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SUMMARY

Recently developed non-reflecting boundary conditions are applied for exterior time-dependent wave
problems in unbounded domains. The linear time-dependent wave equation, with or without a dispersive
term, is considered in an infinite domain. The infinite domain is truncated via an artificial boundary B,
and a high-order non-reflecting boundary condition (NRBC) is imposed on B. Then the problem is
solved numerically in the finite domain bounded by B. The new boundary scheme is based on a
reformulation of the sequence of NRBCs proposed by Higdon. We consider here two reformulations:
one that involves high-order derivatives with a special discretization scheme, and another that does
not involve any high derivatives beyond second order. The latter formulation is made possible by
introducing special auxiliary variables on B. In both formulations the new NRBCs can easily be used
up to any desired order. They can be incorporated in a finite element or a finite difference scheme;
in the present paper the latter is used. In contrast to previous papers using similar formulations,
here the method is applied to a fully exterior two-dimensional problem, with a rectangular boundary.
Numerical examples in infinite domains are used to demonstrate the performance and advantages of
the new method. In the auxiliary-variable formulation long-time corner instability is observed, that
requires special treatment of the corners (not addressed in this paper). No such difficulties arise in
the high-derivative formulation. Published in 2005 by John Wiley & Sons, Ltd.
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1. INTRODUCTION

Numerical methods for the solution of wave problems in unbounded domains have been de-
veloped since the late 1960s [1]. They have been considered in various fields of application
involving wave propagation, such as acoustics, electromagnetics, meteorology, oceanography
and geophysics of the solid earth. Among the pioneers were Zienkiewicz and Newton [2] and
Lysmer and Kuhlemeyer [3]. Various methods have been proposed, such as the Smith technique
[4], boundary integral methods, infinite element methods, absorbing layer methods and non-
reflecting boundary condition (NRBC) methods. The present paper concentrates on the latter.

In the method of NRBCs, the infinite domain is truncated via an artificial boundary B,
thus dividing the original domain into a finite computational domain � and a residual infinite
domain D. A special boundary condition is imposed on B, in order to complete the statement
of the problem in � (i.e. make the solution in � unique) and, most importantly, to minimize
spurious wave reflection that result from B. This boundary condition is called an NRBC,
although other names such as absorbing, radiating, open, silent, transmitting, transparent, free-
space and pulled-back boundary conditions, are often used too [5]. The problem is then solved
numerically in �. The setup is illustrated in Figure 1. In the example shown, B is the boundary
on all four sides of �, i.e. B=�E ∪ �N ∪ �W ∪ �S.

Naturally, the quality of the numerical solution strongly depends on the properties of the
NRBC employed. In the last 25 years or so, much research has been done to develop NRBCs
that after discretization lead to a scheme which is stable, accurate, efficient and easy to
implement. See References [6–8] for recent reviews on the subject. Of course, it is difficult
to find a single NRBC which is ideal in all respects and all cases; this is why the quest for
better NRBCs and their associated discretization schemes continues.

Recently, high-order local NRBCs have been introduced. Sequences of increasing-order NR-
BCs have been available before (e.g. the Bayliss–Turkel conditions [9] constitute such a se-
quence), but they had been regarded as impractical beyond second or third order from the
implementation point of view. Only since the mid 1990s have practical high-order NRBCs
been devised.

The first such high-order NRBC was proposed by Collino [10], for two-dimensional time-
dependent waves in rectangular domains. Its construction requires the solution of the one-
dimensional wave equation on B. Grote and Keller [11, 12] developed an exact NRBC (which
can be also regarded as a high-order converging NRBC) for the three-dimensional time-
dependent wave equation, based on spherical harmonic transformations. They extended this
NRBC for the case of elastic waves in Reference [13]. Sofronov [14, 15] has independently
published a similar scheme in the Russian literature. Hagstrom and Hariharan [16, 17] con-
structed high-order NRBCs for the two- and three-dimensional time-dependent wave equations
based on the analytic series representation for the outgoing solutions of these equations. For
time-dependent waves in a two-dimensional wave guide, Guddati and Tassoulas [18] devised a
high-order NRBC by using rational approximations and recursive continued fractions. Givoli [19]
showed how to derive high-order NRBCs for a general class of wave problems, leading to a
symmetric finite element formulation. In Reference [20], this methodology was applied to
the particular case of time-harmonic waves, using optimally localized Dirichlet-to-Neumann
NRBCs.

The presence of wave dispersion makes the time-dependent problem still more difficult as far
as NRBC treatment is concerned. Wave dispersion appears in various applications; one important
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Figure 1. Set-up for the NRBC method: an infinite domain problem.

example is that of meteorological models which take into account the earth rotation [21]. None
of the high-order and exact NRBCs mentioned above has been designed to deal with these
effects. Several perfectly matched layer (PML) formulations have been proposed for dispersive
waves; see, e.g. Reference [22] and references there on a PML scheme for the dispersive
shallow water equations.

In References [23, 24] we developed high-order NRBC schemes for both dispersive and
non-dispersive linear time-dependent waves. The schemes are based on NRBCs which were
originally proposed by Higdon [25]. In fact, these NRBCs were developed initially for non-
dispersive waves [26–30], but Higdon [25] showed that they can be applied in the dispersive
case too. The original implementation of the Higdon NRBCs was limited to low orders. Givoli
and Neta [23] proposed a new implementation method that allows the use of high-order dis-
cretized Higdon NRBCs. However, this method differs from the original Higdon formulation
only on the discrete level, not on the continuous level; thus, like the original Higdon scheme,
it involves high normal and temporal derivatives, of increasing order. This has several disad-
vantages which we allude to in the next section. In addition, the computational effort required
by the scheme devised in Reference [23] grows exponentially with the order of the NRBC. In
a follow-on paper, Givoli and Neta [24] reformulated the Higdon NRBCs on the continuous
level in a completely new way. This formulation does not involve any high derivatives. This
is made possible by introducing special auxiliary variables on B. The new construction allows
the easy use of a Higdon-type NRBC of any desired order, and can be incorporated in a finite
element (FE) or a finite difference (FD) scheme. Givoli and Neta [24] and Givoli et al. [31]
used, respectively, FDs and FEs to discretize both the partial differential equation in � and the
NRBC on B. The computational effort required by the scheme grows only linearly with the
order. In this paper we address both the high-derivative formulation and the auxiliary-variable
formulation. We discuss the relative advantages of these formulations, and use both of them
in the numerical examples presented.

The development in [23, 24, 31] was limited to the configuration of a wave guide, where B
is a single plane boundary (say �E in Figure 1). In the present paper, we extend the results of
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Givoli and Neta [23, 24] to the case that two adjacent sides or all four sides of the rectangular
domain � require NRBCs. In this case B has corners which may potentially lead to numeri-
cal instabilities. As Higdon [25, 28] showed, the high-derivative formulation mentioned above
(a high-order implementation of which is presented in Reference [23]) is stable under reason-
able conditions, and there is no need to treat the corners specially. Our numerical experiments
confirm this fact. Ramahi [32] has reported instabilities for J = 4 when Higdon’s NRBC is
combined with the Yee scheme, but they seem to occur only for very special initial condi-
tions. In contrast, in the auxiliary-variable formulation a long-time instability may arise unless
special corner conditions are imposed. The papers by Collino [10], Bamberger et al. [33], and
very recently Vacus [34] and Hagstrom and Warburton [35], address this problem and devise
corner conditions which guarantee a stable solution. In the present paper no special treatment
is applied to the corners; indeed a long-time instability is observed for the auxiliary-variable
formulation as expected. Special corners conditions may be devised similarly to the treatment
in Reference [35]; however, this issue is beyond the scope of this paper.

Following is the outline of the rest of this paper. In Section 2, we state the problem under
investigation. We also present the Higdon NRBCs and recall their properties. In Section 3, we
present the two new formulations of the Higdon NRBCs and discuss the relative advantages of
each. In Section 4, we demonstrate the performance of both formulations of the new method
via some numerical examples involving an infinite domain. We conclude with some remarks
in Section 5.

2. STATEMENT OF THE PROBLEM

We consider wave propagation in a two-dimensional infinite domain as described in Figure 1.
Consider the linear inhomogeneous Klein–Gordon equation,

�2�

�t2
− C2

0

(
�2�

�x2
+ �2�

�y2

)
+ f 2�= S (1)

In (1), � is the unknown wave field, C0 is the given reference wave speed, f is the given
dispersion parameter, and S is a given wave source function. The C0 and f are allowed to be
functions of location in a finite region, outside of which they are constant. The wave source S

is a function of location and time, but it is assumed to have a local support.
It can be shown that the linearized shallow water equations about a zero mean and with a

flat bottom reduce to (1), where � is the water elevation above the reference level [21]. In the
geophysical context, f is called the Coriolis parameter and is related to the angular velocity
of the earth.

The initial conditions

�(x, y, 0)= �0,
��(x, y, 0)

�t
= �′0 (2)

are given at time t = 0 in the entire domain. We assume that the functions �0 and �′0 have a
local support.

We now truncate the infinite domain by introducing an artificial boundary B=�E ∪ �N ∪
�W∪�S; see Figure 1. This boundary divides the original infinite domain into two subdomains:
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an exterior domain D, and a finite computational domain � which is bounded by �W, �N, �S
and �E. We choose the location of the four sides such that the entire support of S, �0, �′0, as
well as the region of non-uniformity of C0 and f , are all contained inside �. Thus, on B and
in D, the homogeneous counterpart of (1) holds, i.e.

�2�

�t2
− C2

0

(
�2�

�x2
+ �2�

�y2

)
+ f 2�= 0 (3)

with constant coefficients C2
0 and f 2, and the medium is initially at rest.

To obtain a well-posed problem in the finite domain � we need to impose a boundary
condition on B. We do this by using a NRBC on B, with the aim of preventing the generation
of significant spurious reflection of waves. We shall use two reformulations of the Higdon
NRBC [25]. The first one differs from the original Higdon formulation only on the discrete
level, and as such will involve high-order normal and temporal derivatives. The second one
will only require second-order tangential and temporal derivatives. The Higdon NRBC of
order J is

HJ :
[

J∏
j=1

(
�
�t
+ Cj

�
��

)]
�= 0 on B (4)

Here, �/�� is the normal derivative and the Cj are constant parameters which have to be chosen
and which signify phase speeds in the direction normal to the boundary.

One important property of the Higdon conditions is the following. It is easy to show [25]
that when a plane wave which has phase velocity Cn in the direction normal to the boundary
impinges on the boundary where the NRBC HJ is imposed, the resulting reflection coefficient
is

R=
J∏

j=1

∣∣∣∣Cj − Cn

Cj + Cn

∣∣∣∣ (5)

It is thus clear that if Cj =Cn for any one of the j ’s then R= 0, namely there is no reflection
and the NRBC is exact. More importantly, R in (5) is a product of J factors, each of which
is smaller than 1. This implies that the reflection coefficient becomes smaller as the order J

increases regardless of the choice made for the parameters Cj . Of course, a good choice for the
Cj would lead to better accuracy with a lower order J , but even if the ‘wrong’ Cj ’s are taken
(say, if one makes the simplest choice Cj =C0 for j = 1, . . . , J ), one is still guaranteed to
reduce the spurious reflection as the order J increases. This has been confirmed by numerical
experimentation. The main advantages of the Higdon conditions are listed in Reference [24].

It can be shown that for certain choices of the parameters, the Higdon NRBCs are equivalent
to NRBCs that are derived from rational approximation of the dispersion relation (the Engquist–
Majda conditions being the most well-known example). This has been proved by Higdon [25]
and in earlier papers. Thus, the Higdon NRBCs can be viewed as generalization of rational-
approximation NRBCs. See also the recent paper by Ditkowski and Gottlieb [36] on this
subject.

We note that the first-order condition H1 is a Sommerfeld-like boundary condition. If we
set C1=C0 we get the classical Sommerfeld-like NRBC. A lot of work in the meteorological
literature is based on using H1 with a specially chosen C1. Pearson [37] used a special but
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constant value of C1, while in the scheme devised by Orlanski [38] and in later improved
schemes [39–42] the C1 changes dynamically and locally in each time-step based on the
solution from the previous time-step. Some of the limited-area weather prediction codes used
today are based on such schemes, e.g. COAMPS [43]. See also the recent papers [44–46]
where several such adaptive H1 schemes are compared.

Difficulties associated with the original formulation of the Higdon NRBCs (see
Reference [25]) are as follows:

• The discrete Higdon conditions were developed in the literature up to third order only,
because of their algebraic complexity which increases rapidly with the order.
• The original J th-order Higdon NRBC involves high normal and temporal derivatives, up

to order J . In fact, it has the form

J∑
j=0

�j

�j

��j

�J−j

�tJ−j
�= 0 (6)

which is obtained by expanding (4). The high derivatives pose obvious disadvantages. High
normal derivatives are problematic; when FEs are used only the J = 1 condition is com-
patible with standard (low-order C0) elements, whereas when FDs are used, the discrete
stencil must be a non-standard high-order one, penetrating deeply into the computational
domain away from the artificial boundary. High time derivatives are also disadvantageous
in that they require the use of high-order time discretization and the storage of the solution
history.

The new formulations presented in the next section overcome all these difficulties. Both
reformulations allow the easy use of Higdon NRBCs up to an arbitrarily high order. The
scheme is coded once and for all for any order; the order of the scheme is simply an input
parameter. Of course, since the value of J affects the amount of storage needed, the statement
above assumes that the storage issue is generically addressed, e.g. by the use of a dynamic
storage scheme.

3. HIGH-ORDER NRBCS

3.1. Reformulation using high derivatives on a discrete level

The Higdon condition HJ is a product of J operators of the form (�/�t) + Cj(�/��). To
fix ideas, in this section we consider the east boundary �E where �/��= �/�x. The ideas
are easily carried over to the three other boundaries as well. We consider the following FD
approximations:

�
�t
� I − S−t

�t
,

�
�x
� I − S−x

�x
(7)

In (7), �t and �x are, respectively, the time-step size and grid spacing in the x direction, I

is the identity operator, and S−t and S−x are shift operators defined by

S−t �n
pq = �n−1

pq , S−x �n
pq = �n

p−1,q (8)
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Here and elsewhere, �n
pq is the FD approximation of �(x, y, t) at grid point (xp, yq) and at

time tn. We use (7) in (4) to obtain:[
J∏

j = 1

(
I − S−t

�t
+ Cj

I − S−x
�x

)]
�n
Eq = 0 (9)

Here, the index E correspond to a grid point on the boundary �E. Higdon has solved this
difference equation (and also a slightly more involved equation that is based on time- and
space-averaging approximations for �/�x and �/�t) for J�3 to obtain an explicit formula for
�n
Eq . This formula is used to find the current values on the boundary �E after the solution

in the interior points and on the other boundaries has been updated. The formula for J = 2
is found in Reference [30], and the one for J = 3 appears in the appendix of Reference [29].
The algebraic complexity of these formulas increases rapidly with the order J . Now we show
how to implement the Higdon NRBCs to any order using a simple algorithm. To this end, we
first multiply (9) by �t and rearrange to obtain

Z ≡
[

J∏
j=1

(aj I + djS
−
t + ejS

−
x )

]
�n
Eq = 0 (10)

where

aj = 1+ Cj�t

�x
(11)

dj =−1 (12)

ej =−Cj�t

�x
(13)

The coefficient dj actually does not depend on j , but we keep this notation to allow easy
extensions to the scheme. Now, Z in (10) can be written as a sum of 3J terms, each one is
an operator acting on �n

Eq , namely

Z ≡
3J−1∑
m=0

AmPm�n
Eq = 0 (14)

Here Am is a coefficient depending on the aj , dj and ej , and Pm is an operator involving
products of I , S−t and S−x . All the terms in the sum in (14) are computable at the current
time step n, except the one which involves only the identity operator and no shift operators.
If we let this term correspond to m= 0, then P0= I and

A0=
J∏

j=1
aj (15)

Thus we get from (14)

Z ≡ A0�
n
Eq + Z∗ = 0 (16)
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Box 1. Algorithm for implementing the Higdon NRBC of order J on
the discrete level (first formulation).

• Start with Z∗ = 0. Calculate A0=∏J
j=1aj .

• Loop over the integers m= 1, . . . , 3J − 1.

◦ For a given m, transform m into a number r in base 3, consisting of the digits 0, 1
and 2 only. The length of r will be at most J digits. Store the J digits of r in the
vector Dr(j), j = 1, . . . , J .
Example: Suppose that J = 6 and m= 227. Since 227 in base 3 is r = 22102, we will
get Dr ={0 2 2 1 0 2}.
◦Use Dr to calculate the coefficient Am. To this end, start with Am= 1, loop over

j = 1, . . . , J , and for each j multiply Am by the factor aj (if Dr(j)= 0) or dj (if
Dr(j)= 1) or ej (if Dr(j)= 2).
Example: For J = 6 and m= 227, we have received the vector Dr above. Then
A227= a1e2e3d4a5e6.
◦Use Dr to calculate the operator action Pm�n

Eq . To this end, start with n̂= n and

î=E, loop over j = 1, . . . , J , and for each j subtract 1 from n̂ (if Dr(j)= 1) or
subtract 1 from î (if Dr(j)= 2) or do nothing (if Dr(j)= 0). After the loop ends we
have Pm�n

Eq = �n̂

îq
.

Example: For the case J = 6 and m= 227 considered above, we get n̂= n−1 (because
the digit ‘1’ appears only once in Dr ), and î=E − 3 (because the digit ‘2’ appears
three times in Dr ). Hence P227�n

Eq = �n−1
E−3,q .

◦Update: Z∗ ← Z∗ + Am�n̂

îq
.

•Next m.
• �n

Eq = − Z∗/A0.

where

Z∗ =
3J−1∑
m=1

AmPm�n
Eq (17)

From (16) we get

�n
Eq = − Z∗/A0 (18)

which is the desired value of � on the boundary �E.
The problem now reduces to calculating Z∗ given by (17). We do this using the algorithm

described in Box 1. The basic idea is to calculate the coefficients Am and the operator actions
Pm�n

Eq term by term. This is done systematically by transforming the integer counter m to
a number in base 3 with J digits. The Am and Pm are not simple functions of the decimal
representation of the number m, but they are simple functions of the digits of the base-3
representation of m.

Note that we need to store �n̂

îq
values for î=E, E−1, . . . , E−J and n̂= n, n−1, . . . , n−J .

In other words, we have to store the history of the values of � for a layer of thickness J + 1
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points near the boundary �E and for J + 1 time levels (including the current one). If there
are Ny grid points in the y direction, then the amount of storage needed in a simple storage
scheme is (J + 1)2Ny . However, one can save in storage by exploiting the fact that not all
values �n̂

îq
are needed, but only those for which (E − î)+ (n− n̂)�J . This is clear from (6)

and also from (10). For example, the solution at time tn−J should be stored only for points
on the boundary �E itself.

This formulation of the Higdon NRBCs requires penetration into the domain (because of
the high normal derivative) and also requires time-history. Thus the storage requirement can
be high. Also, in order to work properly the method requires a ‘buffer zone’ of zero initial
conditions, of width J . In addition it is not easy to extend the algorithm to FE formulations
and to unstructured meshes. On the other hand, as Higdon [25, 28] showed and our experiments
confirm, it is stable at the corners.

3.2. Reformulation using auxiliary variables

We first replace the Higdon condition (4) by the equivalent condition

HJ :
[

J∏
j=1

(
�
��
+ 1

Cj

�
�t

)]
�= 0 on B (19)

Again, to fix ideas we consider �E where �/��= �/�x. Now we introduce the auxiliary functions
�1, . . . , �J−1, which are defined on B as well as in the exterior domain D. Eventually we
shall use these functions only on B, but the derivation requires that they be defined in D as
well, or at least in a non-vanishing region adjacent to B. The functions �j are defined via the
relations (

�
�x
+ 1

C1

�
�t

)
�=�1 (20)

(
�
�x
+ 1

C2

�
�t

)
�1 =�2 (21)

...(
�
�x
+ 1

CJ

�
�t

)
�J−1 = 0 (22)

By definition, these relations hold in D, and also on B. It is easy to see that (20)–(22), when
imposed as boundary conditions on B, are equivalent to the single boundary condition (19). If
we also define

�0 ≡ �, �J ≡ 0 (23)

then we can write (20)–(22) concisely as(
�
�x
+ 1

Cj

�
�t

)
�j−1=�j , j = 1, . . . , J (24)
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This set of conditions involves only first-order derivatives. However, due to the appearance of
the x derivative in (24), one cannot discretize the �j on the boundary alone. Therefore we
shall manipulate (24) in order to get rid of the x derivative.

The function � satisfies the wave equation (3) in D. The function �1 is obtained by applying
a linear constant coefficient operator to �, as in (20); hence it is clear that �1 also satisfies
the same equation in D. Similarly, we deduce that each of the functions �j satisfies a wave
equation like (3), namely,

�2�j

�x2
+ �2�j

�y2
− 1

C2
0

�2�j

�t2
− f 2

C2
0

�j = 0 (25)

Here we need the assumption that C0 and f do not depend on x or on t . Now, we make use
of the following identity:

�2�j

�x2
=
(

�
�x
− 1

Cj+1

�
�t

)(
�
�x
+ 1

Cj+1

�
�t

)
�j +

1

C2
j+1

�2�j

�t2
(26)

Substituting (26) in (25) and replacing j with j − 1 everywhere yields, for j = 1, . . . , J ,

(
�
�x
− 1

Cj

�
�t

)(
�
�x
+ 1

Cj

�
�t

)
�j−1 +

(
1

C2
j

− 1

C2
0

)
�2�j−1

�t2
+ �2�j−1

�y2
− f 2

C2
0

�j−1= 0 (27)

From this and (24) we get, for j = 1, . . . , J ,

(
�
�x
− 1

Cj

�
�t

)
�j +

(
1

C2
j

− 1

C2
0

)
�2�j−1

�t2
+ �2�j−1

�y2
− f 2

C2
0

�j−1= 0 (28)

On the other hand, (24) can also be written as(
�
�x
+ 1

Cj+1

�
�t

)
�j =�j+1, j = 0, . . . , J − 1 (29)

We subtract (28) from (29) to finally obtain, for j = 1, . . . , J − 1,

(
1

Cj

+ 1

Cj+1

) ��j

�t
=�j+1 +

(
1

C2
j

− 1

C2
0

)
�2�j−1

�t2
+ �2�j−1

�y2
− f 2

C2
0

�j−1 (30)

As desired, the new boundary condition (30) does not involve normal derivatives. In addition,
there are no high tangential and temporal derivatives in (30) beyond second order.

Rewriting (20), (30) and (23), we can summarize the new formulation of the J th-order
NRBC on �E as follows:

�0
��0

�t
+ ��0

�x
= �1 (31)

�j

��j

�t
− �j

�2�j−1

�t2
− �2�j−1

�y2
+ ��j−1 = �j+1, j = 1, . . . , J − 1 (32)
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�j = 1

C2
j

− 1

C2
0

, �0=
1

C1
, �j =

1

Cj

+ 1

Cj+1
, �= f 2

C2
0

(33)

�0 ≡ �, �J ≡ 0 (34)

It should be emphasized that (31)–(34) are equivalent to the Higdon conditions in their original
form, (4). No further approximation is added beyond the one entailed in the original Higdon
NRBCs, except that it has been assumed that C0 is constant in the far field. The crucial
reflection property (5) of the latter applies to (31)–(34) as well.

Analogous equations are easily obtained for �N, �W and �S. For example, on �N
(31)–(34) hold with x and y exchanged in (31) and (32). Equations (31)–(34) can be dis-
cretized using FDs or FEs. See Reference [24, 31] for more details in the context of wave
guides.

It should be remarked that in the case of FE discretization (which is not considered here),
standard C0 shape functions can be used for all the variables �j , owing to the fact that at
most second-order derivatives appear in (31)–(34). Moreover, as the results in Reference [31]
show, a stable solution is obtained with simple equal-order interpolation (e.g. bilinear shape
functions) for all the variables. Of course, no standard formulation would be possible if (4)
were to be discretized directly by FEs, due to the appearance of high derivatives.

Note the appearance of the second-order time derivative of the previous solution in
Equation (32). This term may potentially pose stability difficulties, although this has not been
thoroughly checked or analysed as yet. Note also that with the choice Cj =C0 for all j this
term drops out.

This formulation is more general than the previous one and does not require penetration into
the domain and the keeping of time-history. It also does not require a ‘buffer zone’ of zero
initial conditions. On the other hand, it is potentially less stable (not every combination of Cj

in every order gives stability) and it may require special attention at the corners.

4. NUMERICAL EXPERIMENTS

In this section, we report on several examples showing the benefit of NRBCs using both
Higdon reformulations. Table I giving the CPU overhead required as a function of the order J

of the NRBC, for a typical example. The first column is the order J , the second column
shows the time for the auxiliary-variable formulation, and the last column shows the timing
for the high-derivative formulation. Notice that the overhead in the latter case is so high that
we did not show the cost for J>11. The CPU time is given on a Pentium IV, 1.5 GHz with
256 MB RAM PC. For small J values the boundary treatment is negligible compared to the
overall effort, hence the CPU times shown are almost constant. For larger J ’s, the time for
the auxiliary-variable formulation increases linearly with J , while that for the high-derivative
formulation increases exponentially with J , as expected from the theory.

We refer the reader to Givoli and Neta [23] where we have applied the Higdon high-order
NRBC to a simple wave guide problem whose exact solution is synthesized. We have shown
that automatic choice of Cj according to the scheme given in Reference [23] would allow the
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Table I. Overhead cost.

CPU (s)

Order Aux. var. formul. High deriv. formul.

1 0.016 0.016
2 0.016 0.031
3 0.016 0.016
4 0.016 0.016
5 0.015 0.016
6 0.016 0.093
7 0.015 0.172
8 0.016 0.672
9 0.047 4.42

10 0.016 35.1
11 0.046 355
12 0.032 —
13 0.062 —
14 0.047 —
15 0.063 —
16 0.078 —
17 0.078 —
18 0.094 —
19 0.093 —
20 0.110 —

user to get higher accuracy with J = 5 than the case with Cj = 1 for 1 � j � 7. In the examples
presented in this paper we choose uniform Cj (i.e. Cj =C0) since even with such a choice
satisfactory accuracy is obtained for sufficiently high J . This is due to the guaranteed reduction
in the reflection coefficient for increasing J ’s (see discussion in Section 2). This choice is the
simplest choice that one can make in the lack of any other information of the wave content
of the unknown solution.

In Sections 4.1–4.3 we use the high-derivative formulation, while in Section 4.4 we employ
the auxiliary-variable formulation. In both cases, the interior scheme used is that of stan-
dard explicit second-order central differences in space and time; see Reference [23] for more
details. In all the examples the computed solution is compared with a reference solution ob-
tained numerically in a much larger domain, but with the same level of discretization. It is
thought to be wise not to refine the spatial or temporal discretization for the reference solution,
since what should be checked here is the effectivity of the boundary treatment while all other
computational parameters are fixed. Analytical solutions exist for only very simple cases; see,
e.g. the tests done in Reference [23].

4.1. Quarter plane example

In our first example we employ a quarter plane shown in Figure 2. The semi-infinite domain
D is bounded by the physical boundaries �S and �W. A large finite domain, denoted D∗,
where a reference solution �ref will be calculated, is represented by a 10 × 10 square with
a 40 × 40 mesh. The truncated computational domain � is a 5 × 5 square with a 20 × 20
mesh and bounded by �S, �W and the artificial boundaries �N, and �E. On both domains
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ΓΓ
W Ω

Γ
N

D

x

y

Γ
S

Γ
E

Figure 2. The semi-infinite quarter plane.

�x= 0.25, �y= 0.25, and �t = 0.025. A reference speed of C0= 1 and a dispersion parameter
f = 0.5 are used. The problem is run for 1000 time steps. To complete the problem description,
a Neumann condition is imposed on �S, i.e.

��

�y
= 0

and a Dirichlet condition is imposed on �W and is given by

�W(y, t)=

⎧⎪⎨
⎪⎩

3∑
m=1

Am cos

(
nm�(y − 1.875)

3.75

)
sin(	mt) if y�3.75

0 otherwise

(35)

where the parameters Am, nm, and 	m are selected as follows:

Am = 0.001, 0.002, 0.001

nm = 1, 3, 1

	m = 0.81, 1.37, 1.68

(36)
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Figure 3. Wave pulse passes through �N at t = 3.

The Higdon NRBC of order J = 5 is imposed on �N and �E, with Cj = 1/
√

2, j = 1, . . . , 5
on both boundaries. The high-derivative implementation described in Section 3.1 is used. Since
the same Cj ’s are used for the two boundaries, the parameters and operators used to discretize
the �E and �N boundary conditions are identical.

A solution �ref and � is computed for D∗ and �, respectively, using explicit second-order
finite differencing. Filled contour plots are generated for each solution. In Figure 3, these
solutions are reported at t = 3. The upper-right subplot displays the solution for �ref on D∗.
The upper-left subplot is a magnification of �ref on the sub-domain � and represents a solution
on � as if no boundaries were present at x= 5 and y= 5. The lower-left subplot reports the
solution for � on �. A qualitative comparison can be made between the two left-side subplots to
determine the effectiveness of the NRBC in restricting the domain. A quantitative measurement
of this comparison appears in the lower-right subplot, which reports an error measure ‖e(t)‖�
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Figure 4. Wave pulse passes through �E at t = 5.

versus t . Here

‖e(t)‖�=
√√√√Nx∑

i=1

Ny∑
j=1

[�ref(xi, yj , t)− �(xi, yj , t)]2
NxNy

(37)

and Nx =Ny = 20 is the number of grid points in each direction. Note that for computational
purposes, Higdon NRBCs with Cj ={1, 1, 1, 1, 1, 1, 1} are imposed at y= 10 and x= 10 on D∗.
Any reflection from these extended boundaries of D∗ will have little or no effect on the
domain of interest �. If we conduct the run for shorter times, such waves will not reach back
into �.

The almost linear increase in time seen in the lower right error plot (here and in all
subsequent figures), has nothing to do with the boundary treatment, but is associated with the
linear increase of error which is known to exist in all standard finite difference schemes for
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Figure 5. Wave pulse passes through corner at t = 15.

hyperbolic problems that are not specially designed to control global dispersion (‘pollution’)
errors.

In Figure 3 at t = 3, the wave pulse has almost reached �N. The magnitude of the error
measurement is less than the error due to the discretization. In Figure 4 at t = 5, the wave
pulse has reached �N and passes without undue increase in ‖e(t)‖� . Note that a leading front
of the pulse is about to reach the intersection of �N and �E. In Figure 5 at t = 15, the wave
has passed through the corner unimpeded with no adverse effect on ‖e(t)‖�. The measured
error ‖e(t)‖� at t = 25 is shown in Figure 6. (Note the large errors from the corner in the
reference solution; these however do not affect the scheme in �.)

At the corner grid points the Higdon conditions were applied similarly to any other point,
except that one-sided second-order FD approximations were employed for the tangential deriva-
tives instead of central FDs. One should note, however, that two different ways to approximate
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Figure 6. Large errors at the corner at t = 25.

Table II. Error as function of J .

Order Error

1 9.7362(−5)
2 2.376(−5)
3 5.9458(−6)
4 2.063(−6)
5 1.1795(−6)

the solution at the corner points are possible. For example, in the northeast corner one may
evaluate the solution based on boundary values calculated for �E, or based on the �N boundary
values. Numerical experiments show that the two procedures yield the same results.
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Figure 7. Solution at time t = 2 after the surface disturbance given by (38) has been evolved.

4.2. NRBC high order

The next example involves the use of several values of the parameter J to solve the same
quarter plane problem. The only change is that for the reference solution we have used J = 5
and all Cj = 1/

√
2 and for the inner domain we kept Cj = 1/

√
2 but allowed J to vary

from 1 to 5. The integration time step is �t = 0.025 and the final time is t = 10. The maxi-
mum error as a function of J is given in Table II. It is clear that the error is smaller with
increasing J .

A remark should be made regarding the reduction of error obtained by increasing the order J .
Of course spatial and temporal discretization errors always exists ‘in the background’ and there
is no point in increasing J beyond the point where the boundary error due to the use of
the J th-order NRBC is smaller than the discretization error. This limit can be seen in actual
computations if J in increased gradually until the numerical results ‘converge’ to a result that
does not change with further J increase. Some estimate on this limit J may be obtained from
an error analysis of both the discretization error and the boundary error; such analysis is outside
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Figure 8. Solution at time t = 4, surface disturbance has left � and another
disturbance has been initiated.

the scope of this paper (and has not been done, to the best of our knowledge, by other authors
in other cases of high-order NRBCs). Of course, the finer the discretization is, the higher J

can (and should) be made.

4.3. Four sides

In the next example we consider a truncated domain � where Higdon NRBCs are imposed
on all four sides. The boundary conditions on �N and �E are discretized as before. The
boundary conditions on �S and �W are discretized in a similar manner, however forward- vice
backward-difference approximations are used for the spatial derivatives. As before, � is a 5×5
square with a 20×20 mesh. Higdon NRBCs are located at x= 0, y= 0, x= 5, and y= 5 with
Cj ={1, 1, 1, 1, 1} at each boundary.

The extended domain D is the infinite plane. The reference domain D∗ is a 15× 15 square
with a 60× 60 mesh. The domain of interest � is located in the centre of D∗ at 5�x, y�10.
Higdon boundaries are placed at x= 0, y= 0, x= 15, and y= 15 with Cj ={1, 1, 1, 1, 1, 1, 1}
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Figure 9. Solution at time t = 14, both events have passed through the boundaries.

at each boundary. This is done for computational purposes only and any spurious reflection
from these extended boundaries will not significantly pollute the domain of interest unless the
integration time is long enough. On both domains �x=�y= 0.25 and the time-step �t = 0.1.
Again, C0= 1 and f = 0.5.

As typically done in meteorological simulations, random values that represent physical dis-
turbances or ‘events’ in �, which are highly non-smooth and non-symmetric, are introduced
at designated times at specified x and y ranges. At the given time, these random values are
added to existing values of �. The dispersive mechanism defined by (3) is then allowed to act
on the event. These random events are sufficiently complex in nature to expose any difficulty
with the Higdon NRBCs.

For this example two separate events are imposed. Event 1 is a surface event given by

St = 0.1=
{

0.0001 ∗ rand(−0.5, 0.5) if 1.5 � x, y � 3.5

0 otherwise
(38)
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Figure 10. Solution at t = 50, long after events have passed through the boundaries.

where St=0.1(x, y) represents a disturbance initiated at t = 0.1 and rand(−0.5, 0.5) is a random
number on the interval [−0.5, 0.5]. Event 2 at t = 5 is given by

St=5=
{

0.00015 ∗ rand(−0.25, 0.75) if 1.5 � x � 2.25 and 1.5 � y � 3.5,

0 otherwise
(39)

All events must be shifted 5 units in the x and y directions when initiating activity on D∗, in
order to properly place them in the domain’s centre.

A trial is run for 50 time units. In Figure 7 at t = 2, the surface event has been initiated and
the resulting waves are propagating toward the four sides of �. The error measurement ‖e(t)‖�
is near zero even though the wave already crossed the boundary of �. In Figure 8 at t = 4,
the first event has left � with no significant spurious reflection at either the boundaries or the
corners. In Figure 9 at t = 14, both events have passed through the artificial boundary success-
fully. An outward radiating wave front can be seen in the upper-right subplot of the extended
domain D∗. The left-side subplots are remarkably similar indicating that Higdon boundary
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Figure 11. Auxiliary variable formulation. Solution at t = 2 after the surface
disturbance given by (38) has been evolved.

conditions are suitable. In Figure 10 at t = 50, most of the wave energy resulting from the
disturbances has left �. The effect due to spurious reflection starts to become significant since
the solution is nearly zero, thus increasing the error measurement for �. (This effect, which
often occurs in wave problems, may be controlled by using more sophisticated albeit more
complicated and less ‘physical’ error measures.)

4.4. Auxiliary variables

In our last example we use the auxiliary variable formulation discussed in Section 3.2 with
J = 7 and Cj ={1, 1, 1, 1, 1, 1, 1}. All other parameters are unchanged, except that fresh random
values are chosen for the two wave events. In Figure 11 at t = 2 the surface event has been
initiated. This figure is similar to the previous example. Figure 12 shows the solution at t = 4.
As before, we can see that the wave crosses the boundary without reflection. The error norm is
slightly larger but it is still very small. In Figure 13 we show the solution at t = 14, after the
wave had passed through the outer boundary of the larger domain D∗. Again the performance of
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Figure 12. Auxiliary variable formulation. Solution at t = 4 after the first surface disturbance has left
� and another disturbance initiated.

the scheme is excellent. We have also present the solution after long integration. At t = 50 the
solution is given in Figure 14. Notice that the error is a magnitude larger than the corresponding
one in the previous example.

Compared to the formulation of Collino [10], in which the NRBC has the form of a one-
dimensional wave equation on the boundary, in our auxiliary-variable formulation the solution
near the corners (during the duration of the current experiment) seems to be smooth and
accurate even without any special corner treatment. This is probably due to the special form of
(32) with �j = 0 (which is the case due to Cj =C0), namely the fact the only a first-order time
derivative appears in the NRBC. Nevertheless, for long times and high J ’s corner instability
does occur, as shown below.

As mentioned above, the high-derivative formulation yielded stable results in all the experi-
ments performed. This is so regardless of the computation time duration, the order J or the grid
density. On the other hand, the auxiliary-variable formulation exhibited long-time instability,
probably due to the lack of compatibility corner conditions. We have observed from additional
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Figure 13. Auxiliary variable formulation. Solution at t = 14 after both events have
passed through the boundaries.

numerical experiments not presented here that for higher orders J the instability appears earlier.
Also, for a fixed J , refining the grid has the effect of delaying the instability (in addition to
improving the accuracy as long as the solution is stable).

Construction of appropriate compatibility conditions for the corners in the auxiliary-variable
formulation is a major work in itself, and is left for the future.

5. CONCLUSIONS

We considered here two reformulations of the Higdon NRBCs: one that involves high-order
derivatives with a special discretization scheme, and another that does not involve any high
derivatives beyond second order. The latter formulation is made possible by introducing special
auxiliary variables on the boundary.
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Figure 14. Auxiliary variable formulation. Solution at t = 50 long after both events have
passed through the boundaries.

Both formulations were incorporated here in a finite difference scheme. The auxiliary variable
formulation can also be incorporated in a finite element scheme. This has been done in
Reference [31] for the case of a wave guide, and is yet to be done for the exterior problem.
Extending our previous papers with similar formulations, here the method was applied to a
fully exterior two-dimensional problem with a rectangular boundary.

In the high-derivative scheme the order can be as high as the thickness of the ‘buffer zone’,
whereas in the auxiliary-variable scheme it can be arbitrarily high, provided that no corner
instability occurs. Long-time instability does occur in the auxiliary-variable formulation (but
not in the high-derivative formulation) unless the corners are treated specially. The corner
problem should be addressed, for example along the lines of Reference [35]; however it is
beyond the scope of the present paper.

Obviously the choice of scheme and the value of the order J are a tradeoff of a few factors,
the main ones being the accuracy desired and computing time. The additional computing
time associated with the NRBC is proportional to J in the auxiliary-variable formulation and
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exponentially growing with J in the high-derivative formulation. Of course, there is no point
in using an unnecessarily large J ; the largest J that should be used is the value for which the
NRBC error is of the same order of magnitude as the basic discretization error (in space and
time). A prudent choice of J should be made adaptively, based on some a posteriori error
analysis. Moreover, the value of J may vary in different locations on B and in different time
steps.

In light of all the factors outlined above, it is felt that once the corner-stability issue in the
auxuliary-variable formulation is resolved, this formulation is going to be superior over the high-
derivative formulation. The latter can be thought of as ‘brute-force’ high-order differentiator in
time and space, while the former is a more elegant and general way to circumvent the need
for high derivatives. Therefore, no attempt has been made in this paper to perform an actual
numerical comparison between the two schemes for various cases.

Related future work will include investigation of the issue of corner stability, as explained
above, and the adaptation of the proposed approach to more complicated configurations, such
as three-dimensional problems in the presence of wave dispersion. The latter configuration is
only technically, not essentially, more complicated than the two-dimensional one dealt with
here. Also, the high-order NRBCs will be applied to the Shallow Water Equations, which
serve as an important testbed for more complicated dispersive models in meteorology. In
addition, an attempt to adapt the new NRBCs to curved artificial boundaries will be made via
variable transformation, although in certain applications (like meteorology) geometries other
than rectangular are not regarded as relevant.

See further discussion in the thesis of the first author, [47].
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