. Technically more
involved equations, but with similar properties, are of interest in each of the three categories.

The case of time-harmonic waves is, to a large extent, a solved case as far as NRBCs are
concerned. Very e6ective exact and high-order NRBCs are available; see [5,6,30]. The case of
time-dependent waves is much more involved. For three-dimensional waves where B is a sphere,
Grote and Keller [9] and Hagstrom and Hariharan [11] constructed exact NRBCs. In two dimen-
sions, Hagstrom and Hariharan [11] proposed a high-order asymptotic NRBC. Dispersive wave prob-
lems, in which waves of di6erent frequencies propagate with di6erent speeds, are the most diOcult.
High-order NRBCs have been constructed in [7,8]. The general practice in meteorology, where waves
are dispersive due to the earth rotation (the Coriolis e6ect), is to use a 5rst-order Sommerfeld-like
condition, with a specially chosen phase velocity C. See, for example, the treatment of the lateral
boundaries in the regional weather prediction code COAMPS [17]; here C is either speci5ed as a
constant or varied adaptively using the Miller–Thorpe method [21].

We propose a high-order NRBCs scheme, in the context of the two-dimensional nonlinear shallow
water equations (SWEs). It is associated with a sequence of NRBCs of increasing order and the
J th-order NRBC is exact for any combination of waves that have speci5ed wave number components
(kx)j and (ky)j for j = 1; : : : ; J . This methodology originates from the observation that the solution
of a dispersive wave problem is an in5nite superposition of single waves, each characterized by its
wave number components (or, equivalently, by its phase speed components).



D. Givoli, B. Neta / Journal of Computational and Applied Mathematics 158 (2003) 49–60 51

We use on the arti5cial boundary B one of the Higdon NRBCs [16]. For a straight boundary B
normal to the x direction, the Higdon NRBC of order J is

HJ :


 J∏

j=1

(9t + Cj9x)


 �(x; y; t) = 0 on B: (1)

Here, t is time, and the Cj are parameters which have to be chosen and which signify phase speeds
in the x direction. The boundary condition (1) is exact for all combinations of waves that propagate
with x-direction phase speeds C1; : : : ; CJ .

2. Statement of the problem

Consider the shallow water equations (SWEs) in a semi-in5nite channel. For simplicity, we assume
that the channel has a (at bottom and that there is no advection, although these assumptions may be
removed in future studies. We do take into account rotation (Coriolis) e6ects. A Cartesian coordinate
system (x; y) is introduced such that the channel is parallel to the x direction, as shown in Fig. 1.
The width of the channel is denoted b.

The SWEs are (see [26]):

9tu+ �u9xu+ �v9yu− fv=−g9x�; (2)

9tv+ �u9xv+ �v9yv+ fu=−g9y�; (3)

9t�+ �u9x�+ �v9y�+ (h0 + ��) (9xu+ 9yv) = 0: (4)

Here t is time, u(x; y; t) and v(x; y; t) are the unknown velocities in the x and y directions, h0 is
the given water layer thickness (in the direction normal to the xy plane), �(x; y; t) is the unknown
water elevation above h0, f is the Coriolis parameter, and g is the gravity acceleration. We use the
following shorthand for partial derivatives:

9ia =
9i
9ai :

The parameter � is 1 for the nonlinear SWEs, and is 0 for the linearized SWEs with vanishing mean
(ow. We shall consider the latter as a special case in the sequel.
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Fig. 1. A semi-in5nite channel.
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It can be shown (see [10]) that a single boundary condition must be imposed along the entire
boundary to obtain a well-posed problem. On the south and north channel walls �S and �N we have
v = 0 (no normal (ow). On the west boundary �W we prescribe � using the Dirichlet condition
�(0; y; t) = �W(y; t), where �W(y; t) is a given function (incoming wave). At x → ∞ the solution
is known to be bounded and not to include any incoming waves. To complete the statement of the
problem, initial values for u, v and � are given at time t = 0 in the entire domain.
We now truncate the semi-in5nite domain by introducing an arti5cial east boundary �E, located

at x = xE (see Fig. 1). To obtain a well-posed problem in the 5nite domain � we need a single
boundary condition on �E. We shall apply a high-order NRBC for the variable �. A discussion on
this NRBC follows.

3. Higdon’s NRBCs

On the arti5cial boundary �E we use one of the Higdon NRBCs [16]. These NRBCs were presented
and analyzed in a sequence of papers [12–15] for nondispersive acoustic and elastic waves, and were
extended in [16] for dispersive waves. Their main advantages are as follows:

1. The Higdon NRBCs are very general, namely they apply to a variety of wave problems, in one,
two and three dimensions and in various con5gurations.

2. They form a sequence of NRBCs of increasing order. This enables one, in principle (leaving
implementational issues aside for the moment), to obtain solutions with unlimited accuracy.

3. The Higdon NRBCs can be used, without any diOculty, for dispersive wave problems and for
problems with layers. Most other available NRBCs are either designed for nondispersive media
(as in acoustics and electromagnetics) or are of low order (as in meteorology and oceanography).

4. For certain choices of the parameters, the Higdon NRBCs are equivalent to NRBCs that are de-
rived from rational approximation of the dispersion relation (the Engquist–Majda conditions being
the most well-known example). This has been proved by Higdon in [16] and in earlier papers.
Thus, the Higdon NRBCs can be viewed as generalization of rational-approximation NRBCs.

The scheme used here was developed in [7] and is di6erent than the original Higdon scheme [16]
in the following ways:

1. The discrete Higdon conditions were developed in the literature up to third order only, because of
their algebraic complexity which increases rapidly with the order. Here we use the implementation
to an arbitrarily high order given in [7]. The order of the scheme is simply an input parameter.

2. The original Higdon conditions were applied to the Klein–Gordon linear wave equation and to
the elastic equations. Here we show how to apply them to the SWEs (2)–(4).

3. The Higdon NRBCs involve some parameters which must be chosen. Higdon [16] discusses some
general guidelines for their manual a priori choice by the user. We shall choose these parameters
automatically as detailed in [7].

The Higdon NRBC of order J is given by (1). To see its basic property, consider
a wave which satis5es the linearized SWEs (Eqs. (2)–(4) with � = 0; see, e.g., [26,
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p. 77]. It has the form

�= �0Y (y) cos(kx − !t +  ); (5)

where

!2 =




C2
0

(
k2 +

n2�2

b2

)
+ f2; n= 1; 2; : : : ;

C2
0k

2; n= 0;

(6)

Y (y) =




cos
n�y
b

− bf
n�Cx

sin
n�y
b

; n= 1; 2; : : : ;

exp(−fy=C0); n= 0;
(7)

C0 =
√

h0g; Cx =
!
k
: (8)

In (5)–(8), �0 is the wave amplitude,  is its phase, k is the x-component wave number, ! is the
wave frequency, C0 is the reference wave speed (which is both the phase speed and the group speed
for the nondispersive case f=0), and Cx is the x-direction phase velocity. Eq. (6) is the dispersion
relation. The solutions corresponding to the modes n = 1; 2; : : : are PoincarQe waves, whereas the
solution corresponding to n=0 is the Kelvin wave. These complete the set of all wave solutions for
wave number k and mode n. There are also solutions that decay exponentially in the x direction.
However, Higdon’s NRBCs ignore them. They are usually not of great concern, since the decaying
modes are expected to be insigni5cant at �E, provided that �E is suOciently far away from where
the waves are generated.

Now, it is easy to verify that if one of the Cj’s in (1) is equal to Cx, then the wave (5) satis5es
the boundary condition (1) exactly.

We make a few observations:

• From (6) and (8) we have always Cx¿C0; hence one should take Cj¿C0. In general, the
solution consists of an in5nite number of waves of the form (5) with di6erent phase speeds.

• The 5rst-order condition H1 is a Sommerfeld-like boundary condition. If we set C1=C0 we get the
classical Sommerfeld-like NRBC. A lot of work in the meteorological literature is based on using
H1 with a specially chosen C1. Pearson [25] used a special but constant value of C1, while in
the scheme devised by Orlanski [24] and in later improved schemes [19,21,27,32] the C1 changes
dynamically and locally in each time step based on the solution from the previous time step.
Some of the limited-area weather prediction codes used today are based on such schemes, e.g.,
COAMPS [17]. See also the recent papers [18,23,28] where several such schemes are compared.

• The condition HJ involves up to J th-order normal and temporal derivatives.
• It is easy to show (see [16] for a similar setting) that when a wave of the form (5) impinges on

the boundary �E where the NRBC HJ is imposed, the resulting re8ection coe9cient is

R=
J∏

j=1

∣∣∣∣Cj − Cx

Cj + Cx

∣∣∣∣ : (9)
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Again we see that if Cj =Cx for one of the j’s then R= 0, namely there is no re(ection and the
NRBC is exact. Moreover, we see that the re(ection coeOcient is a product of J factors, each of
which is smaller than 1. This implies that the re(ection coeOcient becomes smaller as the order
J increases regardless of the choice made for the parameters Cj. Of course, a good choice for
the Cj would lead to better accuracy with a lower order J , but even if we miss the correct Cj’s
considerably (say, if we make the simplest choice Cj=C0 for j=1; : : : ; J ), we are still guaranteed
to reduce the spurious re(ection as we increase the order J . This is an important property of the
Higdon’s NRBCs and is the reason for their robustness.

3.1. Discretization of Higdon’s NRBCs

The Higdon condition HJ is a product of J operators of the form 9t+Cj9x. Consider the following
5nite di6erence (FD) approximations:

9t � I − S−
t

St
; 9x � I − S−

x

Sx
: (10)

In (10), St and Sx are, respectively, the time-step size and grid spacing in the x direction, I is the
identity operator, and S−

t and S−
x are shift operators de5ned by

S−
t �n

pq = �n−1
pq ; S−

x �n
pq = �n

p−1; q: (11)

Here and elsewhere, �n
pq is the FD approximation of �(x; y; t) at grid point (xp; yq) and at time tn.

We use (10) in (1) to obtain
 J∏

j=1

(
I − S−

t

St
+ Cj

I − S−
x

Sx

)
 �n

Eq = 0: (12)

Here, the index E correspond to a grid point on the boundary �E. Higdon has solved this di6erence
equation (and also a slightly more involved equation that is based on time- and space-averaging
approximations for 9x and 9t) for J6 3 to obtain an explicit formula for �n

Eq. This formula is used
to 5nd the current values on the boundary �E after the solution in the interior points and on the
other boundaries has been updated. The formula for J = 2 is found in [15], and the one for J = 3
appears in the appendix of [14]. The algebraic complexity of these formulas increases rapidly with
the order J . We have implemented the Higdon NRBCs to any order using a simple algorithm,
see [7].

Our procedure for implementing the Higdon NRBCs can easily be modi5ed to admit improved
approximations. The main feature that has to be changed in the algorithm is the base to which the
counting decimal integer m is transformed.

4. The interior scheme

We consider explicit FD interior discretization schemes for the SWEs (2)–(4) to be used in
conjunction with the HJ condition. The interaction between the HJ condition and the interior scheme
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is of concern, since simple choices for an explicit interior scheme turn out to give rise to long-time
instabilities. We have tried the Miller–Pearce time integration [20], Leap-Frog [29], a version of
semi-implicit time integration [31] and the MacCormack scheme [29,2] (which is equivalent for
linear problems to the Lax–Wendro6 scheme). They are all stable for a suOciently small time step
when used with the boundary condition H1, but they all become unstable for J¿ 2. The instability
appears earlier in time when J becomes larger.

Higdon [16] has proved, in the context of the scalar Klein–Gordon equation,

92t �− C2
0∇2�+ f2�= 0; (13)

that the discrete NRBCs (12) are stable if the interior scheme is the standard second-order centered
di6erence scheme

�n+1
pq =2�n

pq − �n−1
pq +

(
C0St
Sx

)2

(�n
p+1; q − 2�n

p;q + �n
p−1; q)

+
(
C0St
Sy

)2

(�n
p;q+1 − 2�n

p;q + �n
p;q−1)− (fSt)2�n

p;q: (14)

Now we shall show how the SWEs (2)–(4) can be discretized in such a way as to mimic (14) and
to lead to a stable scheme.

First, we de5ne the new variables

V+ = h0(9xu+ 9yv); V− = h0(9xv− 9yu): (15)

From the SWEs (2)–(4) we obtain equations which involve these two variables. By di6erentiating
(2) and (3) with respect to x and to y, respectively, and then summing the results, we get the
equation

9tV+ − fV− + gh0∇2�= N1; (16)

where

N1 = �h0[9x(u9xu) + 9x(v9yu) + 9y(u9xv) + 9y(v9yv)]: (17)

Note that N1 is the nonlinear part of Eq. (16). Similarly, we di6erentiate (3) and (2) with respect
to x and to y, respectively, and then subtract the second from the 5rst to obtain

9tV− + fV+ = N2; (18)

where

N2 = �h0[9x(u9xv) + 9x(v9yv)− 9y(u9xu)− 9y(v9yu)]: (19)

We write (4) as

9t�+ V+ = N3; (20)

where

N3 = �[9x(u�) + 9y(v�)]: (21)
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Finally, we also consider the time derivative of Eq. (20), namely

9tt�+ 9tV+ = 9tN3: (22)

Now we base the interior scheme on Eqs. (16), (18), (20) and (22). First, we discretize (20) to
obtain an updating formula for V+:

(V+)n+1
pq = Nn

3 − �n
pq − �n−1

pq

St
: (23)

The notation Nn
3 means that we calculate all the variables appearing in the expression for N3 at time

step n. We shall discuss the discretization of the spatial derivatives in N3 later. Then we use (18)
to update V−

t ≡ 9tV−:

(V−
t )n+1

pq = Nn
2 − f(V+)n+1

pq : (24)

Next we integrate (24) to update V−:

(V−)n+1
pq = (V−)npq +St(V−

t )n+1
pq : (25)

Now we use (16) to update V+
t ≡ 9tV+. We use second-order central di6erences in space to

approximate ∇2�:

(V+
t )n+1

pq = Nn
1 + f(V−)n+1

pq − gh0

(
�n
p+1; q − 2�n

p;q + �n
p−1; q

Sx2
+

�n
p;q+1 − 2�n

p;q + �n
p;q−1

Sy2

)
: (26)

Finally we use Eq. (22) to update �. We use second-order central di6erences in time to approximate
9tt�:

�n+1
pq = 2�n

pq − �n−1
pq −St2(V+

t )n+1
pq +St(Nn

3 − Nn−1
3 ): (27)

After �n+1
pq is known, the updated values for u and v, i.e., un+1

pq and vn+1
pq may be found in a number of

ways. We have chosen to integrate the original SWEs (2) and (3) using a forward FD approximation
in time to obtain these values.

It is easy to show that in the linear case, and with zero initial conditions, the updating formula
for �, Eq. (27), coincides with formula (14) for the Klein–Gordon equation. Indeed, in this case
(V−)n+1=f�n, and using (23)–(27) without the nonlinear terms leads exactly to formula (14). Thus
stability is guaranteed in this case.

In the nonlinear case, we have to calculate the quantities Nn
1 , N

n
2 and Nn

3 . These involve 5rst- and
second-order spatial derivatives. All these derivatives may be calculated using second-order centered
di6erences.

5. A numerical example

We apply the new scheme to a simple test problem whose exact solution is synthesized a priori.
We consider the linearized SWEs in a two-dimensional uniform semi-in5nite channel or wave guide.
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Fig. 2. Solution of the three-wave test problem: u at the point x = 5, y = 2:75 (on �E) as a function of time. (a) Exact
solution and the H1, H2 and H3 solutions with Cj = 1. (b) Exact solution and the H5 and H7 solutions with Cj = 1.
(c) Exact solution and the H3, H4 and H5 solutions with automatically chosen Cj . (d) Exact solution and the H3 and H4

solutions with the exact Cj .

A Cartesian coordinate system (x; y) is introduced such that the wave guide is parallel to the x
direction. The width of the wave guide is denoted b. We set b = 5, C0 = 1 and f = 0:5. The
boundary function �W(y; t) on �W and the initial conditions are those that correspond to a solution
�(x; y; t) which is a linear combination of three waves of the form (5), i.e.,

�=
3∑

m=1

Am cos
nm�y
b

cos(kmx − !mt): (28)

The parameters chosen in (28) are: Am =1; 1; 1; nm =1; 2; 2; !m =0:81; 1:37; 1:68: This corresponds
to the three phase velocities: Cx=C0 = 7:61; 6:27; 1:69: The km in (28) are obtained from the !m and
the nm via the dispersion relation (6).
We introduce the arti5cial boundary �E (see Fig. 1) at xE = 5. Thus, the computational domain

� is a 5× 5 square. In � we use a uniform grid with 21× 21 points. We discretize the linearized
SWEs in � using the explicit central-di6erence FD interior scheme. On �E we impose the Higdon
NRBC implemented in its high-order form. The time-step size is St = 0:025, which is smaller than
the CFL limit and thus guarantees stability.

In Figs. 2(a)–(d), we plot the solution � at the point x=5, y=2:75 (located on �E) as a function
of time. In each of the four 5gures the exact solution is compared to a number of numerical
solutions obtained with di6erent NRBC schemes, namely with di6erent choices of the order J and
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the parameters Cj. First we choose Cj = 1 for all j. Fig. 2(a) shows the H1, H2 and H3 solutions.
Their accuracy is poor, although the H3 solution is signi5cantly better than the other two. Fig. 2(b)
shows the H5 and H7 solutions. The H7 solution is quite accurate in the entire time interval shown.
Thus, if the Cj’s are not specially chosen, we need the order of the Higdon NRBC to be as high
as 7 for high accuracy.

Now we employ the procedure to automatically choose the Cj’s. Fig. 2(c) shows the resulting
H3, H4 and H5 solutions. We see that in this case the approach of the numerical solutions to the
exact solution is monotone. Moreover, for J = 5 we get about the same level of accuracy as we
did with J =7 when all the Cj had the value one (Fig. 2(b)). For additional reference, we show in
Fig. 2(d) the H3 solution obtained with the Cj corresponding to the three phase velocities Cx of the
exact solution. It is about as accurate as the H5 solution in Fig. 2(c). We also show the H4 solution
obtained with the exact C1, C2, C3 and with C4=1. The numerical solution is indistinguishable from
the exact solution. In this case not only the NRBC is exact, but we gain additional accuracy on the
boundary due to the increased order of the FD scheme.

This example demonstrates, albeit in a simpli5ed setting, that the same level of accuracy obtained
with parameter values Cj that are well estimated can be achieved with ill-chosen parameter values but
with an increased order J . Of course, increasing the order to ensure high accuracy is computationally
expensive, and therefore it is usually bene5cial to use our algorithm to choose the parameters Cj.

6. Nonzero advection

When using the Higdon NRBC (1) with the SWEs, it has been assumed that the SWEs are
linearized (at least in the exterior domain D) about the state of zero mean (ow (no advection).
Now, suppose that the SWEs are linearized about a state corresponding to a nonzero mean (ow. For
simplicity, let us assume that this mean (ow is constant in space and time. If the component of the
advection velocity in the x direction (the direction normal to �E) is U0, then in the nondispersive
case, the Sommerfeld-like condition (9t +C09x)�= 0 simply becomes (9t + (U0 +C0)9x)�= 0 (see,
e.g., [2]). We can infer from this, that the Higdon NRBCs (1) should be replaced by

HJ :


 J∏

j=1

(9t + Ĉj9x)


 �= 0 on �E; Ĉj = U0 + Cj: (29)

Thus, the Higdon conditions remain unchanged in the presence of advection, except that the parameter
multiplying the x derivative in each operator factor stands for the total phase velocity in the x
direction (and not the perturbed velocity).

The interior scheme discussed in Section 4 and the scheme for selecting the parameters can be
extended to the advective case without diOculty.
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