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ABSTRACT

Exact solutions to the linearized shallow-water equations in a channel with linear depth variation and a mean
flow are obtained in terms of confluent hypergeometric functions. These solutions are the generalization to
finite s (depth variation parameter) of the approximate solutions for infinitesimal s. The equations also respect
an energy conservation principle (and the normal modes are thus neutrally stable) in contradistinction to those
of previous studies. They are evalnated numerically for a range in s from s = 0.1 to s = 1.95, and the range of
validity of previously derived approximate solutions is established. For small s the Kelvin and Poincaré solutions
agree well with those of Hyde, which were obtained by expanding in s. For finite s the solutions differ significantly
from the Hyde expansions, and the magnitude of the phase speed decreases as s increases. The Rossby wave
phase speeds are close to those obtained when the depth is linearized although the difference increases with s.
The eigenfunctions become more distorted as s increases so that the largest amplitude and the smallest scale
occur near the shallowest boundary. The negative Kelvin wave has a very unusual behavior as s increases.

1. Imntroduction

The shallow-water equations are frequently used in
simplified dynamical studies of atmospheric and
oceanographic phenomena. When the equations are
linearized, the thickness of the fluid is often assumed
to be a linear function of one of the spatial coordinates.
Also, the motion is usually confined to a channel so
that the percentage variation of the thickness can be
kept small. The thickness variation may come from
free-surface slope associated with a constant geo-
strophic current or linear variation in bottom topog-
raphy. In most studies, equations with constant coef-
ficients are obtained by making the depth constant ex-
cept where it is differentiated (for example, see Pedlosky
1979). While this considerably simplifies the analysis,
it also leads to two weaknesses. First it restricts the
validity of the results to small s, and second it violates
the energy conservation principle of the problem. Hyde
(1984) studied Kelvin and Poincaré waves with linear
depth variations by using an asymptotic expansion to
represent the effects of the depth variation.
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In this paper we will obtain solutions to the linearized
shallow-water equations with the full linear variation
in depth included. In particular, the percentage vari-
ation of the depth will not be assumed to be small.
These solutions will be compared with previously de-
rived approximate solutions to establish their range of
validity.

2. Basic equations

The basic equations for this study are derived in
Pedlosky (1979, section 3.6). The thickness of the fluid
layer is expressed

H(x9y9 t)=H0(J’)+77(X,ys z); (21)

where it is assumed that |n| < H. If 4 and v are small
velocity perturbations, the equations of motion become

du dn
——fv=—g— 2.2
. Jo=—¢ P (2.2)
v on
— =—g— 2.3
5 +fu=-g 3 (2.3)
The continuity equation is written
o ou 9
— — + — (vHp) = 0. 2.4
5 tHg g, GH =0 (24
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In this set of equations there is no mean current, and
the thickness variation Hy(y) comes entirely from the
sloping bottom. A mean current U could be added that
would lead to a geostrophically balanced free-surface
slope. However, with no loss of generality, we can ne-
glect the mean current, since [see Hyde (1984) and
the following] we can recover the mean current by
simply redefining a slope parameter and by Doppler
shifting a phase speed in the no-mean current solution.
The system (2.2)-(2.4) is combined to give the fol-
lowing equation for #:
a[(a°

% [(@ +f2)77 - V'(gHo(J’)Vn)}

9o on _

+
8/ 5 ox

0. (2.5)

After 7 is determined, the velocity components can be
obtained from these relations:

2
(52+77)u- -g("—z’l - BEY

or? Axat dy
9? %y n ‘
S+ v=—gl—-f=—]). :
(az2 s )” g(ayaz s ax) (27)
The linear variation of Hj in y is written
Ky
Hy = Do(l - —LJ—’) : (2.8)

where D, is the value at y = 0. The rigid walls are
placed at y = = L /2. When a wave solution of the form

n = RP(y) explik(x — ct)] (2.9)
is introduced into (2.5), we obtain the equation

| _ 0\ _ s de
L

kz 2 _ f2 fS ) sy B
+ [ 2Da Te k (1 L)]¢> 0. (2.10)
The boundary condition that v vanishes along y
= + L /2isapplied in (2.7), which with the use of (2.9)
gives
dp [ — L
&y +9 0, y=4=« >
Equation (2.10) subject to the boundary conditions
(2.11) constitutes the eigenvalue problem for c. In ap-
pendix A it is shown that the eigenvalue ¢ must be real
and therefore all of the normal modes are neutrally
stable. This is a manifestation of the conservation
of integrated perturbation energy E = [[ {[gHo(u?
+ v?) + (g1)?1/2 } dxdy, a result that can be obtained
by multiplying (2.2)-(2.4) by gHou, gHyv, and gy,
respectively; adding the results; integrating over the
domain; and applying the channel boundary condi-

(2.11)
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tions. Note that making the depth constant everywhere
except where it is differentiated, as in Pedlosky (1979)
and Hyde (1984), leads to dE/dt = gDo(s/L) [[ &
X nvdxdy # 0.

In other words, the normal modes no longer respect
the energy conservation principle of the problem, and
this assumption changes the nature of the solution:
modes that should be neutrally stable may become ei-
ther unstable or damped. This result is consistent with
the neglect of a term of O(s/L) in the equations and
merely says that the energy is conserved only to O(s/
L). Nevertheless it is somewhat worrisome in the sense
that it changes a fundamental stability property of the
problem and opens up the possibility that the range of
validity of the solution of the resulting approximate
problem may be unduly limited.

Hyde (1984) has pointed out that the solutions can
be generalized to include a mean current U if ¢ is re-
placed by ¢ ~ U, and s by

fUL
gDy

s+

- Pedlosky (1979, section 3.10) has obtained solutions

for Poincaré, Kelvin, and Rossby waves by assuming
s <€ 11in (2.10). Hyde (1984) has also computed the
O(s) correction to the Poincaré and Kelvin waves. In
our study we will not restrict s to be small; we will
require only that Hy remains positive in the domain.
Robinson ( 1964 ) obtained solutions to (2.10) in terms
of Bessel functions by assuming that k*L? < 1 and
f2L? < gD,. For his application to shelf waves he
matched to an outer flat-bottom solution. Saint-Guily
(1976) solved a similar problem in which the conti-
nental shelf depth variation was represented with a hy-
perbolic tangent dependence. The solutions were ob-
tained in terms of hypergeometric functions. The ei-
genfunctions for the free surface height had a maximum
over the upper part of the steep bottom slope.

3. Analytic solution of the eigenbroblem

It is convenient to rewrite the eigenproblem in the
form

Lo = Nc)o =0, (3.0)
1 s—0 yosL
5 T/e=0 y==3, (2

where the linear self-adjoint operator .L is

__4 _s\4 2 _ S
L= dy[(l Ly)dy] k(l Ly), (3.3)

and
kzcz _fz 3 ..fi
gDo Lc’

What makes this problem more difficult than the

A(c) = (3.4)
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usual textbook problem is that A in (3.1) is constrained
to have a particular functional dependence [given by
(3.4)] on ¢, which also appears in the boundary con-
ditions (3.2). The dependence of the boundary con-
ditions on ¢ will not allow us to use the theory in Stak-
gold (1979, pp. 411-418).

A simple linear transformation

z= Zk(I;— - y) (3.5)
leads to
i do z McoL
dz( dz) (4 2sk )¢ 0, z-<z<z,
(3.6)
a¢ _ 1S . _
7z czkdz—O, Z =2z, (3.7)
where
= s ( 2)’ 8)
2kL s
Z4 P (1+5) (3.9)

Equation (3.6) can be transformed to Kummer’s
equation (e.g., see Abramowitz and Stegun 1965, pp.
504-515) using

¢ = exp(%z)\b. (3.10)
The boundary value problem [(3.6)~(3.7)] becomes
d’ @ 1 Neo)L
d‘i’+(1— )%—(5— (€) )¢ 0, (3.11)
@ _ 1 1/ _
p 2( )\0 0. z=12z.. (3.12)
The general solution of (3.11) is
¥(z) = AY1(2) + ByYa(2), (3.13)
where .
M 5 1; ) ¢_
ll/n(z)={ (@), 15 2.),alo) " (3.14)
L,(z), a(c) = —
Ula(c), 15 z4), a(c)# —n
VD2 L) + 3 b ale) = n,
m=1
(3.15)
and
1 Aeo)L
a(c) = 2 ok (3.16)
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The functions M and U are called confluent hypergeo-
metric functions, and L,(z) is the Laguerre polynomial
of degree n. For properties of these functions, recur-
rence relations, derivatives, and special cases see, for
example, Abramowitz and Stegun (1965).

The parameters A, B can be specified by using the
boundary conditions (3.12); that is,

A[—d"f*) - q(c)wl(zi)]
2
+ B[d%(z*) q(c)n//2(2+)] (3.17)
where
1 1f
q(c) = E( +"c“];) (3.18)
Note that
dLa(;z)L—l;—z)=a(c)M(a(c)+ 1, 2; 2), (3.19)
iU_(g_(;z),#z) = —a(c)U(a(c) + 1,2;z), (3.20)
dL.(z) _ ¢ PRV S R WD S
i m2=1 m(—1) (n m)m' zml (3.21)
and
d(ln|z|L,(z) + 21 bnz™)
dz - N ;L"(Z)
+In|z| 42 (z) + 3 mbyzm. (3.22)
m=1
Thgs, the eigenvalues c are the solutions of
[aM(a + 1, 2; z,) — gM(a, 1; z4)]
X[—aU(a+1,2;z.)—qU(a, 1; z.)]
—[aM(a+1,2;z.) — gM(a, 1; z)]
X [=aU(a+ 1, 2; z.) — qU(a, 1; z1)]
=0 (3.23)

if a(c) # —n. For negative integer values of a(c), (3.23)
becomes

:z‘: C.C.+C.D,—C.D_=0, (3.24)
+
where
Cy = Ly(z:) — q(c)L,(z2) (3.25)
L,(z. b
Do = T2 4 S tom 4 Db — ()b 22
m=0

Zx

(3.26)



932

The confluent hypergeometric function M(a, 1; z)
has a particularly simple form when ¢ = 0 and 1,
namely, exp(z) and 1, respectively. It turns out that a
= 0 when ¢ = ~f/kand a = | when ¢ = +f/k, and
that [aM(a + 1, 2; z) — gM(a, 1; z)] is identically
zero for both cases [note that M(2, 2; z) = M(1, 1;
z)]. Consequently, ¢ = f/k and ¢ = —f/k are both
eigenvalues [since (3.23) is satisfied], and the corre-
sponding eigenfunctions are exp(—ky) and exp(ky),
respectively. However, it is shown in appendix B that
inertial oscillations are possible only if k satisfies the
constraint (B.10), and this is a consequence of the sin-
gularities of the operator (3%/d¢* + f?) appearing in
(2.5)-(2.7). For zero s, (B.10) reduces to k = +R 7!,
the inertial oscillation discussed in Pedlosky (1979,
section 3.9), which is indistinguishable at that wave-
number from a Kelvin wave. In general (B.10) will
not be satisfied, and therefore the inertial eigenvalues
are spurious in the context of the original meteorolog-
ical problem.

Computer subroutines were developed for stably
evaluating the confluent hypergeometric functions
M(a, b; z) and z°U(a, b; z) based on the recurrence
relations as suggested by Wimp (1984, pp. 61-64).
These subroutines were combined with a zero-finding
routine to obtain the values of ¢ satisfying (3.23). For
those eigenvalues c,,, one computes the eigenfunctions

Ym by
¥Ym = A(cm)M(a(cm), 1; 2) + B(cm)U(a(cm), 1; 2),

(3.27)
where
A(cy) = —alem)Ula(cm) + 1, 2; z4)
= q(cm)U(alcm), 15 24), (3.28)
B(cy) = —a(cp)M(a(cy) + 1, 2; 24)
—q(cn)Ula(cn), 15 24). (3.29)

Another way of obtaining the eigenvalues is by nu-
merically solving the boundary value problem (3.1)-
(3.2). It turns out that the numerical scheme is not as
computationally intensive as the foregoing procedure.
However, the analytic solution is useful in asymptotic
analysis in other investigations.

4. Numerical solutions of the eigenproblem

In this section we discuss the numerical solution of
(3.6)-(3.7) in order to examine the case where a = —n.
Let us write the equations as follows:

d(z@)—(fw)wczpwlawo,
dz c

dz 4
z.<z<zy (4.1)
gq—su—l-¢$qb=0 zZ=Zza, (4.2)
dz ¢
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where
2
k= Ziglbo ’ (4.3)
b=3 Skglz) -, (4.4)
= ZLk . (4.5)

Divide the interval [z_, z, ] into N — | subintervals by
the equally spaced points

zi=z +(i—1)h, i=12,+++,N, (4.6)

where
Zy — 2o
N-—-1"

Since the eigenvalues ¢,, are real (see appendix A ), we
approximate Eq. (4.1) by

h=

4.7)

Zis1(Piv1 = @) — 2i(di — $i-1) _ [z
h2 <4 + ﬂ)“bt
1
+czp¢i—26¢,~=0, i=2,3 -+, N—1, (4.8)
and the boundary conditions by
$2—-¢1 1 8¢, =0, (4.9)
h c
Iv=ova Ly <o, (4.10)
h ¢

where ¢; = ¢(z;). This system can be written in matrix
form as

A} +1D'G + D% -0,

- (4.11)
c
where D', D? are diagonal matrices with
-5, i=2 -++,N—1
Dji=1{-8z/h, i=1 (4.12)
dzn/h, i=N
0, i=1,N
D} = (4.13)
py i=2, v, N—1

and A is a symmetric tridiagonal matrix whose diagonal
elements are

Zz/hz i=1
a;={(zi+ziw)/ W +z/d+pi=2,---,N-1
Zn/ h? i=N,
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and the superdiagonal elements are given by

i=142,---,N—1. (4.15)

Qii+1 = —
The eigenvalues were computed by solving

det(—A+%D‘+c2D2)=0 (4.16)
using LINPACK to evaluate the determinant of a tri-
diagonal matrix in a banded storage mode. This allows
us to use N = 1500. The eigenvalues are computed for
various values of s, in double precision on an IBM3033
computer.

These numerically computed eigenvalues agree with
those computed from the analytic solutions (3.23)—
(3.24) of section 3.

5. Phase speeds

When interpreting the results, it should be borne in
mind that s is large not only when the bottom slope is
large. This is because s can also be large when mean

advection is included (see section 2) in which case s is

replaced by s + fUL/(gDy). In other words, large val-
ues of s are not only obtained when the bottom slope
is large but also when the mean current and channel
width are large and the depth (or equivalent height) is
small. Therefore a large fixed value of s can be entirely
due to a large bottom slope, entirely due to a large
value of fUL/(gDy), or to a combination of the two
extremes. It is particularly important to bear this in
mind when interpreting results as a function of scale.
Before presenting the new results, the simplified for-
mulas from Pedlosky (section 3.6, 1979) will be given.
Phase speeds of the Poincaré waves that are obtained
by setting s = 0 are

n2r? 1/2
c= J_r[(kz + e )gD0+f2] . (5.1)
The eigenfunctions are sinusoidal functions of y with
wavenumber n. The Kelvin wave solutions for s = 0

satisfy
c= ingo (52)

For those solutions v is zero, and u and h decay ex-
ponentially to the left of the propagation direction with
decay length |c|/f. As previously mentioned (and
demonstrated in appendix B), there is also a spurious
inertial solution ¢ = +f/k, which is shown to be invalid
in appendix B. The Rossby wave solution, obtained by
assuming that s is small and that ¢ is proportional to
it, is given by
sf 1

R A e T T TP N R
The eigensolutions in this case are sinusoidal in y. The
solutions in this paper are given in dimensional form
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because the various waves have different scales. Most
of the results are for the parameter values: L = 5 X 10%
m, gDy =4 X 10*m?s™2, f=10"%s"",

Figure 1 gives the phase speeds for the Poincaré and
Kelvin modes as a function of s from 0.05 to 1.95 for
k = 2w /L. The equations become singular for s = 2,
which corresponds to zero mean depth at y = L/2 [see
(2.11)]. All of the curves show a general decrease in
speed as the s increases, and the curvature of the curves
increases as s approaches 2. The gravest mode for each
sign is a Kelvin wave, and the other modes are Poincaré
waves with meridional wavenumbers that increase by
1 from one curve to the next.

Figure 2 gives selected positive solutions on an ex-
panded scale along with the analytic solutions that are
computed from the formulas derived by Hyde (1984).
The Hyde solutions, which were obtained from an ex-
pansion in s, consist of a linear correction to the s = 0
analytic solutions (5.2) or (5.3). The figure shows that
our curves match the s = 0 solutions, and they also
have the same slope near s = Q as predicted by Hyde.
However, all of our curves depart considerably from
the linear dependence as s increases. For the Kelvin
wave (Fig. 2a) our complete solution begins to leave
the Hyde curve for s > 0.25 and after s = 0.6, it de-
creases to 62% of the Hyde value at s = 1.95. This
complex behavior is associated with a very unusual
variation in the eigenfunction as a function of s, which
will be shown in section 6. Figure 2b gives the first
Poincaré mode: our complete solution departs from
the Hyde curve for s > 0.5 and it increases to a max-
imum near s = 1.5 before dropping rapidly. For the

1000
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FIG. 1. Phase speeds for Poincaré and Kelvin modes as a function
of s from s = .05t0 1.95, for L =5 X 10°m, gDy = 4 X 10* m?s~2,
f=10"%s" k=2x/L.
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FI1G. 2. Selected positive solutions from Fig. 1 compared with the Hyde solutions: (a) Kelvin wave and (b) first Poincaré mode.

higher Poincaré modes (4 and 8), which are not shown,
the Hyde solutions give very little change while the
complete solutions begin to drop for s > 0.3 and are
about 20% lower at s = 1.95.

Figure 3 gives the negative solution comparisons for
the same waves. Hyde’s solutions all have the same
slopes as for the positive solutions and these slopes
agree with our slopes near s = 0. For s > 0.25 the
complete solutions depart from the Hyde curves and
move toward ¢ = 0.

Figure 4 contains the phase speeds for the first 12
Rossby modes as a function of s for k = 2x /L. All of

~75

-100 A

-125

=150

~-175 4

~-200

O -230

these curves are concave downward. Figure 5 compares
our complete solutions with the traditional Rossby for-
mula (5.3), obtained by linearizing the depth variation.
For modes 1 and 2 in y the concave downward form
of the complete solution curve leads to increased ( neg-
ative) speeds as s is increased, with similar behavior
for the higher modes. However, the traditional formula
is quite accurate up to s ~ 1.

In order to determine the sensitivity of the results
to the x wavenumber (k) the phase speeds are obtained
for twice and one-half of the x wavelength (not shown).
Except for changes in scale the Kelvin and Poincaré

~200
~210 +

220 1

-240

-250

-260 T T T ]
0.0

F1G. 3. Same as Fig. 2 except for negative solutions.
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FIG. 4. Phase speeds for Rossby modes
with same parameters as in Fig. 1.

waves and the Rossby waves are similar to the solutions
found in Figs. 1 and 4.

A scale analysis of (2.10) shows that the solutions
depend on the rotational Froude number

1:2 2
F=ts
gDo

and s, provided that y, k, and ¢ are scaled by L,
L', and VgD,, respectively. In order to determine

(5.4)

-25 T
0.0 0.5

I 1

T
1.0 1.5 2.0

S
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the solution dependence on F we replace f with
vio £, which increases F by 10. Figures 6 and 7 give
the phase speeds for the Kelvin and Poincaré waves
and for the Rossby waves. The Kelvin and Poincaré
waves (Fig. 6) are similar to those in Fig. 1. The
Rossby waves (Fig. 7) have larger speeds than in Fig.
4, but the curves still have a downward curvature.
When F is decreased by 10 by replacing f with
f/ V1o (not shown ), the solutions are similar to the
other cases except that the Rossby speeds are lower.
Clearly, the basic behavior in s for these solutions is
not strongly dependent on k or F.

The basic results given in this section (Figs. 1-5)
are for the following constants:

L=5X10m, f=10"%s",

and with these values F = 6.25. For the case where f
is increased (Figs. 6 and 7) we obtain F = 62.5. The
length scale in Figs. 1-5 is probably large for most at-
mospheric topography, but it does give a topographic
beta effect, which is of the same order as the Coriolis
beta effect. The region east of the Rocky Mountains
could be represented by L = 8 X 10° m. If we assume
an unbounded two-layer system, then gD, can be re-
placed by g(A8/6)D,, where A6 is the potential tem-
perature change across the interface. If we let A§/8
= 140and Dy = 103 m, then F = 6.4, which is essentially
the F for the solutions in Figs. 1-5. The phase speeds
are the same as long as they are scaled by VgD.

The free-surface slope term fUL/gD, is equal to 1
ifL=5X10°m, f=10*s", U=10ms™!, and
gD = 4 X 10> m? 572, where the last term uses A6/6
= 1/10. In this case, F = 62.5, which is the value for
Figs. 6 and 7. Many other reasonable combinations of
parameters can be found that give rotational Froude

gDo =1 m? S_z,

0
_S_
[6b]
_10_4
-15 T T T 1
0.0 0.5 1.0 1.5 2.0
S

FIG. 5. Comparison of first two Rossby modes with traditional Rossby formula (5.3).
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FIG. 6. Same as Fig. 1 except that f= V10 X 105",

numbers within the range shown in these figures. The
results can also be applied to the ocean by noting that
F = L?/R?, where R is the Rossby radius of defor-
mation. In the ocean Ly is often in the range 2.5-5.0
X 10* m, so that F will be in the range considered if
scale of the topography is of order 10° m or larger.

6. Eigenfunctions

In this section, selected eigenfunctions will be pre-
sented to illustrate the effects of finite s on the solution

O ——
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FIG. 7. Same as Fig. 4 except that f= V10 X 10™*s™",
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FIG. 8. Eigenstructures of positive Kelvin waves as a function of
y:(a) s = 0.1 and (b) s = 1.95. The curves are labeled as u: solid,
v: dotted, »: chain dot. The velocity scale is on the left, and the height
scale is on the right.

structure. All of these results are for k = 2w /L and f
=10"* s™'. Figure 8a gives the structure of the positive
Kelvin wave for s = 0.1. Note that the v field is much
smaller than the u field, consistent with the pure Kelvin
wave (s = 0). The n and u fields decay exponentially
away from the boundary at y = — L /2. The structure
of the positive Kelvin wave for s = 1.95 is given in Fig.
8b. This solution is radically different from the pure
Kelvin wave-type solution shown in Fig. 8a, because
most of the disturbance is near the boundary at y= L/
2. In this case the # and v components are of the same
order, and they both have peaks near the boundary (y
= L/2). In general, these solutions decay much more
rapidly away from the boundary as compared with the
solutions for s = 0.10.

Figure 9a contains the u field for selected values of
s in order to show the evolution with increased s. The
figure shows that when s = 0.5 the field is rather flat,
although the maximum is still at y = —L/2. For s > 0.7
the maximum is near the y = L/2 boundary, and as s
increases, the amplitude becomes more confined near
this boundary. Figure 9b gives the v field for the same
values of s. For s = 0.05 the amplitude is very small,
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FIG. 9. (a) The u structure of the positive Kelvin wave for selected
values of s. (b) The v structure for the positive Kelvin wave. The
curves are labeled as solid: s = 0.1, dashed: s = 0.5, chain dashed: s
= 1.1, dotted: s = 1.5, and chain dot: s = 1.95.

but the peak occurs for y < 0. As s grows the magnitude
of v grows rapidly, and the peak shifts toward the wall
at y = L/2. Although these solutions as a function of
s are continuous with the pure Kelvin solution, they
do not resemble the Kelvin wave for s > 0.7 since the
maximum is near the opposite boundary and since v
1s the same order as u.

Figure 10a gives the structure of the negative Kelvin
wave for s = 0.1, and it is very similar to the positive
Kelvin solution (Fig. 8a) except that the maximum
amplitude is at y = L/2. The structure of the negative
Kelvin wave for s = 1.95 is given in Fig. 10b. The
solutions damp rapidly away from the boundary at y
= L /2, and the v field is much smaller than the u field.
This solution still has the Kelvin wave structure for s
= 1.95, unlike the solution with positive phase speed.

Figures 11a and 12a give the structure of the first
and fourth positive Poincaré modes for s = 0.1. These
are nearly sinusoidal as is the case for s = 0. The struc-
ture of the corresponding modes for s = 1.95 are found
in Figs. 11b and 12b. These solutions are highly dis-
torted with the largest amplitude and smallest y scale
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near y = L/2, where the fluid is shallowest. This be-
havior is closely related to the behavior of shallow-
water waves as they propagate into shallow water (Sto-
ker 1957). The mass fluxes uH, and v Hy have nearly
uniform wave amplitude in y. The negative Poincaré
modes have similar behavior. In general, the free sur-
face eigenfunctions for the negative Kelvin and Poin-
caré waves at s = 1.95 resemble the solutions obtained
by Saint-Guily (1976). His depth field reaches 5% of
the maximum depth at the edge of the shelf.

Figures 13a and 14a give the structure of the first
and fourth Rossby modes for s = 0.1. These fields are
nearly sinusoidal for this value of s. The structures of
the corresponding modes for s = 1.95 are shown in
Figs. 13b and 14b. As with the Poincaré modes, these
solutions are highly distorted with the smallest y scale
near y = L/2. Also note that u is larger than v, con-
sistent with the large » gradient near the boundary if
u and v are approximately geostrophic.

The eigenmode dependence on s for the Rossby
waves can be explained with the following approximate
formula for the Rossby-wave frequency

D 0 Sf kx

o=—2% ; (6.1)
HoLki‘*‘kfz"‘(f /8Hy)’
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FI1G. 10. Same as Fig. 8 except for negative Kelvin wave.
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FIG. 11. Same as Fig. 8 except for first positive Poincaré mode.

where k, is the x wavenumber and k;, is the y wave-
number. The waves in this paper are actually pairs of
plane waves that are summed to satisfy the boundary
conditions. As the plane waves propagate toward lower
values of Hy, k, must change to keep the frequency
constant since k, = k does not change. Equation (6.1)
shows that as 1/H, increases, kﬁ must also increase,
which gives the short y scales observed near y = L/2.

7. Conclusions

In this paper, we solve the linearized shallow-water
equations in a channel with a linear depth variation
and or a linear free surface variation if a mean current
is present. The solutions are obtained in terms of con-
fluent hypergeometric functions. In order to check the
solutions over the proper range of a(c), a very high
resolution finite-difference numerical model is also
solved. It turns out that the numerical solution is com-
putationally less intensive.

The phase speeds are computed for a range in s from
0.1 to 1.95. The equations become singular for s = 2.0
when the depth at y = L/2 becomes zero. For small s
the Kelvin and Poincaré solutions agree with the so-
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lutions obtained by Hyde (1984 ) with a perturbation
expansion in 5. However, for s > 0.25 the solutions
depart considerably from the Hyde solutions, which
are linear in 5. For s > 1.0 the magnitudes of the phase
speeds decrease as s increases up to s = 1.95. The
Rossby wave phase speed is close to the approximate
speed obtained when the depth is linearized. Beyond
s ~ 1 the complete solutions become concave down
so that the speed is increased relative to the simple
formula.

For small s the eigenfunctions of the Kelvin and
Poincaré waves are very close to the s = 0 solutions
(i.e., exponential for Kelvin waves and sinusoidal for
Poincaré waves). However, as s increases to s = 1.95,
the eigenfunctions are distorted so that the largest am-
plitude and smallest scale occur near the boundary
where the depth is least (y = L/2). The most remark-
able change is for the positive Kelvin wave that begins
for small s with # and » decaying exponentially from
the boundary at y = —L/2 and v ~ 0. As s increases
the maxima shift across the channel and v approaches
« in magnitude. For s = 1.95 these solutions resemble
the negative Kelvin wave except that v is large and it
propagates in the positive direction. This solution is,
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F1G. 12. Same as Fig. 8 except for fourth positive Poincaré mode.



1 APRIL 1993

however, consistent with the other solutions that are
highly confined near y = L/2 as s approaches 2. The
negative Kelvin wave retains the Kelvin wave structure
as s increases to 1.95. The latter solutions decay more
rapidly away from the boundary on the shallow side
of the channel (y = L/2). The decrease in |c| as s
increases can now be interpreted in terms of the eigen-
function structure shift toward the boundary where the
depth is the least. In Egs. (5.1) and (5.2) it can be seen
that the phase speed decreases as the depth D, de-
creases. Thus, as the depth decreases at the point where
the wave has a maximum amplitude, we would expect
the phase speed to decrease as observed. The Rossby
wave eigenfunctions also show a shift so that the am-
plitude increases and the y scale decreases near the
boundary where the fluid is shallow. This scale decrease
is explained with frequency formula (6.1). This for-
mula also shows that the phase speed will increase as
the local depth Hj is decreased as is observed.

The results in this paper can be applied to a variety
of simplified situations in the atmosphere and the ocean
by changing the scale and employing a reduced gravity
in a two-layer system.

T T
-2.0 -1.0 0.0 1.0 2.0

FIG. 13. Same as Fig. 8 except for first Rossby mode.
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FIG. 14. Same as Fig. 8 except for fourth Rossby mode.
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APPENDIX A
Proof that c is Real
Let
u = u(y) explik(x — ct)], (A.1)

and similarly for v and 7. Substitution of these expres-
sions into (2.2)-(2.4) yields

—ikcu = fv — ikgn, (A.2)
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. dn
ikcv = — fu gdy s (A.3)
and
. . d
—ikcn = —ikHou — — (Hpv). (A.4)
dy

Multiplying (A.2)-(A.4) by Hou, Hyv, and g7, re-
spectively, where () denotes complex conjugation and
summing gives

—ick{Ho[|u|> + |v]*] + glnl*}

= ~Ho[f(u1') — uv) + ikg(un + in) + gv Z—Z]

—&n di (Hou). (A.5)
y

Summing (A.5) with its complex conjugate and in-
tegrating from y = —L/2 to y = +L/2 yields

L/2
ik(c = ¢) f_m{Ho[lu|2+ [v]%] + glnl*}dy

= [—gHo(vy + om)]1}=E2.  (A6)

Since the right-hand side of (A.6) is zero (by virtue
of the boundary condition that v vanish on y = £L/
2) and the integral is positive definite, it follows that
¢ is real and the solutions are neutrally stable.

APPENDIX B

Conditions for the Existence of Inertial Oscillations
of the Frequency ¢ = +f/k

Substituting ¢ = £f/k into (A.2)-(A.4) yields
Ju = xifvo + kgn, (B.1)
Ju = xifv — g— (B.2)
and
+ifn + Ho(zku + Zy) +v % =0. - (B.3)

The present analysis follows that of Pedlosky (1979,
pp. 79-80), except that we also include the term
vdH,/dyin (B.3), which is a consequence of the depth
variation. Thus, the analysis reduces to that of Pedlosky
(1979) when H, = const.

It follows from (B.1) and (B.2) that

n = 1o exp(Fky), (B.4)
where 79 is a constant to be determined. Substituting
(B.4) in (B.1) gives

k
U= +iv + fg 10 exp(Fky), (B.5)

and substituting (B.4) and (B.5) into (B.3) yields a
first-order differential equation for v; namely,
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iiE + 1 dH, _ ko
dy Ho dy

k2
H, f 2
The general solution of (B.6), for the linear variation
of Hy with y defined in (2.8), is given by

lfno( ) exp(Fky). (B.6)

_ exp(*ky) if
1—(s/L)y ° 2kDo(1 - (s/Lyy) ™
_2p2fy 5 2 Sk
X[l kR(l Ly)iR 2L]
X exp(Fky), (B.7)

where R = VgD,/f is the Rossby radius of deforma-
tion.

Applying the boundary condition that v = 0 on y
=+L/2in (B.7) yields

kL if s sk

+ — |V, — — 2p2 S 27
exp( 2) = kD, 1 kR(l 2)+R ZLJ
Xexp(i kTL)n0=O, (B.8)

AT — L2R2 s 2 5k
exp(+ 2)Vo 2kDo[l k’R 1+2 =R Y7

k
X exp(i —-29)110 =0. (B.9)

Equations (B.8) and (B.9) will have nontrivial solu-
tions for ¥} and », provided the determinant vanishes,
that is:

1[1 — k?R?*+ R? — coshkL.

, sk ]sinhkL _ kR?s
2L kL 2
(B.10)

Thus, the only possible inertial oscillations of frequency
¢ = xf/k are those for which k satisifies (B.10). When
s = 0 we recover the degenerate inertial oscillation of
Pedlosky (1979, pp. 79-80), for which k = + R}, and
it is indistinguishable from the Kelvin wave, for which
v=0,
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