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ABSTRACT
In this paper, we not only develop an optimal class of three-step eighth-
ordermethodswith higher order weight functions employed in the second
and third sub-steps, but also investigate their dynamics underlying the
purely imaginary extraneous fixed points. Their theoretical and computa-
tional properties are fully described along with a main theorem stating
the order of convergence and the asymptotic error constant as well as
extensive studies of special cases with rational weight functions. A number
of numerical examples are illustrated to confirm the underlying theoreti-
cal development. Besides, to show the convergence behaviour of global
character, fully explored is the dynamics of the proposed family of eighth-
order methods as well as an existing competitive method with the help of
illustrative basins of attraction.
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1. Introduction

Nonlinear equations of high complexity naturally arise when describing our daily-life physical phe-
nomena such as the evolving dynamics of a spinning tennis ball, a swinging pendulum, violent
whirling windstorms, turbulent fluid flow as well as unpredictable weather forecast. Since exact solu-
tions are rarely available, we usually resort to the classical second-order Newton’s method for the
numerical solutions. Since Traub [40] made a pioneering work in the 1960s toward the qualitative
and quantitative analyses of iterativemethods locating numerical roots for nonlinear equations,many
authors [7,14,17,18,21,23,26,34,37] have developed high-order multipoint methods. Petković et al.
[33] collected and updated the state of the art of multipoint methods. A numerical scheme is said to
be optimal according to Kung–Traub’s conjecture [24] that any multipoint method without memory
can attain its convergence order of at most 2k−1 for k functional evaluations with k ∈ N. For the sake
of comparison, we first introduce an existing eighth-order method in [37] presented by Equation (1).

• Sharma-Arora method (SA)

yn = xn − f (xn)
f ′(xn)

,

zn = yn − f (yn)
2f [yn, xn] − f ′(xn)

= xn −
(

1 − s
1 − 2s

)
· f (xn)
f ′(xn)

,
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xn+1 = zn − f [zn, yn]
f [zn, xn]

· f (zn)
2f [zn, yn] − f [zn, xn]

(1)

= xn −
(

1 − s
1 − 2s

)[
1 + su(1 − s)(1 − u)

(1 − su)(1 − 2s − 2u + 3su)

]
· f (xn)
f ′(xn)

,

where f [r, t] = (f (r) − f (t))/(r − t), s = f (yn)/f (xn) and u = f (zn)/f (yn).

Method (1) has been found to be very competitive judging from the recent studies performed by
Lee et al. [25] andChun andNeta [11], whichmotivates us to develop a new class of efficientmethods.
In this paper, we shall seek a class of optimal eighth-order simple-root finders that are competitive
against or comparable to method (1).

To this end, we employ an optimal three-step high-order family of iterative methods in the form
of weighted Newton-like simple-root finders below:

yn = xn − f (xn)
f ′(xn)

,

zn = xn − Lf (s) · f (xn)
f ′(xn)

,

xn+1 = zn − Kf (s, u) · f (xn)
f ′(xn)

= xn − [Lf (s) + Kf (s, u)] · f (xn)
f ′(xn)

,

(2)

where s and u are given in Equation (1) and Lf : C → C is a weight function being analytic [1] in a
neighbourhood of 0 andKf : C

2 → C is a weight function being holomorphic [22,36] in a neighbour-
hood of (0, 0). Note that Equation (1) is a special case of Equation (2) with Lf (s) = (1 − s)/(1 − 2s)
and Kf (s, u) = su(1 − s)2(1 − u)/{(1 − 2s)(1 − su)(1 − 2s − 2u + 3su)}. It is interesting to see that
Equation (1) can be expressed bymeans of fifth-order rational weight functionKf (s, u)without using
divided differences. The forms of Equation (2) use three functional values plus a single derivative
without using divided differences as used in Equation (1).

Definition 1.1 (Error equation, asymptotic error constant, order of convergence): Let x0, x1, . . . ,
xn, . . . be a sequence of numbers converging to α. Let en = xn − α for n = 0, 1, 2, . . .. If constants
p ≥ 1, c �= 0 exist in such a way that en+1 = c enp + O(ep+1

n ) called the error equation, then p and
η = |c| are said to be the order of convergence and the asymptotic error constant, respectively. It is easy
to find c = limn→∞ en+1/enp. Some authors call c itself the asymptotic error constant.

In this paper, we aim not only to design a class of optimal eighth-ordermethods by fully specifying
the algebraic structure of generic weight functions Lf (s) and Kf (s, u), but also to investigate their
dynamics by means of basins of attractions [16] (to be discussed in Section 5) behind the purely
imaginary extraneous fixed points [42] (to be described in Section 4) when applied to a prototype
quadratic polynomial. The last sub-step of Equation (2) in the form of weighted Newton’s method is
clearly more convenient in dealing with extraneous fixed points that can be found directly from the
roots of the weight function Lf (s) + Kf (s, u).

It is of importance for us to pursue suitable parameters giving the basin of attraction with a larger
region of convergence. The presence of extraneous fixed points may induce attractive, indifferent,
repulsive as well as other chaotic orbits influencing the relevant dynamics of the iterative methods.
Notice that the imaginary axis symmetrically divides the whole complex plane into two half planes.
Since we observe the convergence behaviour in the dynamical planes through the basins of attraction
in the form of a square region centred at the origin, the resulting dynamics behind the extraneous
fixed points on the symmetry (imaginary) axis is expected to be less influenced by the presence of
the possible periodic or chaotic attractors. Thus, in the current analysis, it would be preferable for
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us to choose free parameters in such a way that the extraneous fixed points should be located on the
imaginary axis.

In Section 2, themain theorem regarding the convergence behaviour is described with appropriate
forms of twoweight functionsLf andKf . Section 3 investigates some special cases ofKf (s, u). Section 4
discusses the purely imaginary extraneous fixed points together with their stabilities and investigates
their theoretical multipliers. Section 5 presents numerical experiments along with the illustration of
the relevant dynamics and describes concluding remarks at the end.

2. Main theorem

We shall state in this section the main theorem with generic weight functions Lf (s) and Kf (s, u)
employed:

Theorem 2.1: Assume that f : C → C has a simple root α and is analytic in a region con-
taining α. Let cj = f (j)(α)/j!f ′(α) for j = 2, 3, . . .. Let x0 be an initial guess chosen in a suffi-
ciently small neighbourhood of α. Let Lf : C → C be analytic in a neighbourhood of 0. Let Li =
(1/i!)(di/dsi)Lf (s)|(s=0) for 0 ≤ i ≤ 7. Let Kf : C

2 → C be holomorphic in a neighbourhood of (0, 0).
Let Kij = (1/i!j!)(∂ i+j/∂si∂uj)Kf (s, u)|(s=0,u=0) for 0 ≤ i ≤ 7 and 0 ≤ j ≤ 3. If L0 = 1, L1 = 1, L2 =
2, K00 = 0, K10 = 0, K20 = 0, K30 = 0, K40 = 0, K50 = 0, K60 = 0, K01 = 0, K02 = 0, K03 =
0, K11 = 1, K21 = 2, K12 = 1, K22 = 4, K31 = 1 + L3, K41 = −4 + 2L3 + L4 are satisfied, then
iterative scheme (2) defines a family of eighth-order methods satisfying the error equation below: for
n = 0, 1, 2, . . . ,

en+1 = c2[−c2c3c4 + c33(K13 − 1) − c32c4(L3 − 5) + c22c
2
3φ1 + c42c3φ2 + c62φ3]e8n + O(e9n), (3)

where φ1 = 24 − K32 + 3K13(L3 − 5) − 2L3, φ2 = K51 − 2K32(L3 − 5) + 3K13(L3 − 5)2 − (L3 −
33)L3 − 2(70 + L4) − L5 and φ3 = −5K51 − K70 − K32(L3 − 5)2 + K13(L3 − 5)3 + L3(K51 +
9L3 − 2L4 − L5) + 5(45 − 18L3 + 2L4 + L5).

Proof: The Taylor series expansion of f (xn) about α up to eighth-order terms with f (α) = 0 leads us
to the following:

f (xn) = f ′(α){en + c2e2n + c3e3n + c4e4n + c5e5n + c6e6n + c7e7n + c8e8n + O(e9n)}. (4)

It follows that

f ′(xn) = f ′(α){1 + 2c2en + 3c3e2n + 4c4e3n + 5c5e4n + 6c6e5n + 7c7e6n + 8c8e7n + O(e8n)}. (5)

For simplicity, we will denote en by e from now on. Symbolic computation ofMathematica [43] yields:

yn = xn − f (xn)
f ′(xn)

= α + c2 e2 − 2(c22 − c3) e3 + Y4 e4 + Y5 e5 + Y6e6n + Y7e7n + Y8e8n + O(e9),

(6)
where Y4 = 4c32 − 7c2c3 + 3c4, Y5 = −2(4c42 − 10c22c3 + 3c23 + 5c2c4 − 2c5), Y6 = 16c52 − 52c32c3 +
33c2c23 + 28c22c4 − 17c3c4 − 13c2c5 + 5c6, Y7 = −2[16c62 − 64c42c3 − 9c33 + 36c32c4 + 6c24 + 9c22(7
c23 − 2c5) + 11c3c5 + c2(−46c3c4 + 8c6) − 3c7] and Y8 = 64c72 − 304c52c3 + 176c42c4 + 75c23c4 + c32
(408c23 − 92c5) − 31c4c5 − 27c3c6 + c22(−348c3c4 + 44c6) + c2(−135c33 + 64c24 + 118c3c5 − 19
c7) + 7c8.
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In view of the fact that f (yn) = f (xn)|en→(yn−α), we obtain

f (yn) = f ′(α)[c2 e2 − 2(c22 − c3) e3 + D4 e4 + �8
i=5Di ei + O(e9)], (7)

where D4 = (5c32 − 7c2c3 + 3c4),Di = Di(c2, c3, . . . , c8) for 5 ≤ i ≤ 8. Hence, we have

s = f (yn)
f (xn)

= c2e + (−3c22 + 2c3) e2 − 4(8c32 − 10c2c3 + 3c4) e3 + �7
i=4Ei e

i + O(e8), (8)

where Ei = Ei(c2, c3, . . . , c8) for 4 ≤ i ≤ 7.
Noting that s = O(e) and f (xn)/f ′(xn) = O(e), we need a Taylor expansion of Lf (s) about 0 up to

seventh-order terms:

Lf (s) = L0 + L1s + L2s2 + L3s3 + L4s4 + L5s5 + L6s6 + L7s7 + O(e8), (9)

where Lj = (dj/dsj)Lf (s) for 0 ≤ j ≤ 7.
Thus, we find

zn = xn − Lf (s) · f (xn)
f ′(xn)

= α + (1 − L0)e + c2(1 − L1) e2

+ [c22(−2L0 + 4L1 − L2) + 2c3(L0 − L1)] e3 + �8
i=4Wi ei + O(e9),

whereWi = Wi(c2, c3, . . . , c8, L0, . . . , L7) for 4 ≤ i ≤ 8. By taking

L0 = 1, L1 = 1, L2 = 2, (10)

we further obtain
zn = α − c2[c22(L3 − 5) + c3] e4 + �8

i=5Wi ei + O(e9). (11)
In view of the fact that f (zn) = f (xn)|en→(zn−α), we obtain

f (zn) = f ′(α)[−c2[c22(L3 − 5) + c3] e4 + �8
i=5Fi e

i + O(e9)], (12)

where Fi = Fi(c2, c3, . . . , c8, L3, . . . , L7) for 5 ≤ i ≤ 8. Hence, we have

u = f (zn)
f (yn)

= [−c3 − c22(L3 − 5)] e2 + [−2c4 − 4c2c3(L3 − 5) + c32(8L3 − L4 − 26)] e3

+ �8
i=4Gi ei + O(e9), (13)

where Gi = Gi(c2, c3, . . . , c8, L3, . . . , L7) for 4 ≤ i ≤ 8.
Noting that f (xn) = O(e), s = O(e), u = O(e2), f (yn) = O(e2) and f (zn) = O(e4), the Taylor

expansion of Kf (s, u) about (0, 0) up to seventh-order terms in s and third-order terms in u yields
after retaining up to seventh-order termswithK71 = 0, K72 = 0, K73 = 0, K61 = 0, K62 = 0, K63 =
0, K52 = 0, K53 = 0, K43 = 0, K42 = 0, K33 = 0, K23 = 0:

Kf (s, u) = K00 + K01u + K02u2 + K03u3 + s(K10 + K11u + K12u2 + K13u3)

+ s2(K20 + K21u + K22u2) + s3(K30 + K31u + K32u2)

+ s4(K40 + K41u) + s5(K50 + K51u) + K60s6 + K70s7 + O(e8). (14)

By direct substitution of zn, f (xn), f (yn), f (zn), f ′(xn) and Kf (s, u) in Equation (2), we find

xn+1 = xn − [Lf (s) + Kf (s, u)] · f (xn)
f ′(xn)

= α − K00e + c2(K00 − K10) e2

+ [c3(2K00 + K01 − 2K10) − c22(2K00 + 5K01 − 4K10 + K20 − K01L3)] e3

+ �8
i=4�i ei + O(e9), (15)

where �i = �i(c2, c3, . . . , c8, L3, . . . , L7,Kj�), for 4 ≤ i ≤ 8, 0 ≤ j ≤ 7 and 0 ≤ � ≤ 3.
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By taking

K00 = K10 = K01 = K20 = 0 (16)

from Equation (15) along with �4 = 0, we immediately obtain

−1 + K11 = 0, −5 + K30 − K11(L3 − 5) + L3 = 0,

from which we obtain

K11 = 1, K30 = 0. (17)

Continuing in this manner at the ith stage with 4 ≤ i ≤ 7, �i = 0 and solve �i = 0 for remaining Kj�
to find:

K02 = 0, K21 = 2, K40 = 0, K12 = 1, K31 = 1 + L3, K50 = 0,

K03 = 0, K22 = 4, K41 = −4 + 2L3 + L4, K60 = 0. (18)

By substituting these values of Kj� into �8, we eventually find

�8 = c2[−c2c3c4 + c33(K13 − 1) − c32c4(L3 − 5) + c22c
2
3φ1 + c42c3φ2 + c62φ3], (19)

with φ1, φ2 and φ3 as described in Equation (3). This completes the proof. �

3. Special cases of weight functions

As a result of Theorem 2.1, we easily find Lf (s) and Kf (s, u) in the form of Taylor polynomials as
follows:

Lf (s) = 1 + 1s + 2s2 + L3s3 + L4s4 + L5s5 + L6s6 + L7s7 + O(e8),

Kf (s, u) = su[1 + u + K13u2 + 2s(1 + 2u) + s2(1 + L3 + K32u) + s3(−4 + 2L3 + L4) + K51s4]

+ K70s7 + O(e8),
(20)

where L3, L4, L5, L6, L7,K13,K32,K51 and K70 may be free parameters.
Although various forms of weight functions Lf (s) and Kf (s, u) are applicable, either weight func-

tion Lf or Kf is of polynomial type has empirically shown poor convergence as seen in the existing
studies by [9,19]. Taking into account the fact that s = O(e), u = O(e2) and f (xn)/f ′(xn) = O(e), we
shall establish eighth-order convergence by restricting ourselves to considering Lf (s) as a family of
second-order univariate rational functions and Kf (s, u) as a family of fifth-order bivariate rational
functions with real coefficients in the form below:

Lf (s) = a0 + a1s + a2s2

1 + b1s + b2s2
,

Kf (s, u) =
∑5

i=0 cis
i + u(

∑4
i=0 Aisi) + u2(A5 + A6s + A7s2 + A8s3) + u3(A9 + A10s)

1 + ∑5
i=1 disi + u(

∑4
i=0 Bisi) + u2(B5 + B6s + B7s2 + B8s3) + u3(B9 + B10s)

,
(21)

where Ai,Bi, ai, bi, ci, di ∈ R are to be determined for optimal eighth-order convergence.
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By Theorem 2.1, we let Equation (21) satisfy the constraints (10) and (16)–(18) which give us the
coefficients:

c0 = 0, c1 = 0, c2 = 0, c3 = 0, c4 = 0, c5 = 0,

A0 = 0, A1 = 1, A2 = 2 + d1, A3 = 5 − 2a2 + b2 + 2d1 + d2,

A4 = 12 + 2a22 + b22 + 5d1 + b2(6 + d1) − a2(3b2 + 2(6 + d1)) + 2d2 + d3, A5 = 0, A9 = 0,

B0 = −1 + A6, B1 = −2 − 2A6 + A7 − d1.
(22)

As a result, the reduced form of the desired weight functions is found to be:

Lf (s) = 1 + (a2 − b2 − 1)s + a2s2

1 + (a2 − b2 − 2)s + b2s2
,

Kf (s, u) = su[1 + (2 + d1)s + A3s2 + A4s3 + u(A6 + A7s + A8s2) + A10u2]
1 + ∑5

i=1 disi + u(
∑4

i=0 Bisi) + u2(B5 + B6s + B7s2 + B8s3) + u3(B9 + B10s)
,

(23)

where A6,A7,A8,A10,Bi(2 ≤ i ≤ 10), a2, b2, di(1 ≤ i ≤ 5) ∈ R are free parameters.
We first observe that weight function Kf (s, u) reduces to Equation (1) studied by Sharma-Arora

[37], if given a choice of parameters listed below:

A10 = B10 = B9 = B4 = B5 = a2 = b2 = d3 = d4 = d5 = 0,

A6 = −1, A7 = 2, A8 = −1, B2 = −2,

B3 = −4, B6 = 2, B7 = −7, B8 = 6, d1 = −4, d2 = 4.

(24)

For simplified analysis along with a close inspection of Equation (22), we preferably select d4 = d5 =
A10 = B10 = 0 and will finally deal with a shortened form of Kf (s, u) as follows:

Lf (s) = 1 + (a2 − b2 − 1)s + a2s2

1 + (a2 − b2 − 2)s + b2s2
,

Kf (s, u) = su[1 + (2 + d1)s + A3s2 + A4s3 + u(A6 + A7s + A8s2)]
1 + d1s + d2s2 + d3s3 + u(

∑4
i=0 Bisi) + u2(B5 + B6s + B7s2 + B8s3) + B9u3

,
(25)

where A6,A7,A8,Bi(2 ≤ i ≤ 9), a2, b2, d1, d2, d3 ∈ R are free parameters with A3,A4,B0,B1 given by
Equation (22).

Since s = O(e) and u = O(e2), we find Kf (s, u) = O(e7) from Equation (25), according to which
the last sub-step iterative scheme of Equation (2) should give rise to an optimal convergence order of
eight with a suitable choice of parameters.

For easier analysis, we further take a2 = b2 = B9 = 0 leading to simplified rational weight
functions with first-order Lf (s) and fifth-order Kf (s, u) below:

Lf (s) = 1 − s
1 − 2 s

,

Kf (s, u) = su[1 + (2 + d1)s + A3s2 + A4s3 + u(A6 + A7s + A8s2)]
1 + d1s + d2s2 + d3s3 + u(

∑4
i=0 Bisi) + u2(B5 + B6s + B7s2 + B8s3)

,
(26)

where A6,A7,A8,B2,B3,B4,B5,B6,B7,B8, d1, d2, d3 ∈ R are 13 free parameters.
Although numerous cases of weight functions satisfying Theorem 2.1 can be constructed, we are

especially interested in special cases for which all of the extraneous fixed points (to be discussed in
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Section 4) of the proposed scheme (2) are purely imaginary. From Equation (35) of Section 4, we
desire the governing equation of the extraneous fixed points to take the form of

H(z) = 1
2(1 + t)

· G(t)
	(t)

, t = z2, (27)

where G(t) = tγ1(1 + t)γ2(1 + 3t)γ3 · g(t) and 	(t) = tσ1(1 + t)σ2(1 + 3t)σ3 · w(t) for γ1, γ2, γ3,
σ1, σ2, σ3 ∈ N. In addition, g(t) andw(t) are polynomials of degree at most 3 and 4, respectively, with
γ1 + γ2 + γ3 = 6, and σ1 + σ2 + σ3 = 4. Observe that G(t) and 	(t) have common factors, which
further simplifies the resulting expressions of H(z). The remaining task is again for us to determine
appropriate parameters of weight functions in such a way that all the roots ofH(z) should be located
on the imaginary axis of the complex plane.

In Section 4, we shall give an extensive investigation with an appropriate selection of free param-
eters leading us to purely imaginary extraneous fixed points. To this end, we will seek feasible
relationships among the free parameters by imposing some constraints on simplifying the numerator
of the resulting expressionG(t) to be described in Equation (36). The following cases are of our main
interest whose values of (γ1, γ2, γ3), (σ1, σ2, σ3) and 10 parametersA6,A7,A8,B2,B3,B4,B5,B6, d1, d2
for each case are discussed in Section 4.

Case AX: (γ1, γ2, γ3) = (1, 2, 3), (σ1, σ2, σ3) = (1, 1, 2), λ = 4 − A8 + 2d3,

A6 = 13 + d3 − 3λ
2

, A7 = −13 − 2d3 + 3λ, A8 = 4 − λ + 2d3,

B2 = 116 − B7 − B8 + 24d3 − 25λ
4

, B3 = −B8
4

− 4d3 − λ

2
,

B4 = 0, B5 = −4 + B7 + B8 + λ

4
, B6 = 8 − 4B7 − 3B8 − 2λ

4
,

d1 = 1 − λ, d2 = −17 − d3 + 5λ
2

.

Case AY: (γ1, γ2, γ3) = (1, 2, 3), (σ1, σ2, σ3) = (1, 2, 1), λ = 56 − 12B2 − 3B7 − 3B8 + 72d3,

A6 = −5 + 2d3
4

+ λ

8
, A7 = 5 − 4d3

2
− λ

4
, A8 = 2d3,

B2 = 2 − B7 − B8 + 24d3
4

+ λ

4
, B3 = −50 − B8 − 16d3

4
+ 3λ

4
, B4 = 0,

B5 = B7
4

+ B8
4
, B6 = −B7 − 3B8

4
, d1 = −13

2
+ λ

4
, d2 = 41 − 2d3

4
− 5λ

8
.

Case AZ: (γ1, γ2, γ3) = (1, 2, 3), (σ1, σ2, σ3) = (2, 1, 1), λ = 3(16 − 9A8 + 18d3),

A6 = 181 + 27d3
54

− 17λ
324

, A7 = −181 − 54d3
27

+ 17λ
162

, A8 = 16 + 18d3
9

− λ

27
,

B2 = 1672 − 27B7 − 27B8 + 648d3
108

− 73λ
324

,

B3 = −B8 + 16d3
4

, B4 = 0, B5 = −16 + 9B7 + 9B8
36

+ λ

108
,

B6 = 32 − 36B7 − 27B8
36

− λ

54
, d1 = −23

27
− 5λ

162
, d2 = −209 − 27d3

54
+ 25λ

324
.
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Case BX: (γ1, γ2, γ3) = (2, 3, 1), (σ1, σ2, σ3) = (1, 1, 2), λ = −A8 + 2d3,

A6 = d3
2

− λ

2
, A7 = −1 − 2d3 + 2λ, A8 = −λ + 2d3,

B2 = 18 − B7 − B8 + 24d3
4

− 19λ
4

, B3 = −B8 − 16d3
4

− λ

2
, B4 = 0,

B5 = 2 + B7 + B8
4

− λ

4
, B6 = −4 − 4B7 − 3B8

4
+ λ

2
, d1 = −2 − λ, d2 = −2 − d3

2
+ 5λ

2
.

Case BY: (γ1, γ2, γ3) = (2, 3, 1), (σ1, σ2, σ3) = (1, 2, 1), λ = −8 − 4B2 − B7 − B8 + 24d3,

A6 = −12 + 12d3 − λ

24
, A7 = 2 − 2d3 + λ

12
, A8 = 2(−1 + d3),

B2 = −8 − B7 − B8 + 24d3 − λ

4
, B3 = −B8

4
− 4d3 − λ

12
,

B4 = 0, B5 = B7 + B8
4

, B6 = −B7 − 3B8
4

, d1 = −3 − λ

12
, d2 = 36 − 12d3 + 5λ

24
.

Case BZ: (γ1, γ2, γ3) = (2, 3, 1), (σ1, σ2, σ3) = (2, 1, 1), λ = 2 − 7A8 + 14d3,

A6 = 2 + 14d3 − λ

28
, A7 = −10

7
− 2d3 + 3λ

14
, A8 = 2 + 14d3 − λ

7
,

B2 = 152 − 7B7 − 7B8 + 168d3 − 13λ
28

, B3 = −B8
4

− 4d3,

B4 = 0, B5 = 16 + 7B7 + 7B8 − λ

28
, B6 = −8

7
− B7 − 3B8

4
+ λ

14
,

d1 = −26 − λ

14
, d2 = −38 − 14d3 + 5λ

28
.

Case CX: (γ1, γ2, γ3) = (1, 3, 2), (σ1, σ2, σ3) = (1, 1, 2), λ = −8 − 7A8 + 14d3,

A6 = −8 + 7d3 − λ

14
, A7 = 8 − 14d3 + λ

7
, A8 = −8 + 14d3 − λ

7
,

B2 = −16 − 7B7 − 7B8 + 168d3 − 9λ
28

, B3 = −B8
4

− 4d3 + λ

2
,

B4 = 0, B5 = 8 + 7B7 + 7B8 + λ

28
, B6 = −B7 + −21B8 − 2(8 + λ)

28
,

d1 = −20 + λ

7
, d2 = 16 − 7d3 − 5λ

14
.

Case CY: (γ1, γ2, γ3) = (1, 3, 2), (σ1, σ2, σ3) = (1, 2, 1), λ = 56 − 4B2 − B7 − B8 + 24d3,

A6 = 2 + d3
2

− λ

24
, A7 = −4 − 2d3 + λ

12
, A8 = 2d3,

B2 = 56 − B7 − B8 + 24d3 − λ

4
, B3 = −B8

4
− 4d3 − λ

12
,

B4 = 0, B5 = B7 + B8
4

, B6 = −B7 − 3B8
4

, d1 = − λ

12
, d2 = −6 − d3

2
+ 5λ

24
.
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Case CZ: (γ1, γ2, γ3) = (1, 3, 2), (σ1, σ2, σ3) = (2, 1, 1), λ = −40 − 49A8 + 98d3,

A6 = 32 + 98d3 − 9λ
196

, A7 = −2d3 + −32 + 9λ
98

, A8 = −40 + 98d3 − λ

49
,

B2 = 704 − 49B7 − 49B8 + 1176d3 − 51λ
196

, B3 = −B8
4

− 4d3,

B4 = 0, B5 = 40 + 49B7 + 49B8 + λ

196
, B6 = −20

49
− B7 − 3B8

4
− λ

98
,

d1 = −5(40 + λ)

98
, d2 = −176 − 98d3 + 25λ

196
.

Case DX: (γ1, γ2, γ3) = (3, 2, 1), (σ1, σ2, σ3) = (1, 1, 2), λ = −A8 + 2d3,

A6 = d3 − 9λ
2

, A7 = −1 − 2d3 + 6λ, A8 = 2d3 − λ,

B2 = 18 − B7 − B8 + 24d3 − 43λ
4

, B3 = −B8
4

− 4d3 − λ

2
, B4 = 0,

B5 = 2 + B7 + B8 + 7λ
4

, B6 = −1 − B7 − 3B8
4

− 7λ
2
, d1 = −2 − λ, d2 = −2 − d3 + 5λ

2
.

Case DY: (γ1, γ2, γ3) = (3, 2, 1), (σ1, σ2, σ3) = (1, 2, 1), λ = A8 − 2(1 + d3),

A6 = 60 + 12d3 + 17λ
24

, A7 = −6 − 2d3 − 23λ
12

, A8 = 2 + 2d3 + λ,

B2 = 56 − B7 − B8 + 24d3 + 15λ
4

, B3 = −B8
4

− 4d3 − λ

12
,

B4 = 0, B5 = B7 + B8
4

, B6 = −B7 − 3B8
4

, d1 = −1 + 5λ
12

, d2 = −84 − 12d3 − 25λ
24

.

Case DZ: (γ1, γ2, γ3) = (3, 2, 1), (σ1, σ2, σ3) = (2, 1, 1), λ = 2 − A8 + 2d3,

A6 = 10 + 2d3 − 5λ
4

, A7 = −6 − 2d3 + 5λ
2
, A8 = 2 + 2d3 − λ,

B2 = 56 − B7 − B8 + 24d3 − 19λ
4

, B3 = −B8
4

− 4d3, B4 = 0,

B5 = B7 + B8 + λ

4
, B6 = −4B7 − 3B8 − 2λ

4
, d1 = −1 − λ

2
, d2 = −14 − 2d3 + 5λ

4
.

Case EX: (γ1, γ2, γ3) = (2, 2, 2), (σ1, σ2, σ3) = (1, 1, 2), λ = −A8 + 2d3,

A6 = 2 + d3 − 3λ
2

, A7 = −2 − 2d3 + 3λ, A8 = 2d3 − λ,

B2 = 24 − B7 − B8 + 24d3 − 25λ
4

, B3 = −B8
4

− 4d3 − λ

2
, B4 = 0,

B5 = B7 + B8 + λ

4
, B6 = −4B7 − 3B8 − 2λ

4
, d1 = −2 − λ, d2 = −2 − d3 + 5λ

2
.
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Case EY: (γ1, γ2, γ3) = (2, 2, 2), (σ1, σ2, σ3) = (1, 2, 1), λ = 24 − 4B2 − B7 − B8 + 24d3,

A6 = 1 + d3
2

− λ

24
, A7 = −2 − 2d3 + λ

12
, A8 = 2d3,

B2 = 24 − B7 − B8 + 24d3 − λ

4
, B3 = −B8

4
− 4d3 − λ

12
, B4 = 0,

B5 = B7 + B8
4

, B6 = −B7 − 3B8
4

, d1 = −2 − λ

12
, d2 = −1 − d3

2
+ 5λ

24
.

Case EZ: (γ1, γ2, γ3) = (2, 2, 2), (σ1, σ2, σ3) = (2, 1, 1), λ = 8 − A8 + 2d3,

A6 = 44 + 2d3 − 5λ
4

, A7 = −22 − 2d3 + 5λ
2
, A8 = 8 + 2d3 − λ,

B2 = 176 − B7 − B8 + 24d3 − 19λ
4

, B3 = −B8
4

− 4d3,

B4 = 0, B5 = −8 + B7 + B8 + λ

4
, B6 = 4 − B7 − 3B8

4
− λ

2
,

d1 = 2 − λ

2
, d2 = −44 − 2d3 + 5λ

4
.

Case FX: (γ1, γ2, γ3) = (1, 4, 1), (σ1, σ2, σ3) = (1, 1, 2), λ = 64 + 25A8 − 50d3,

A6 = −64 + 25d3 + λ

50
, A7 = 19

5
− 2d3 − 2λ

35
, A8 = −64 + 50d3 + λ

25
,

B2 = −343
50

− B7
4

− B8
4

+ 6d3 + 93λ
700

,

B3 = −B8
4

− 4d3 − λ

14
, B4 = 0, B5 = 14 + 175B7 + 175B8 − λ

700
,

B6 = − 1
25

− B7 − 3B8
4

+ λ

350
, d1 = −686 − λ

175
, d2 = 266 − 35d3 + λ

70
.

Case FY: (γ1, γ2, γ3) = (1, 4, 1), (σ1, σ2, σ3) = (1, 2, 1), λ = −18 − 7A8 + 14d3,

A6 = −68 + 28d3 − 3λ
56

, A7 = 26
7

− 2d3 + 5λ
28

, A8 = −18
7

+ 2d3 − λ

7
,

B2 = −184 − 7B7 − 7B8 + 168d3 − 11λ
28

,

B3 = −B8 − 16d3 + λ

4
, B4 = 0, B5 = B7 + B8

4
, B6 = −B7 − 3B8

4
,

d1 = −108 + λ

28
, d2 = 204 − 28d3 − 5λ

56
.

Case FZ: (γ1, γ2, γ3) = (1, 4, 1), (σ1, σ2, σ3) = (2, 1, 1), λ = −338 − 119A8 + 238d3,

A6 = 158 + 238d3 + 23λ
476

, A7 = 404 − 476d3 − 15λ
238

, A8 = −338 + 238d3 − λ

119
,

B2 = 26
119

− B7
4

− B8
4

+ 6d3 + 101λ
476

,

B3 = −B8
4

− 4d3, B4 = 0, B5 = −32 + 17B7 + 17B8 − λ

68
, B6 = 64 − 68B7 − 51B8 + 2λ

68
,

d1 = −566 + 11λ
238

, d2 = −26 − 238d3 − 55λ
476

.



2184 M. S. RHEE ET AL.

4. Extraneous fixed points and their dynamics

We in this section will devote ourselves to investigating the extraneous fixed points [42] of iterative
map (2) and relevant dynamics associated with their basins of attraction. The dynamics underlying
basins of attraction was initiated by Stewart [39] and followed by works of Amat et al., e.g. [2,3],
Andreu et al. [4], Argyros-Magreñan [5], Chun et al. [12], Chicharro et al. [8], Chun-Neta [10],
Cordero et al. [15], Geum et al. [19,20], Magreñan [27,28], Neta et al. [30–32] and Scott et al. [35].

We usually locate a zero α of a nonlinear equation f (x) = 0 by means of a fixed point ξ of iterative
methods of the form

xn+1 = Rf (xn), n = 0, 1, . . . , (28)

whereRf is the iteration function under consideration. In general,Rf might possess other fixed points
ξ �= α. Such fixed points are called the extraneous fixed points of the iteration function Rf . It is well
known that extraneous fixed points may result in attractive, indifferent or repulsive cycles as well as
other periodic orbits influencing the dynamics underlying the basins of attraction. Exploration of
such dynamics as well as discovery of its complicated behaviour gives us a valuable motivation of the
current analysis. In connection with proposed family of methods (2), we obtain a more specific form
of iterative map (28) as follows:

xn+1 = Rf (xn) = xn − f (xn)
f ′(xn)

Hf (xn), (29)

where Hf (xn) = Lf (s) + Kf (s, u) can be regarded as a weight function of the classical Newton’s
method. It is obvious that α is a fixed point of Rf . The points ξ �= α for which Hf (ξ) = 0 are
extraneous fixed points of Rf .

For ease of analysis of the relevant dynamics, we restrict ourselves to considering only combina-
tions of weight functions Lf (s) and Kf (s, u) in the form of univariate and bivariate rational functions
as described by Equation (21). A special attention will be paid to some selected cases to be shown
later in this section in order to pursue further properties of their extraneous fixed points and relevant
dynamics associated with their basins of attraction. The existence of such extraneous fixed points
would affect the global iteration dynamics, which was demonstrated for simple zeros via König func-
tions and Schröder functions [42] applied to a family of functions {fk(x) = xk − 1, k ≥ 2} according
to the joint work of Vrscay and Gilbert [42] published in 1988. Especially, the presence of attractive
cycles induced by the extraneous fixed points ofRf may alter the basins of attraction due to the trapped
sequence {xn}. Even in the case of repulsive or indifferent fixed points, an initial value x0 chosen near
a desired root may converge to another unwanted remote root. Indeed, these aspects of the Schröder
functions were observed in an application to the same family of functions {fk(x) = xk − 1, k ≥ 2}.

For simplified dynamics related to the extraneous fixed points underlying the basins of attraction
for iterative maps (29), we first choose a simple quadratic polynomial from the family of functions
{fk(x) = xk − 1, k ≥ 2}. By closely following the works of Chun et al. [9,13] andNeta et al. [29,30,32],
we then construct Hf (xn) = Lf (s) + Kf (s, u) in Equation (29). We now apply a prototype quadratic
polynomial f (z) = (z2 − 1) to Hf (xn) and construct H(z), with a change of a variable t = z2, in the
form of

H(z) = N (t)
D(t)

, (30)

where bothD(t) andN (t) are polynomial functions of twith no common factors. SinceH is a rational
function, it would be preferable for us to deal with the underlying dynamics of iterative map (29) on
the Riemann sphere [6] where points ‘0 (zero)’ and ‘∞’ can be treated as the desired extraneous fixed
points. If such points arise, we are interested in only the finite extraneous fixed point 0 under which
the relevant dynamics can be described in a region containing the origin by investigating the attractor
basins associated with iterative map (29).
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Indeed, the extraneous fixed points ξ of Rf in Equation (29) can be found from the roots t ofH(z)
with z = t1/2 via relation below:

ξ =
{
t1/2 if t �= 0,
0(double root) if t = 0.

(31)

4.1. Purely imaginary extraneous fixed points

We now pay a special attention to the dynamics underlying purely imaginary extraneous fixed points
of iterative map (29). One should be aware that the boundary of two basins of attraction of two roots
for the prototype quadratic polynomial f (z) = z2 − 1 is the imaginary axis of the complex plane.
Hence, it is worth to explore how the extraneous fixed points on the imaginary axis influence the
dynamical behaviour of iterative map (29). It is our important task to find a possible combination of
Lf andKf leading to purely imaginary extraneous fixed points, whose investigationwas done by Chun
et al. [13]. As a preliminary task, we first describe the following lemma regarding the negative real
roots of a quadratic equation, which would play a role in determining the desired purely imaginary
extraneous fixed points in connection with the prototype quadratic polynomial f (z) = z2 − 1.

As a preliminary task, we first describe the following lemma regarding the negative real roots of a
cubic equation for later use in characterizing the cubic g(t) described by Equation (39).

Lemma 4.1: Let q(x) = ax3 + bx2 + cx + d be a cubic equation with real coefficients a �= 0, b,c,d sat-
isfyingD ≥ 0,whereD = 18abcd + b2c2 − 4b3d − a(4c3 + 27ad2). Let r1, r2 and r3 be the three roots
of q(x) = 0. Then all three roots r1 < 0, r2 < 0 and r3 < 0 hold if and only if all four coefficients a,b,c,d
have the same sign.

Proof: In view of the elementary theory of a cubic equation [38,41], the hypothesis D ≥ 0 guaran-
tees that all the roots of q(x) = 0 are real. Suppose that r1 < 0, r2 < 0 and r3 < 0. Then via Vieta’s
formula we find −b/a = r1 + r2 + r3 < 0 and c/a = r1r2 + r2r3 + r3r1 > 0 and −d/a = r1r2r3 <

0. We easily obtain ab> 0, ac> 0 and ad> 0. Hence, all four coefficients a,b,c,d have the same
sign. Conversely, we first suppose that all four coefficients a, b, c, d have the same sign, yielding
ab> 0, ac > 0 and ad> 0. ThenVieta’s formula again yields three relations−b/a = r1 + r2 + r3 < 0,
c/a = r1r2 + r2r3 + r3r1 > 0 and −d/a = r1r2r3 < 0. Substituting r3 = (1/r1r2)(−d/a) from the
last relation, we have the two remaining relations below:

r1 + r2 + 1
r1r2

(
−d
a

)
< 0,

r1r2 + r1 + r2
r1r2

(
−d
a

)
> 0.

(32)

If r1 + r2 > 0 held true, then the first relation of Equation (32)multiplied by the negative real number
‘−(r1 + r2)’ would give −(r1 + r2)2 − ((r1 + r2)/r1r2)(−d/a) > 0. Adding this to the second rela-
tion of Equation (32), we obtain −(r1 + r2)2 + r1r2 > 0. Adding (r1 + r2)2 ≥ 4r1r2, we find r1r2 ≤ 0
giving r1 + r2 + (1/r1r2)(−d/a) > 0, which contradicts the first relation of Equation (32). Hence,
r1 + r2 ≤ 0 must hold. If r1 + r2 = 0 held true, then it would give r1r2 = −r21 > 0 contradictory to
the fact that −r21 ≤ 0. Therefore, we must have r1 + r2 < 0, which yields r1r2 > 0 from the second
relation of Equation (32). Consequently, r1 < 0 and r2 < 0. Furthermore, r3 = (1/r1r2)(−d/a) < 0.
This completes the proof. �

Remark 4.1: The proof of the converse of the above theorem can be made alternatively by the use of
Descartes’ Rule of Signs [41]. The number of sign variations in the sequence of coefficients of q(x) is
found to be exactly zero. By virtue of Descartes’ Rule of Signs, q(x) has no positive real roots, i.e. all
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its roots are non-positive. Since d has the same sign as a �= 0, it gives nonzero roots of q(x), implying
that all the roots are negative.

To begin the detailed study regarding the purely imaginary extraneous fixed points, we nowemploy
weight function Lf in (26) applied to f (z) = (z2 − 1):

s = 1
4

(
1 − 1

z2

)
,

Lf = 1
2

(
3z2 + 1
z2 + 1

)
.

(33)

Besides, we are able to express Kf in terms of z and free parameters A6,A7,A8,B2,B3,B4,B5,B6,B7,
B8, d1, d2, d3 with the use of

u = 1
4

· (z2 − 1)2

(z2 + 1)2
. (34)

Although such lengthy expression of Kf is not explicitly shown here, the simplified second-order
form of Lf will greatly reduce the complexity of Kf as well as the desired Hf = Lf + Kf given by
Equation (30). As a result, the explicit form of the relevant H(z) given by Equation (30) becomes

H(z) = 1
2(1 + t)

· G(t;β0,β1, . . . ,β9)

	(t;ω0,ω1, . . . ,ω8)
, (35)

where G(t;β0,β1, . . . ,β9) and 	(t;ω0,ω1, . . . ,ω8) are concisely denoted by G(t) and 	(t), respec-
tively, as below:

G(t) =
9∑

i=0
βiti, (36)

with β0 = 24 + B4 + 10d1 + 4d2 + 2d3, β1 = −112 − 2A8 − 4B3 − B4 − B8 − 46d1 − 20d2 −
22d3, β2 = 4(36 + 2A7 + 3A8 + 4B2 − 2B4 + B7 + B8 + 16d1 + 20d2 − 16d3), β3 = 4(52 + 24
A6 − 26A7 − 7A8 + 4B2 + 8B3 + 4B4 − 4B6 − 3B7 − 28d1 + 92d2 + 4d3)t3, β4 = 2(224 + 320
A6 − 28A7 + 14A8 − 56B2 − 16B3 + B4 + 32B5 + 16B6 − 6B7 − 14B8 − 830d1 + 124d2 + 90d3),
β5 = −2(−3096 + 16A6 − 140A7 − 8B2 + 20B3 + 13B4 + 32B5 − 40B6 − 50B7 − 35B8 + 1550
d1 + 236d2 − 42d3), β6 = −4(−4764 + 256A6 − 54A7 + 7A8 − 44B2 − 16B3 − 4B4 + 96B5 +
80B6 + 45B7 + 21B8 + 252d1 + 188d2 + 44d3), β7 = −4(−6076 + 120A6 + 94A7 − 7A8 + 20
B2 − 2B4 − 224B5 − 100B6 − 39B7 − 14B8 − 656d1 + 20d2 + 32d3), β8 = 13, 096 + 384A6 − 168
A7 − 12A8 − 80B2 − 32B3 − 11B4 − 704B5 − 224B6 − 68B7 − 20B8 + 2594d1 + 420d2 + 58d3,
β9 = 2176 + 416A6 + 200A7 + 2A8 + 48B2 + 12B3 + 3B4 + 192B5 + 48B6 + 12B7 + 3B8 + 634
d1 + 204d2 + 50d3, and

	(t) =
8∑

i=0
ωiti, (37)

with ω0 = B4, ω1 = −4B3 − 4B4 − B8 − 16d3, ω2 = 16B2 + 12B3 + 4B4 + 4B7 + 7B8 + 64d2 −
16d3, ω3 = 128 + 128A6 − 64A7 − 32B2 − 4B3 + 4B4 − 16B6 − 24B7 − 21B8 − 192d1 + 128d2 +
48d3, ω4 = 640 + 128A6 + 64A7 − 16B2 − 20B3 − 10B4 + 64B5 + 80B6 + 60B7 + 35B8 − 832
d1 − 64d2 + 48d3, ω5 = 3840 − 256A6 + 128A7 + 64B2 + 20B3 + 4B4 − 256B5 − 160B6 − 80
B7 − 35B8 − 640d1 − 256d2 − 48d3, ω6 = 6912 − 256A6 − 128A7 − 16B2 + 4B3 + 4B4 + 384
B5 + 160B6 + 60B7 + 21B8 + 640d1 − 64d2 − 48d3, ω7 = 4224 + 128A6 − 64A7 − 32B2 − 12
B3 − 4B4 − 256B5 − 80B6 − 24B7 − 7B8 + 832d1 + 128d2 + 16d3, ω8 = 640 + 128A6 + 64A7 +
16B2 + 4B3 + B4 + 64B5 + 16B6 + 4B7 + B8 + 192d1 + 64d2 + 16d3.
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Note that the weight function Lf (z) = 1
2 ((1 + 3t)/(1 + t)) with t = z2 contains two factors (1 +

3t) and (1 + t). Hence we naturally consider a special case ofH(z) in the form of a simplified rational
function possibly with such two factors. To this end, we construct

Hf = Lf + Kf = 1
2(1 + t)

G(t)
	(t)

, (38)

where G(t) and 	(t) may involve some of such factors in addition to a factor t corresponding to the
origin (considered as purely imaginary) of the complex plane, as shown below:

G(t) = tγ1(1 + t)γ2(1 + 3t)γ3 · g(t) for γ1, γ2, γ3 ∈ N, γ1 + γ2 + γ3 = 6,

	(t) = tσ1(1 + t)σ2(1 + 3t)σ3 · w(t) for σ1, σ2, σ3 ∈ N, σ1 + σ2 + σ3 = 4,
(39)

where g(t) and w(t) are polynomials of degree at most 3 and 4, respectively. The expression of H(z)
in Equation (35) will be further simplified as follows:

H(z) = 1
2

· tγ1−σ1(1 + t)γ2−σ2−1(1 + 3t)γ3−σ3 · g(t)
w(t)

with t = z2. (40)

If we further restrict with γ2 ≥ 2, then all possible combinations of (γ1, γ2, γ3) are listed by
{(1, 2, 3), (2, 3, 1), (1, 3, 2), (3, 2, 1), (2, 2, 2), (1, 4, 1)}. Since all possible combinations of (σ1, σ2, σ3)
are listed by {(1, 1, 2), (1, 2, 1), (2, 1, 1)}, we are able to construct 18 different combinations of G(t)
and 	(t).

For systematic numbering of all possible 18 cases, we assign not only six letters A, B, C, D, E, F to
the six triplets of (γ1, γ2, γ3) listed by {(1, 2, 3), (2, 3, 1), (1, 3, 2), (3, 2, 1), (2, 2, 2), (1, 4, 1)} in order,
but also three letters X, Y, Z to the three triplets of (σ1, σ2, σ3) listed by {(1, 1, 2), (1, 2, 1), (2, 1, 1)}
in order. Hence, combining two letters covers all possible 18 cases. Consequently, Cases
AX, AY, . . . , FZ shall denote the respective cases when (γ1, γ2, γ3, σ1, σ2, σ3) = (1, 2, 3, 1, 1, 2),
(γ1, γ2, γ3, σ1, σ2, σ3) = (1, 2, 3, 1, 2, 1), . . . , (γ1, γ2, γ3, σ1, σ2, σ3) = (1, 4, 1, 2, 1, 1).

In order to obtain purely imaginary extraneous fixed points, we further require that all the roots
of g(t) should be negative. Let g(t) = q0 + q1t + q2t2 + q3t3 and w(t) = p0 + p1t + p2t2 + p3t3 +
p4t4. Then, the roots of g(t) = 0 would contribute to the desired extraneous fixed points. In view of
the fact that γ1 + γ2 + γ3 = 6 and σ1 + σ2 + σ3 = 4, the forms of Equation (39) would require a set
of six constraints

0 = G(0) = G′(0) = · · ·G(γ1−1)(0) = G(−1) = G′(−1) = · · ·G(γ2−1)(−1) = G(− 1
3 )

= G′(− 1
3 ) = · · ·G(γ3−1)(− 1

3 ) (41)

and additionally a set of four constraints

0 = 	(0) = 	′(0) = · · · 	(σ1−1)(0) = 	(−1) = 	′(−1) = · · · 	(σ2−1)(−1) = 	(− 1
3 )

= 	′(− 1
3 ) = · · · 	(σ3−1)(− 1

3 ). (42)

Since G(−1) = −256(8B5 + 4B6 + 2B7 + B8),	(−1) = 128(8B5 + 4B6 + 2B7 + B8), we find that
G(−1) = −2	(−1), from which G(−1) = 0 implies 	(−1) = 0. Consequently, the above 10 con-
straints reduce to 9 constraints. For the fourCasesAY,BY,CY, EY, we can solve these nine constraints
for nine parameters A6,A7,A8,B3,B4, B5,B6, d1, d2 in terms of at most 4 remaining parameters
B2,B7,B8, d3. For remaining 12 cases, we can solve the corresponding 9 constraints for 9 parame-
ters A6,A7,B2,B3,B4,B5,B6, d1, d2 in terms of at most 4 remaining parameters A8,B7,B8, d3. Due
to the fact that σ1 ≥ 1, we immediately find that B4 = 0 from the first equation 	(0) = 0 = B4 of
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Equation (42). If we substitute these nine parameters back into G(t) and 	(t) in Equation (39), the
explicit forms of g(t) and w(t) with their coefficients in terms of at most four remaining parame-
ters A8(or B2),B7,B8, d3 for a given combination of (γ1, γ2, γ3) and (σ1, σ2, σ3). If a new parameter λ

is conveniently introduced as an appropriate affine combination of d3,A8(or B2),B7,B8, then all 18
Cases AX, AY, . . . , FZ, 10 parameters A6,A7,A8,B2,B3,B4, B5,B6, d1, d2 can be expressed in terms
of four parameters d3,B7,B8, λ. After a tedious algebra, the resulting parameters for all 18 cases are
already described at the end of Section 3.

The following proposition is useful in the analysis of proposed family of methods (2) in both
computational and dynamics aspects.

Proposition 4.2: For each case, all coefficients of g(t) and w(t) can be expressed as an affine
combination of λ.

Proof: Since one proof is similar to another, it suffices to consider a typical case AX with
(γ1, γ2, γ3) = (1, 2, 3), (σ1, σ2, σ3) = (1, 1, 2) and λ = 4 − A8 + 2d3. Solving the 9 constraints for
(γ1, γ2, γ3) = (1, 2, 3) and (σ1, σ2, σ3) = (1, 1, 2), we find that A6 = 1

2 (1 + 3A8 − 5d3), A7 = −1 −
3A8 + 4d3, B2 = 1

4 (16 + 25A8 − B7 − B8 − 26d3), B3 = −2 + A8/2 − B8/4 − 5d3, B4 = 0, B5 =
1
4 (−A8 + B7 + B8 + 2d3), B6 = 1

4 (2A8 − 4B7 − 3B8 − 4d3), d1 = −3 + A8 − 2d3, d2 = 1
2 (3 −

5A8 + 9d3). Substituting such nine coefficients into G(t) and 	(t), we find

g(t) = 4[(7 + 4A8 − 8d3)t3 + (35 + 8A8 − 16d3)t2 − 3(−7 + 4A8 − 8d3)t + 1]

w(t) = 2[(12 + 7A8 − 14d3)t4 + t3(88 + 28A8 − 56d3) − 14(A8 − 2(4 + d3))t2

− 20(A8 − 2(1 + d3))t + 4 − A8 + 2d3].

Applying A8 = 4 − λ + 2d3 to the above equations yields:

g(t) = −4[t3(4λ − 23) + t2(8λ − 67) − 3t(4λ − 9) − 1]

w(t) = 2[t4(40 − 7λ) − 4t3(7λ − 50) + 14t2(4 + λ) + 20t(λ − 2) + λ],

completing the proof. �

Remark 4.3: If we expressw(t) at t= 0 as a scalarmultiple ofλ, i.e.w(0) = hλ, h ∈ R, then each of the
remaining cases shows that all coefficients of g(t) and w(t) can be expressed as an affine combination
of λ. Each selection of λ is shown at the end of Section 3. Special λ-values for interesting forms of
H(z) are listed in Table 1.

We are further interested in possible extraneous fixed points from the roots of the cubic equation
denoted by

g(t) = q0 + q1t + q2t2 + q3t3 (43)

with qi = qi(λ), (0 ≤ i ≤ 3). The discriminant D of g(t) can be expressed in terms of parameter λ.
We denote a set

D = {λ ∈ R : D ≥ 0}. (44)

We further denote a set

B = {λ ∈ R : q3q2 > 0 and q3q1 > 0 and q3q0 > 0} (45)
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Table 1. H(z) and λ for the selected values of γ = (γ1, γ2, γ3) and σ = (σ1, σ2, σ3).

Case γ σ
g(t)

w(t)
λ H(z), t = z2

AX1 (1, 1, 2)
2[−1 − 3t(−9 + 4λ) + t2(−67 + 8λ) + t3(−23 + 4λ)]

λ + 20t(−2 + λ) + 14t2(4 + λ) + ν3t3 + ν4t4
,

13

3

(1 + 3t)(3 + 75t + 97t2 + 17t3)

13 + 140t + 350t2 + 236t3 + 29t4

AX2 ν3 = 4(50 − 7λ), ν4 = 40 − 7λ 4
(1 + 21t + 35t2 + 7t3)

4(1 + t)(1 + 6t + t2)

AX6 5
(1 + 3t)(1 + 33t + 27t2 + 3t3)

(5 + 10t + t2)(1 + 10t + 5t2)

AY4 (1, 2, 3) (1, 2, 1)
2[λ − 2 + t(86 + 5λ) − 5t2(−50 + λ) + t3(50 − λ)]

λ + 4t(16 + λ) + 2

3
t2(448 + 13λ) + ν3t3 + ν4t4

, 12
4(1 + 3t)2(1 + 17t + 25t2 + 5t3)

(1 + t)(15 + 156t + 578t2 + 684t3 + 103t4)

AY5 ν3 = 12(48 − λ), ν4 = 1

3
(256 − 5λ) 16

8t(1 + 3t)2(2 + 5t + t2)

(1 + t)(1 + 36t + 158t2 + 276t3 + 41t4)

AY6 20
8t(1 + 3t)2(2 + 5t + t2)

(1 + t)(1 + 36t + 158t2 + 276t3 + 41t4)

BX1 (1, 1, 2)
32(1 + 6t + t2)(t(−4 + λ) − λ)

(1 + 33t + 27t2 + 3t3)(t(−4 + λ) − λ)
0

16t(1 + t)(1 + 6t + t2)

(1 + 3t)(1 + 33t + 27t2 + 3t3)

BX6 = 32(1 + 6t + t2)

1 + 33t + 27t2 + 3t3
2

16t(1 + t)(1 + 6t + t2)

(1 + 3t)(1 + 33t + 27t2 + 3t3)

BY6 (2, 3, 1) (1, 2, 1)
32[t3(28 − 3λ) + 7t2(20 − λ) + 7t(12 + λ) + 3λ + 4]

ν4t4 + ν3t3 + 14t2(32 + λ) + 4t(16 + 5λ) + λ
, 24

2t(7 + 35t + 21t2 + t3)

1 + 28t + 70t2 + 28t3 + t4

ν4 = 64 − 7λ, ν3 = 28(16 − λ)

BZ5 (2, 1, 1)
4[t3(228 + λ) + t2(1396 + 13λ) − t(13λ − 172) − λ − 4]

1

7
t4(256 + λ) + 4

7
t3(608 + 5λ) + ν2t2 + ν1t − λ

, 16
1 + 21t + 35t2 + 7t3

4(1 + t)(1 + 6t + t2)

ν1 = 4(32 − λ), ν2 = 2(256 + λ)

CX4 (1, 1, 2)
4[t3(57 + λ) + t2(349 + 13λ) − t(13λ − 43) − λ − 1]

−λ + 4t(8 − λ) + 2t2(64 + λ) + ν3t3 + ν4t4
−8

1 + 21t + 35t2 + 7t3)

4(1 + t)(1 + 6t + t2)

ν3 = 4

7
(152 + 5λ), ν4 = 1

7
(64 + λ)

CY1 (1, 3, 2) (1, 2, 1)
−8[t3(69 − λ) + t2(201 − 2λ) + 3t(−27 + λ) + 3]

λ + 20t(−24 + λ) + 14t2(48 + λ) + ν3t3 + ν4t4
, 56

(1 + 3t)(3 + 87t + 89t2 + 13t3)

2(7 + 80t + 182t2 + 104t3 + 11t4)

CY2 ν3 = 4(600 − 7λ), ν4 = 480 − 7λ 40
(1 + 3t)(3 + 39t + 121t2 + 29t3)

2(5 + 40t + 154t2 + 160t3 + 25t4)

CY6 60
(1 + 3t)(1 + 33t + 27t2 + 3t3)

(5 + 10t + t2)(1 + 10t + 5t2)

DX2 (1, 1, 2)
64[t3(2 − 3λ) + t2(14 − 3λ) + 7t(2 + λ) − λ + 2]

ν4t4 + ν3t3 + 2t2(66 + 37λ) + t(4 − 16λ) + λ
− 2

7

64t2(4 + 21t + 26t2 + 5t3)

(1 + t)(1 + 3t)(−1 + 31t + 357t2 + 61t3)
ν4 = (12 − 19λ), ν3 = (108 − 40λ)

DY7 (3, 2, 1) (1, 2, 1)
16[3t3(28 + 3λ) + t2(420 + 37λ) − 21t(λ − 12) + 12 − 25λ]

λ − 28tλ + t2(384 − 226λ) + ν3t3 + ν4t4
−4

32t2(7 + 14t + 3t2)

−1 + 28t + 322t2 + 364t3 + 55t4

DY9 ν3 = 4(576 + 53λ), ν4 = 384 + 41λ 0
1 + 21t + 35t2 + 7t3

4(1 + t)(1 + 6t + t2)

EX2 (1, 1, 2)
8[t3(7 − 3λ) − 7t2(−5 + λ) + 7t(3 + λ) + 3λ + 1]

ν4t4 + ν3t3 + 14t2(8 + λ) + 4t(4 + 5λ) + λ

2

3

2t(9 + 77t + 91t2 + 15t3)

1 + 44t + 182t2 + 140t3 + 17t4

EX6 ν4 = 16 − 7λ, ν3 = 28(4 − λ) 0
1 + 21t + 35t2 + 7t3

4(1 + t)(1 + 6t + t2)

EY6 (2, 2, 2) (1, 2, 1)
8[t3(42 − λ) − 3t2(−70 + λ) + 3(2 + λ) + t(126 + λ)]

λ + 4t(24 + 5λ) + 2t2(432 + 7λ) + ν3t3 + ν4t4
, 2

8t(1 + 3t)(3 + 5t)(1 + 9t + 2t2)

(1 + t)(1 + 68t + 446t2 + 884t3 + 137t4)
ν3 = 4(456 − 7λ), ν4 = 288 − 7λ

EZ1 (2, 1, 1)
4[t3(23 − 2λ) + t2(67 − 4λ) + 3t(−9 + 2λ) + 1]

λ + 20t(−4 + λ) + 14t2(8 + λ) + ν3t3 + ν4t4
,

44

5

(1 + 3t)(5 + 129t + 159t2 + 27t3)

2(11 + 120t + 294t2 + 192t3 + 23t4)

EZ7 ν3 = 400 − 28λ, ν4 = 80 − 7λ 10
(1 + 3t)(1 + 33t + 27t2 + 3t3)

(5 + 10t + t2)(1 + 10t + 5t2)

FY4 (1, 4, 1) (1, 2, 1)
4[t3(228 + λ) + t2(1396 + 13λ) − t(13λ − 172) − λ − 4]

−λ + 4t(32 − λ) + 2t2(256 + λ) + ν3t3 + ν4t4
, −46

2(1 + t)(3 + t)(1 + 18t + 13t2)

23 + 156t + 210t2 + 108t3 + 15t4

FY5 ν3 = 4

7
(608 + 5λ), ν4 = 1

7
(256 + λ) −32

1 + 21t + 35t2 + 7t3

4(1 + t)(1 + 6t + t2)

FY6 −18
2(1 + t)(1 + 3t)(1 + 26t + 5t2)

9 + 100t + 238t2 + 148t3 + 17t4
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whose elements make all four coefficients q0, q1, q2, q3 have the same sign.We now use Lemma 4.1 to
locate all three negative roots of g(t) = 0 for purely imaginary extraneous fixed points. After a lengthy
algebraic process, we are able to find the desired sets D, B and D ∩B containing λ-values for which
purely imaginary extraneous fixed points can be located.

One should note that extraneous fixed point zeros ξ = 0 (being considered as purely imaginary)
may be found on the boundary of B. Let B̄ denote the closure of B. According to interesting val-
ues of λ ∈ D ∩ B̄, we classify the sub-cases of each case from Cases AX, AY, . . . , FZ by appending
sequential arabic numerals such as Cases AX1, AX2, . . . , FX2, . . . .

Presented below are values of (γ1, γ2, γ3), (σ1, σ2, σ3), λ, g(t),D,B andD ∩ B for each case under
consideration.

Case AX: (γ1, γ2, γ3) = (1, 2, 3), (σ1, σ2, σ3) = (1, 1, 2), λ = 4 − A8 + 2d3.

(1) g(t) = 4 [t3(−23 + 4λ) + t2(−67 + 8λ) − 3t(−9 + 4λ) − 1].
(2) D = {λ : λ ≤ 0.938575 or λ ≥ 3.29184}, B = {λ : 2.25 < λ < 5.75}.
(3) D ∩ B = {λ : 3.29184 ≤ λ < 5.75}.

The seven sub-cases AX1–AX7 are identified with λ ∈ { 133 , 4, 175 , 11625 , 72 , 5, 234 } in order.
Case AY: (γ1, γ2, γ3) = (1, 2, 3), (σ1, σ2, σ3) = (1, 2, 1), λ = 56 − 12B2 − 3B7 − 3B8 + 72d3.

(1) g(t) = 2 [t3(50 − λ) − 5t2(−50 + λ) + t(86 + 5λ) + λ − 2].
(2) D = {λ : λ ≤ 20.8093 or λ ≥ 50}, B = {λ : 2 < λ < 50}.
(3) D ∩ B = {λ : 2 < λ ≤ 20.8093}.

The six sub-cases AY1–AY6 are identified with λ ∈ {2, 4, 8, 12, 16, 20} in order.
Case AZ: (γ1, γ2, γ3) = (1, 2, 3), (σ1, σ2, σ3) = (2, 1, 1), λ = 3(16 − 9A8 + 18d3).

(1) g(t) = 4
81 [t

3(1203 − 11λ) + t2(4287 − 19λ) + t(−327 + 31λ) + 21 − λ].
(2) D = {λ : λ ≤ −16.6790 or λ ≥ 17.7879}, B = {λ : 10.5484 < λ < 21}.
(3) D ∩ B = {λ : 17.7879 ≤ λ < 21}.

The two sub-cases AZ1, AZ2 are identified with λ ∈ {18, 21} in order.
Case BX: (γ1, γ2, γ3) = (2, 3, 1), (σ1, σ2, σ3) = (1, 1, 2), λ = −A8 + 2d3.

(1) g(t) = −64 (1 + 6t + t2)(t(λ − 4) − λ).
(2) D = R, B = {λ : 0 < λ < 4}.
(3) D ∩ B = {λ : 0 < λ < 4}.

The eight sub-cases BX1–BX8 are identified with λ ∈ {0, 12 , 3638 , 25 , 1, 2, 3, 4} in order.
Case BY: (γ1, γ2, γ3) = (2, 3, 1), (σ1, σ2, σ3) = (1, 2, 1), λ = −8 − 4B2 − B7 − B8 + 24d3.

(1) g(t) = − 8
3 [3t

3(−28 + λ) + 7t2(−60 + λ) − 7t(36 + λ) − 3(4 + λ)].
(2) D = R, B = {λ : −4 < λ < 28}.
(3) D ∩ B = {λ : −4 < λ < 28}.

The seven sub-cases BY1–BY7 are identified with λ ∈ {−4, 0, 4, 6, 12, 24, 28} in order.
Case BZ: (γ1, γ2, γ3) = (2, 3, 1), (σ1, σ2, σ3) = (2, 1, 1), λ = 2 − 7A8 + 14d3.

(1) g(t) = 16
7 [t3(114 − λ) + t2(698 − 13λ) + t(86 + 13λ) + λ − 2].

(2) D = {λ : λ ≤ 24.7402 or λ ≥ 83.0709}, B = {λ : 2 < λ < 698
13 }.

(3) D ∩ B = {λ : 2 ≤ λ ≤ 24.7402}.
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The six sub-cases BZ1–BZ6 are identified with λ ∈ {2, 203 , 385 , 15213 , 16, 24} in order.
Case CX: (γ1, γ2, γ3) = (1, 3, 2), (σ1, σ2, σ3) = (1, 1, 2), λ = −8 − 7A8 + 14d3.

(1) g(t) = − 8
7 [t

3(−57 − λ) + t2(−349 − 13λ) + t(−43 + 13λ]) + λ + 1].
(2) D = {λ : λ ≤ −41.5354 or λ ≥ −12.3701}, B = {λ : −26.8462 < λ < −1}.
(3) D ∩ B = {λ : −12.3701 ≤ λ < −1}.

The seven sub-cases CX1–CX7 are identified with λ ∈ {− 16
9 ,−12,− 23

2 ,−8,− 9
2 ,

− 7
2 ,−1} in order.
Case CY: (γ1, γ2, γ3) = (1, 3, 2), (σ1, σ2, σ3) = (1, 2, 1), λ = 56 − 4B2 − B7 − B8 + 24d3.

(1) g(t) = 8
3 [t

3(69 − λ) + t2(201 − 2λ) + 3t(−27 + λ) + 3].
(2) D = {λ : λ ≤ 11.2629 or λ ≥ 39.5021}, B = {λ : 27 < λ < 69}.
(3) D ∩ B = {λ : 39.5021 ≤ λ < 69}.

The seven sub-cases CY1–CY7 are identified with λ ∈ {56, 40, 42, 48, 54, 60, 69} in order.
Case CZ: (γ1, γ2, γ3) = (1, 3, 2), (σ1, σ2, σ3) = (2, 1, 1), λ = −40 − 49A8 + 98d3.

(1) g(t) = 8
49 [t

3(607 − 13λ) + t2(2683 − 15λ) + t(−163 + 29λ) − λ + 9].
(2) D = {λ : λ ≤ −11.0311 or λ ≥ 8.37459}, B = {λ : 5.62069 < λ < 9}.
(3) D ∩ B = {λ : 8.37459 ≤ λ < 9}.

The two sub-cases CZ1, CZ2 are identified with λ ∈ { 172 , 9} in order.
Case DX: (γ1, γ2, γ3) = (3, 2, 1), (σ1, σ2, σ3) = (1, 1, 2), λ = −8 − 7A8 + 14d3.

(1) g(t) = 128 [t3(2 − 3λ) + t2(14 − 3λ) + 7t(2 + λ) − λ + 2].
(2) D = {λ : λ ≤ −8.82797 or λ ≥ −0.367756}, B = {λ : −2 < λ < 2

3 }.
(3) D ∩ B = {λ : −0.367756 ≤ λ < 2

3 }.

The seven sub-casesDX1–DX7 are identified with λ ∈ { 16 ,− 2
7 ,

2
5 ,

18
43 ,− 1

3 , 0,
2
3 } in order.

Case DY: (γ1, γ2, γ3) = (3, 2, 1), (σ1, σ2, σ3) = (1, 2, 1), λ = A8 − 2(1 + d3).

(1) g(t) = 16
3 [3t3(28 + 3λ) + t2(420 + 37λ) − 21t(−12 + λ) + 12 − 25λ].

(2) D = {λ : λ ≤ −8.64561 or λ ≥ −6}, B = {λ : − 28
3 < λ < 0.48}.

(3) D ∩ B = {λ : − 28
3 < λ ≤ −8.64561 or − 6 ≤ λ < 0.4869}.

The nine sub-cases DY1–DY9 are identified with λ ∈ {− 24
17 ,− 56

15 ,− 84
25 ,− 28

3 ,−9,−6,
−4,−2, 0} in order.

Case DZ: (γ1, γ2, γ3) = (3, 2, 1), (σ1, σ2, σ3) = (2, 1, 1), λ = 2 − A8 + 2d3.

(1) g(t) = 32 [t3(14 − 3λ) − 7t2(−10 + λ) + 7t(6 + λ]) + 3λ + 29].
(2) D = R, B = {λ : − 2

3 < λ < 14
3 }.

(3) D ∩ B = {λ : − 2
3 < λ < 14

3 }.

The nine sub-cases DZ1–DZ9 are identified with λ ∈ { 125 , 5619 , 145 ,− 2
3 , 0, 1, 2, 4,

14
3 }

in order.
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Case EX: (γ1, γ2, γ3) = (2, 2, 2), (σ1, σ2, σ3) = (1, 1, 2), λ = −A8 + 2d3.

(1) g(t) = 16 [t3(7 − 3λ) − 7t2(−5 + λ) + 7t(3 + λ) + 3λ + 1].
(2) D = R, B = {λ : − 1

3 < λ < 7
3 }.

(3) D ∩ B = {λ : − 1
3 < λ < 7

3 }.

The eight sub-cases EX1–EX8 are identified with λ ∈ { 16 , 23 , 2425 , 25 ,− 1
3 , 0, 1,

7
3 } in order.

Case EY: (γ1, γ2, γ3) = (2, 2, 2), (σ1, σ2, σ3) = (1, 2, 1), λ = 24 − 4B2 − B7 − B8 + 24d3.

(1) g(t) = 8
3 [t

3(42 − λ) − 3t2(−70 + λ) + t(126 + λ) + 3(2 + λ)].
(2) D = {λ : λ ≤ −8.64561 or λ ≥ −6}, B = {λ : −2 < λ < 42}.
(3) D ∩ B = {λ : −2 < λ ≤ 6.18678}.

The six sub-cases EY1–EY6 are identified with λ ∈ { 1
24 ,

24
5 ,−2, 0, 2, 6} in order.

Case EZ: (γ1, γ2, γ3) = (2, 2, 2), (σ1, σ2, σ3) = (2, 1, 1), λ = 8 − A8 + 2d3.

(1) g(t) = 16 [t3(23 − 2λ) + t2(67 − 4λ) + 3t(−9 + 2λ) + 1].
(2) D = λ ≤ 1.87715 or λ ≥ 6.58369, B = {λ : 9

2 < λ < 23
2 }.

(3) D ∩ B = {λ : 6.58369 ≤ λ < 23
2 }.

The eight sub-cases EZ1–EZ8 are identified with λ ∈ { 445 , 17619 , 4, 7, 8, 9, 10, 232 } in order.
Case FX: (γ1, γ2, γ3) = (1, 4, 1), (σ1, σ2, σ3) = (1, 1, 2), λ = 64 + 25A8 − 50d3.

(1) g(t) = 32
175 [t

3(658 + 3λ) + t2(4382 − 13λ) + t(574 + 9λ) − 14 + λ].
(2) D = λ ≤ 132.648 or λ ≥ 2565.89, B = {λ : 14 < λ < 337.0769}.
(3) D ∩ B = {λ : 14 < λ ≤ 132.6478}.

The six sub-cases FX1–FX6 are identified with λ ∈ {64, 1332 , 480293 , 14, 60, 132} in order.
Case FY: (γ1, γ2, γ3) = (1, 4, 1), (σ1, σ2, σ3) = (1, 2, 1), λ = −18 − 7A8 + 14d3.

(1) g(t) = 4
7 [t

3(−228 − λ) + t2(−1396 − 13λ) + t(−172 + 13λ) + λ + 4].
(2) D = {λ : λ ≤ −166.1417 or λ ≥ −49.4805}, B = {λ : −107.3846 < λ < −4}.
(3) D ∩ B = {λ : −49.4805 ≤ λ < −4}.

The nine sub-cases FY1–FY9 are identified with λ ∈ {− 68
3 ,− 104

5 ,− 184
11 ,−46,−32,

−18,−14,−10,−4} in order.
Case FZ: (γ1, γ2, γ3) = (1, 4, 1), (σ1, σ2, σ3) = (2, 1, 1), λ = −338 − 119A8 + 238d3.

(1) g(t) = 8
119 [t

3(−5426 − 109λ) + t2(−10, 618 + 39λ) + t(874 + 73λ) − 3λ − 62].
(2) D = λ ≤ −18.8202 or λ ≥ 18.8087, B = {λ : −20.6667 < λ < −11.9726}.
(3) D ∩ B = {λ : −20.6667 < λ ≤ −18.8202}.

The three sub-cases FZ1–FZ3 are identified with λ ∈ {− 62
3 ,−20,−19} in order.

Despite the availability of rich sub-cases considered thus far, we typically list (γ1, γ2, γ3),
(σ1, σ2, σ3), g(t)/w(t), λ and H(z) in Table 1, for selected 25 sub-cases AX1, AX2, AX6, AY4,
AY5, AY6, BX1, BX6, BY6, BZ5, CX4, CY1, CY2, CY6, DX2, DY7, DY9, EX2, EX6, EY6, EZ1,
EZ7, FY4, FY5, FY6 with simplified forms of Kf (s, u). Besides, the extraneous fixed points for the
selected 25 sub-cases are listed in Table 2 together with those extraneous fixed points of existing
method SA.

In view of the analysis done so far and a close inspection of Table 1, the following remark is useful.
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Remark 4.4: (i) Once λ is chosen, we have freedom to select parameters d3,B7,B8. Note thatH(z)
can be obtained without specifying parameter values of d3,B7,B8 for all selected cases.

(ii) Three cases (AX6, CY6, EZ7) (highlighted in yellow) give the same H(z) = (1 + 3t)(1 +
33t + 27t2 + 3t3)/{(5 + 10t + t2)(1 + 10t + 5t2)} which is also the same as SA, two cases
(BX1, BX6) (highlighted in green) the same H(z)= 16t(1 + t)(1 + 6t + t2)/{(1 + 3t)(1 +
33t + 27t2 + 3t3)}, and six cases (AX2, BZ5, CX4, DY9, EX6, FY5) (highlighted in cyan) the
same H(z) = (1 + 21t + 35t2 + 7t3)/{4(1 + t)(1 + 6t + t2)}.

4.2. Stability of extraneous fixed points

As a result of the case studies pursued thus far for f (z) = z2 − 1, we include in Table 2 the desired
purely imaginary extraneous fixed points in typical sub-cases. By direct computation of absolute
values of multipliers R′

f (ξ) for iterative map (29) with f (z) = z2 − 1, we find that all of the purely
imaginary extraneous fixed points ξ ofH in each of the listed cases in Table 2 are found to be indiffer-
ent except for extraneous fixed point double 0. The extraneous fixed point double 0 for each of Cases
BX1, BX6, BY6, EX2, EY6 is found to be repulsive and highlighted by a framed-value. Interestingly,
no case with attractive extraneous fixed points has been found. The following proposition describes
the details of stabilities of the multipliers for the all the cases AX, AY, . . . , FZ.

Proposition 4.5: Let±ξ be the extraneous fixed points obtained from the expression g(t)/w(t) of H(z)
in Equation(40). Then stabilities of the possible extraneous fixed points 0,±i, ±i/

√
3 and±ξ for the 18

cases AX, AY, . . . , FZ are characterized by the following:

Table 2. Extraneous fixed points ξ and their stability for selected cases.

Case ξ No. of ξ

AX1 ±2.18932i, ±0.932983i, ±i/
√
3, ±0.205661i 8

AX2 ±2.07652i, ±0.797473i, ±0.228243i 6
AX6 ±2.74748i, ±1.19175i, ±i/

√
3, ±0.176327i 8

AY4 ±2.01802i, ±0.922879i, ±i/
√
3(double), ±0.275446i 10

AY5 ±1.92767i, ±1.09135i, ±i/
√
3(double), ±0.305019i 10

AY6 ±1.73205i, ±1.37638i, ±i/
√
3(double)i, ±0.32492i 10

BX1 ±2.41421i, ±i, ±0.414214i, 0 (double) 8

BX6 ±2.41421i, ±i, ±0.414214i, 0 (double) 8

BY6 ±4.38129i, ±1.25396i, ±0.481575i, 0 (double) 8

BZ5 ±2.07652i, ±0.797473i, ±0.228243i 6
CX4 ±2.07652i, ±0.797473i, ±0.228243i 6
CY1 ±2.38198i, ±1.06609i, ±i/

√
3, ±0.189172i 8

CY2 ±1.95657i, ±i/
√
3, ±0.472367i, ±0.348006i 8

CY6 ±2.74748i, ±1.19175i, ±i/
√
3, ±0.176327i 8

DX2 ±2.06341i, ±0.809824i, ±0.535264i, 0(quadruple) 10
DY7 ±2.02415i, ±0.754652i, 0(quadruple) 8
DY9 ±2.07652i, ±0.797473i, ±0.228243i 6

EX2 ±2.25373i, ±0.920924i, ±0.373208i, 0 (double) 8

EX6 ±2.07652i, ±0.797473i, ±0.228243i 6

EY6 ±2.13578i, ±0.662153i, ±i/
√
3(double), 0 (double) 10

EZ1 ±2.21963i, ±0.959862i, ±i/
√
3, ±0.201983i 8

EZ7 ±2.74748i, ±1.19175i, ±i/
√
3, ±0.176327i 8

FY4 ±1.73205i, ±1.15179i, ±i, ±0.240798i 8
FY5 ±2.07652i, ±0.797473i, ±0.228243i 6
FY6 ±2.27184i, ±i, ±i/

√
3, ±0.196851i 8

SA ±2.74748i, ±1.19175i, ±i/
√
3, ±0.176327i 8

Note: In this table, most extraneous fixed points are indifferent, while boxed-values are repulsive extraneous fixed points. Interest-
ingly, no attractive extraneous fixed points exist for the selected cases.
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(1) The extraneous fixed points quadruple 0,±i (simple or double),±i/
√
3 (simple or double) and±ξ

are all found to be indifferent.
(2) The extraneous fixed point double 0 is found to be repulsive.

Proof: To prove (1) and (2), it should suffice to take several typical cases AX, AY, BX, DY, FX, BY,
DZ, EX, EY as follows:

(i) Case AX for extraneous fixed points ±i/
√
3 (simple) and ±ξ .

The corresponding H(z) for Case AX found to be:

H(z) = (1 + 3t)[−1 + t(27 − 12λ) + t2(8λ − 67) + t3(4λ − 23)]
−λ − 20t(λ − 2) − 14t2(4 + λ) + 4t3(7λ − 50) + t4(7λ − 40)

, (46)

where t = z2 and λ is described earlier in Section 4.1. Besides, the derivative of iterative map Rf in
Equation (29) is given by

R′
f (z) = (t − 1)[−1 + t(22 − 10λ) − 10t2(λ + 2) + 2t3(9λ − 59) + t4(2λ − 11)]

2t[−λ − 20t(λ − 2) − 14t2(λ + 4) + 4t3(7λ − 50) + t4(7λ − 40)]
. (47)

By direct substitution of the extraneous fixed points z = ±i/
√
3 (simple), i.e. t = − 1

3 into R
′
f (z), we

immediately find R′
f (±i/

√
3) = 1. We now let the extraneous fixed points ±ξ satisfy

−1 + t(27 − 12λ) + t2(8λ − 67) + t3(4λ − 23) = 0

with t = ξ2. For brevity, we first denote the left side of the above equation by dλ(t) = −1 + t(27 −
12λ) + t2(8λ − 67) + t3(4λ − 23). Then the second factor of the numerator of Equation (47) is given
by

−1 + t(22 − 10λ) − 10t2(λ + 2) + 2t3(9λ − 59) + t4(2λ − 11) = qλ(t) · dλ(t) + rλ(t) = rλ(t),

where

qλ(t) = 1977 − 664λ + 56λ2 + t(253 − 90λ + 8λ2)
(23 − 4λ)2

and

rλ(t) = −
8(−181 + 60λ − 5λ2 + t(5186 − 4028λ + 910λ2 − 64λ3)+

t2(−14, 381 + 7056λ − 1161λ2 + 64λ3)
(23 − 4λ)2

.

Hence, Equation (47) at this extraneous fixed points ±ξ becomes

R′
f (z) = (t − 1)rλ(t)

2t[−λ − 20t(λ − 2) − 14t2(λ + 4) + 4t3(7λ − 50) + t4(7λ − 40)]
. (48)

Since (t − 1)rλ(t) − 2t[−λ − 20t(λ − 2) − 14t2(λ + 4) + 4t3(7λ − 50) + t4(7λ − 40)]

= − 2dλ(t)[−4(181 − 60λ + 5λ2) + t(1920 − 655λ + 56λ2) + t2(920 − 321λ + 28λ2)]
(−23 + 4λ)2

= 0

in view of the fact dλ(t) = 0, we find R′
f (±ξ) = 1.

(ii) Case AY for extraneous fixed points ±i/
√
3 (double).
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The corresponding H(z) and R′
f (z) for Case AY are found to be:

H(z) = (1 + 3t)2[2 − λ + t(−86 − 5λ) + 5t2(λ − 50) + t3(λ − 50)]
−3λ − 12t(16 + λ) + t2(−896 − 26λ) + 36t3(−48 + λ) + t4(−256 + 5λ)

,

R′
f (z) = (t − 1)[2 − λ − 6t(12 + λ) − 4t2(109 + 4λ) + t4(−62 + λ) + 22t3(−44 + λ)]

2t[t2(−896 − 26λ) + 36t3(−48 + λ) − 3λ − 12t(16 + λ) + t4(−256 + 5λ)]
.

(49)

By direct substitution of the extraneous fixed points z = ±i/
√
3 (double), i.e. t = − 1

3 into R
′
f (z), we

immediately find R′
f (±i/

√
3) = 1.

(iii) Case BX for extraneous fixed points ±i and 0 (double).
The corresponding H(z) and R′

f (z) for Case BX are found to be:

H(z) = 16t(1 + t)(1 + 6t + t2)
(1 + 3t)(1 + 33t + 27t2 + 3t3)

,

R′
f (z) = (t − 1)(7 + 35t + 21t2 + t3)

(1 + 3t)(1 + 33t + 27t2 + 3t3)
.

(50)

By direct substitution of the extraneous fixed points z = ±i and 0 (double), i.e. t=−1 and t= 0,
respectively, into R′

f (z), we immediately find R′
f (±i) = 1 and R′

f (0) = −7, respectively.
(iv) CaseDY for extraneous fixed point 0 (quadruple).
The corresponding H(z) and R′

f (z) for Case DY are found to be:

H(z) = 8t2[12 − 25λ − 21t(−12 + λ) + t2(420 + 37λ) + t3(84 + 9λ)]
(1 + t)[λ − 28tλ + t2(384 − 226λ) + 4t3(576 + 53λ) + t4(384 + 41λ)]

,

R′
f (z) = (t − 1)[−λ + t(48 − 73λ) + t2(672 + 69λ) + t3(48 + 5λ)]

λ − 28tλ + t2(384 − 226λ) + 4t3(576 + 53λ) + t4(384 + 41λ)
.

(51)

By direct substitution of the extraneous fixed point 0 (quadruple), i.e. t= 0(double) into R′
f (z), we

immediately find R′
f (0) = 1.

(v) Case FX for extraneous fixed point ±i (double).
The corresponding H(z) and R′

f (z) for Case FX are found to be:

H(z) = 8(1 + t)2[−14 + t(574 + 9λ) + t2(4382 − 13λ) + λ + t3(658 + 3λ)]
(1 + 3t)[25λ + 4t(2919 + 4λ) + t2(21, 532 − 38λ) + t3(10, 612 − 8λ) + 5t4(196 + λ)]

,

R′
f (z) = (t − 1)[4(λ − 14) + t(2072 + 27λ) + 4t2(3661 + λ) + t3(20, 132 − 38λ) + 7700t4 + t5(308 + 3λ)]

t(1 + 3t)[25λ + 4t(2919 + 4λ) + t2(21, 532 − 38λ) + t3(10, 612 − 8λ) + 5t4(196 + λ)]
.

(52)

By direct substitution of the extraneous fixed point ±i (double), i.e. t=−1(double) into R′
f (z), we

immediately find R′
f (±i) = 1.

(vi) Cases BY, DZ, EX, EY for extraneous fixed point 0 (double).
The correspondingH(z) and R′

f (z) for these cases can be similarly found as obtained so far. Here,
we list their respective multipliers at double 0 by means of λ as follows:

R′
f (0) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−5 − 24/λ for − 4 < λ < 28,
−5 − 4/λ for − 2/3 < λ < 14/3,
−5 − 2/λ for − 1/3 < λ < 7/3,
−5 − 12/λ for − 2 < λ ≤ 6.18678.

(53)

After a close examination, we find that |R′
f (0)| > 1, implying the repulsiveness of these multipliers.
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The stabilities of remaining cases can be similarly shown as those of the above typical cases,
completing the proof. �

Remark 4.6: Among all selected cases, no casewith attractive extraneous fixed points has been found.
It is interesting to observe that the extraneous fixed point double 0 is found to be repulsive, while the
extraneous fixed point quadruple 0 is found to be indifferent throughout the selected cases.

In case that f (z) is a generic polynomial rather than z2 − 1, it would be certainly interesting
to investigate the dynamics underlying the relevant extraneous fixed points. However, due to the
increased algebraic complexity, we would encounter difficulties in describing the dynamics under-
lying the extraneous fixed points. An effective way of exploring such dynamics is to illustrate basins
of attraction under iterative map (29) with f (z) as a generic polynomial. We will illustrate the basins
of attraction to pursue the dynamics of the iterative map Rp of the form

zn+1 = Rp(zn) = zn − p(zn)
p′(zn)

Hp(zn), (54)

for a generic polynomial p(zn) and a weight functionHp(zn). Indeed, basins of attraction for the fixed
points or the extraneous fixed points as well as their attracting periodic orbits would reflect complex
dynamics whose illustrative description will be made for various polynomials in the latter part of
Section 5.

Before closing this section, we prefix the iterative maps in Table 2 corresponding to cases AX1,
AX2, AX6, AY4, AY5, AY6, BX1, BX6, BY6, BZ5, CX4, CY1, CY2, CY6, DX2, DY7, DY9, EX2,
EX6, EY6, EZ1, EZ7, FY4, FY5, FY6 with W for later use in describing the relevant dynamics. In
addition, we identify map SA for method (1).

5. Numerical experiments and complex dynamics

In this section, we first deal with computational aspects of proposed family of methods (2) for a
variety of test functions along with an existing competitive method SA; then we discuss the dynamics
underlying extraneous fixed points based on iterative maps (54) by illustrating the relevant basins of
attraction. In Section 4, wewere able to find extraneous fixed points using λ-values without specifying
parameters d3,B7,B8. For numerical experiments in both computational and dynamical aspects, we
need to provide all 10 coefficients A6,A7,A8,B2,B3,B4,B5,B6, d1, d2 of Kf (s, u) for a given λ. For
simplifiedKf (s, u), we set d3 = B7 = B8 = 0. Table 3 shows the desired parameter values andKf (s, u)
for the selected cases AX1, AX2, AX6, AY4, AY5, AY6, BX1, BX6, BY6, BZ5, CX4, CY1, CY2,
CY6, DX2, DY7, DY9, EX2, EX6, EY6, EZ1, EZ7, FY4, FY5, FY6. Each case has been implemented
to verify the theoretical convergence. Later on in this section, we will explore the complex dynamics
with the use of illustrated basins of attraction of selected rational iterativemapsWAX1 throughWFY6
and an existing method SA.

A number of numerical experiments have been implemented with Mathematica programming to
confirm the developed theory. Throughout these experiments, we havemaintained 160 digits ofmini-
mum number of precision, viaMathematica command $MinPrecision = 160, to achieve the specified
accuracy. In case that α is not exact, it is replaced by a more accurate value which has more number
of significant digits than the preassigned number $MinPrecision = 160.

Definition 5.1 (Computational convergence order): Assume that theoretical asymptotic error
constant η = limn→∞ (|en|/|en−1|p) and convergence order p ≥ 1 are known. Define pn =
log |en/η|/log |en−1|) as the computational convergence order. Note that limn→∞ pn = p.

Remark 5.1: Note that pn requires knowledge at two points xn, xn−1, while the usual COC (com-
putational order of convergence) log(|xn − xn−1|/|xn−1 − xn−2|)/log(|xn−1 − xn−2|/|xn−2 − xn−3|)
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Table 3. Parameter values of λ, A6, A7, A8, B2, B3, B4, B5, B6, d1, d2 and Kf (s, u) for all selected cases as well as SA.

Case λ (A6, A7, A8) (B2, B3, B4, B5, B6) (d1, d2) Kf (s, u)

AX1 13
3 (0, 0,− 1

3 ) ( 23
12 ,− 13

6 , 0,
1
12 ,− 1

6 ) (− 10
3 ,

7
3 )

4su(3 − 4s − s2(u − 2))

12 − 12u + u2 − 2s(20 − 8u + u2) + s2(28 + 23u) − 26s3u

AX2 4 ( 1
2 ,−1, 0) (4,−2, 0, 0, 0) (−3, 32 )

su(2 + u − 2s(1 + u) + s2)

2 − u − 2s(3 + u) + s2(3 + 8u) − 4s3u

AX6 5 (−1, 2,−1) (− 9
4 ,− 5

2 , 0,
1
4 ,− 1

2 ) (−4, 4)
4su(1 − s)2(1 − u)

4 − 8u + u2 − 2s(8 − 12u + u2) − s2(9u − 16) − 10s3u

AY4 12 ( 1
3 ,− 2

3 , 0) ( 11
3 ,−3, 0, 0, 0) (− 10

3 ,
7
3 )

su(3 + u − 2s(2 + u) + 2s2)

(1 − s)(3 − 2u + 9s2u − s(7 + 2u))

AY5 16 ( 1
6 ,− 1

3 , 0) ( 10
3 ,−4, 0, 0, 0) (− 11

3 ,
19
6 )

su(6 + 5s2 + u − 2s(5 + u))

6 − s(22 − 6u) − 5u + s2(19 + 20u) − 24s3u

AY6 20 (0, 0, 0) (3,−5, 0, 0, 0) (−4, 4)
su(1 − s)2

1 + 2s(u − 2) − u + s2(4 + 3u) − 5s3u

BX1 0 (0,−1, 0) ( 9
2 , 0, 0,

1
2 ,−1) (−2,−1)

2su(1 − su)

2 − 2u + u2 − 2s(2 + u + u2) + s2(9u − 2)

BX6 2 (−1, 3,−2) (−5,−1, 0, 0, 0) (−4, 4)
su(1 − s)(1 − u + s(2u − 1))

1 − 2u − s(4 − 7u) − s2(5u − 4) − s3u

BY6 24 (− 3
2 , 4,−2) (−8,−2, 0, 0, 0) (−5, 132 )

su(2 − 3u − 2s(3 − 4u) − s2(4u − 3))

2 − 5u − 10s(1 − 2u) − s2(16u − 13) − 4s3u

BZ5 16 (− 1
2 , 2,−2) (−2, 0, 0, 0, 0) (−3, 32 )

su(2 − u − 2s(1 − 2u) − s2(4u − 1))

2 − 3u − 2s(3 − 4u) − s2(4u − 3)

CX4 −8 (0, 0, 0) (2,−4, 0, 0, 0) (−4, 4)
su(1 − s)2

(1 − 2s)(1 − u − 2s + 2s2u)

CY1 56 (− 1
3 ,

2
3 , 0) (0,− 14

3 , 0, 0, 0) (− 14
3 ,

17
3 )

su(2s − 1)(2s + u − 3)

3 − 4u + 2s(6u − 7) + 17s2 − 14s3u

CY2 40 ( 1
3 ,− 2

3 , 0) (4,− 10
3 , 0, 0, 0) (− 10

3 ,
7
3 )

su(3 + u − 2s(2 + u) + 2s2)

(1 − s)(3 − 2u − s(7 + 2u) + 10s2u)

CY6 60 (− 1
2 , 1, 0) (−1,−5, 0, 0, 0) (−5, 132 )

su(2 − u + 2s(u − 3) + 3s2)

2 − 3u + 10s(u − 1) − s2(2u − 13) − 10s3u

DX2 − 2
7 ( 9

7 ,− 19
7 ,

2
7 ) ( 53

7 ,
1
7 , 0, 0, 0) (− 12

7 ,− 12
7 )

su(7 + 9u + s(2 − 19u) + s2(2u − 1))

7 + 2u − 3s(4 + 13u) + s2(53u − 12) + s3u

DY7 −4 (− 1
3 ,

5
3 ,−2) (−1, 13 , 0, 0, 0) (− 8

3 ,
2
3 )

su(3 − u − s(2 − 5u) − s2(6u − 1))

3 − 4u + s(9u − 8) + s2(2 − 3u) + s3u

DY9 0 ( 5
2 ,−6,−2) (14, 0, 0, 0, 0) (−1,− 7

2 )
su(2 + 5u + 2s(1 − 6u) + s2(4u − 1))

2 + 3u − 2s(1 + 12u) + 7s2(4u − 1)

EX2 2
3 (0, 0,− 2

3 ) ( 11
6 ,− 1

3 , 0,
1
6 ,− 1

3 ) (− 8
3 ,

2
3 )

2su(3 − 2s − s2(2u − 1))

6 − 6u + u2 − 2s(8 − 2u + u2) + s2(4 + 11u) − 2s3u

EX6 0 (1,−2, 0) (6, 0, 0, 0, 0) (−2,−1)
su(1 + u − 2su)

1 − 2s(1 + 2u) + s2(6u − 1)

EY6 6 ( 3
4 ,− 3

2 , 0) ( 9
2 ,− 1

2 , 0, 0, 0) (− 5
2 ,

1
4 )

su(4 + 3u − 2s(1 + 3u) + s2)

4 − u − 10s(1 + u) + s2(1 + 18u) − 2s3u

EZ1 44
5 (0, 0,− 4

5 ) ( 11
5 , 0, 0,

1
5 ,− 2

5 ) (− 12
5 , 0)

su(5 − 2s − s2(4u − 1))

5 − 5u + u2 − 2s(6 − u + u2) + 11s2u

EZ7 10 (− 3
2 , 3,−2) (− 7

2 , 0, 0,
1
2 ,−1) (−3, 32 )

su(2 − 3u − 2s(1 − 3u) − s2(4u − 1))

2 − 5u + u2 − 2s(3 − 7u + u2) − s2(7u − 3)

FY4 −46 ( 5
4 ,− 9

2 , 4) ( 23
2 ,− 23

2 , 0, 0, 0) (− 11
2 ,

31
4 )

su(4 + 5u − 2s(7 + 9u) + s2(7 + 16u))

4 + u − 2s(11 + 7u) + s2(31 + 46u) − 46s3u

FY5 −32 ( 1
2 ,−2, 2) (6,−8, 0, 0, 0) (−5, 132 )

su(2 + u − 2s(3 + 2u) + s2(3 + 4u))

2 − u − 10s + s2(13 + 12u) − 16s3u

FY6 −18 (− 1
4 ,

1
2 , 0) ( 1

2 ,− 9
2 , 0, 0, 0) (− 9

2 ,
21
4 )

su(4 − u + 2s(u − 5) + 5s2)

4 − 5u + 2s(7u − 9) + s2(21 + 2u) − 18s3u

SA N/A∗ (−1, 2,−1) (−2,−4, 2, 0, 0) (−4, 4)
su(1 − u)(1 − s)2

(1 − 2s)(1 − su)(1 − 2s − 2u + 3su)

Note: For all above cases other than SA use d3 = B7 = B8 = 0, while SA uses d3 = 0, B7 = −7, B8 = 6.
Three casesAX6, CY6, EZ7 (highlighted in yellow) have different forms of Kf but show identical H(z) as that of SA.
∗ N/A= not available.
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does require knowledge at four points xn, xn−1, xn−2, xn−3. Hence, pn can be handled with a less num-
ber of working precision digits than the usual COC whose number of working precision digits is at
least p times as large as that of pn.

Computed values of xn are accurate with up to $MinPrecision significant digits. If α has the same
accuracy of $MinPrecision as that of xn, then en = xn − α would be nearly zero and hence computing
|en+1|/|en|p would unfavourably break down. To clearly observe the convergence behaviour, we desire
α to have more significant digits that are � digits higher than $MinPrecision. To supply such α, a set
of following Mathematica commands are used:

sol = FindRoot[f (x), {x, x0},PrecisionGoal → � + $MinPrecision,

WorkingPrecision → 2 ∗ $MinPrecision];

α = sol[[1, 2]]

In this experiment, we assign � = 16. As a result, the numbers of significant digits of xn and α are
found to be 160 and 176, respectively. Nonetheless, we list both of themwith up to 15 significant digits
for proper readability. The error bound ε = 1

2 × 10−120 is assigned to satisfy |xn − α| < ε.
Typical methodsWAX2, WBX1, WDY7 have been successfully implemented with test functions

F1 − F3 below:

WAX2 : F1(x) = cos
(π

x

)
+ x2 − π , α ≈ 1.81648572902222,

WBX1 : F2(x) = x − √
3x3 cos

(
π

x + 1

)
+ 1

x2 + 1
− 11

5
+ 4

√
3, α = 2,

WDY7 : F3(x) = − log
[
(x − 2)2 + 19

16

]
, α = 2−i

√
3
4

,

where log z(z ∈ C) represents a principal analytic branch such that − π < Im(log z) ≤ π .

Table 4 clearly confirms eighth-order convergence. The values of computational asymptotic error
constant agree up to 10 significant digits with η. It appears that the computational convergence order
well approaches 8.

Table 4. Convergence for test functions F1(x) − F3(x)with typically selected methods AX2, BX1, DY7.

MT F n xn |F(xn)| |xn − α| |en/e8n−1| η pn

0 1.7 0.525256 0.116486
1 1.81648572902243 9.564 × 10−13 2.091 × 10−13 6.169498388 × 10−6 2.749110983 × 10−7 6.55305

WAX2 F1 2 1.81648572902222 4.601 × 10−108 1.006 × 10−108 2.749110983 × 10−7 8.00000
3 1.81648572902222 2.425 × 10−173 4.043 × 10−174

0 1.87 1.62893 0.130000
1 1.99999999393956 8.327 × 10−8 6.060 × 10−9 0.07429458432 0.0399096822 7.69542

WBX1 F2 2 2.00000000000000 9.980 × 10−67 7.262 × 10−68 0.03990968332 8.00000
3 2.00000000000000 8.086 × 10−174 2.425 × 10−173

0
(

1.97
−0.36

)∗
0.0608640 0.0789358

1
(

1.99999999638476
−0.433012689128059

)
1.148 × 10−8 1.326 × 10−8 8.801529463 4.234524089 7.71185

WDY7 F3 2
(

2.00000000000000
−0.433012701892219

)
3.518 × 10−63 4.062 × 10−63 4.234524636 8.00000

3
(

2.00000000000000
−0.433012701892219

)
0.0 × 10−160 5.717 × 10−174

Note: MT = method,
(

1.97
−0.36

)∗
= 1.96 − 0.36i, i = √−1.
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Table 5. Additional test functions fi(x)with zeros α and initial guesses x0.

i fi(x) α x0

1 x sin (x2) − log [1 + 1
x2

− 1
π
]

√
π 1.7

2 cos [(x − 3)2 + 3] − log [(x − 3)2 + 4] − 1 3 + i
√
3 2.95 + 1.76i

3 x5 + log [1 + sin x] 0 0.05

4 sin−1 ( 1x − 1) − 4x2 + 3 0.884690687180673 1.0

5 x3 − π3 + sin x
√

(x + 1) π 2.9

6 4x2 + e−x + sin (1 + 1
x ) − 4 0.830382156106894 0.75

7 log x − √
x + x3 1 0.9

Note: Here, log z (z ∈ C) representsaprincipalanalyticbranchwith − π ≤ Im(log z) < π .

Table 5 lists additional test functions to ensure the convergence behaviour of proposed
scheme (2).

In Table 6, we compare numerical errors |xn − α| of proposed methods WAX1 through WFY6
with that of method SA. The least errors within the prescribed error bound are highlighted in
bold face. Although we are limited to the selected current experiments, within two iterations, a
strict comparison shows that methods WFY6, WDY7, WCY1, WDX2 display slightly better con-
vergence for test functions f1, f2, f5, f6, respectively, and method WFY4 for three test functions
f3, f4, f7.

In view of a close inspection of the asymptotic error constant η(θi, Lf ,Kf ) = |xn+1 − α|/|xn − α|8,
we should be aware that the local convergence is dependent on the function f (x), an initial
value x0, the zero α itself and the weight functions Lf and Kf . Accordingly, for all given set of
test functions, the convergence of one method is hardly expected to be always better than the
others.

The efficiency index EI [40] is found to be 81/4 ≈ 1.68179 for the proposed family of methods (2),
which evidently show a better performance than that of classical Newton’s method.

Proper initial values generally influence the convergence behaviour of iterative methods. To guar-
antee the convergence of Newton-like iterative map (54) with a weight function Hp(z), it requires
good initial values close to zero α. It is, however, not a simple task to determine how close the ini-
tial values are to zero α, since initial values are generally sensitive to computational precision, error
bound and the given function f (x) under consideration.

We now introduce the notion of the basin of attraction that is the set of initial guesses leading to
long-time behaviour approaching the attractors (e.g. periodic, quasi-periodic or chaotic behaviours
of different types) under the action of the iterative function. Hence, one effective way of selecting
stable initial values would be directly using visual basins of attraction. Since the area of convergence
can be seen on the basins of attraction, it would be reasonable to say that a method having a larger
area of convergence implies a more robust method. It is no doubt for us to employ a quantitative
analysis for measuring the size of area of convergence. Evidently, convergence behaviour of global
character can be conveniently observed on the basin of attraction. The basic topological structure of
such a basin of attraction as a region can vary greatly from system to system with various forms of
weight functions.

To show the performance of the listed methods, we present Tables 7–9 featuring a statistical data
giving the average number of iterations per point, CPU time (in seconds) and number of points
requiring 40 iterations. In the following examples, we take a 6 × 6 square centred at the origin and
containing all the zeros of the given functions. We then take 601 × 601 equally spaced points in the
square as initial points for the iterative methods. We colour the point based on the root it converged
to. This way we can figure out if the method converged within the maximum number of iteration
allowed and if it converged to the root closer to the initial point.
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Table 6. Comparison of |xn − α| for selected methods applied to various test functions.

f (x); x0

Method |xn − α| f1; 1.7 f2; 2.95 + 1.76i f3; 0.05 f4; 1.0 f5; 2.9 f6; 0.75 f7; 0.9

WAX1 |x1 − α| 1.35e−8∗ 4.21e−9 8.10e−14 1.05e−10 4.45e−10 4.94e−11 3.56e−10
|x2 − α| 7.13e−63 5.71e−67 1.90e−109 1.42e−82 4.09e−80 9.43e−85 8.88e−78

WAX2 |x1 − α| 2.57e−8 7.63e−9 9.62e−14 1.03e−10 7.54e−10 3.24e−11 4.18e−10
|x2 − α| 2.88e−60 1.50e−64 2.13e−108 1.10e−82 5.09e−80 2.70e−86 3.88e−77

WAX6 |x1 − α| 1.87e−8 3.09e−9 6.74e−14 1.06e−10 8.99e−10 7.95e−11 2.92e−10
|x2 − α| 2.37e−61 7.13e−68 1.85e−109 1.66e−82 2.36e−77 5.20e−83 1.54e−78

WAY4 |x1 − α| 2.79e−8 6.17e−9 7.02e−14 1.05e−10 4.62e−10 4.11e−11 3.17e−10
|x2 − α| 5.19e−60 2.12e−65 2.29e−109 1.38e−82 5.68e−80 2.01e−85 2.96e−78

WAY5 |x1 − α| 3.08e−8 4.73e−9 4.47e−14 1.07e−10 1.61e−9 4.96e−11 2.21e−10
|x2 − α| 8.46e−60 1.75e−66 1.70e−110 1.73e−82 4.66e−75 1.00e−84 9.39e−80

WAY6 |x1 − α| 3.20e−8 3.29e−9 1.96e−14 1.10e−10 2.69e−9 5.81e−11 1.30e−10
|x2 − α| 1.27e−59 5.49e−68 3.86e−113 2.16e−82 4.98e−73 3.85e−84 3.11e−82

WBX1 |x1 − α| 1.57e−8 7.86e−9 1.65e−13 1.04e−10 4.15e−9 2.851e−11 7.11e−10
|x2 − α| 3.88e−62 1.92e−64 1.13e−105 1.12e−82 2.18e−71 9.32e−87 4.79e−75

WBX6 |x1 − α| 2.60e−8 5.22e−9 6.27e−14 1.09e−10 8.36e−10 9.17e−11 2.80e−10
|x2 − α| 4.31e−60 7.23e−66 1.38e−109 2.28e−82 9.54e−78 1.78e−82 1.01e−78

WBY6 |x1 − α| 5.44e−8 9.17e−9 5.06e−14 1.01e−10 1.59e−9 1.03e−10 2.20e−10
|x2 − α| 2.93e−57 1.07e−63 3.76e−110 1.21e−82 3.89e−75 4.65e−82 1.24e−79

WBZ5 |x1 − α| 7.75e−9 1.28e−9 7.54e−14 1.17e−10 5.78e−11 7.97e−11 3.50e−10
|x2 − α| 2.36e−65 3.40e−71 3.02e−109 3.92e−82 1.71e−87 5.68e−83 6.90e−78

WCX4 |x1 − α| 1.15e−8 3.57e−9 5.13e−14 1.02e−10 5.58e−10 5.18e−11 2.36e−10
|x2 − α| 1.27e−63 1.15e−67 4.19e−110 1.13e−82 3.64e−79 1.36e−84 2.03e−79

WCY1 |x1 − α| 9.61e−9 1.67e−9 4.34e−14 9.73e−11 3.02e−11 6.01e−11 1.97e−10
|x2 − α| 5.87e−64 7.31e−71 1.34e−110 7.26e−83 1.94e−90 4.57e−84 4.21e−80

WCY2 |x1 − α| 3.52e−8 6.10e−9 5.95e−14 1.08e−10 1.21e−9 4.32e−11 2.80e−10
|x2 − α| 3.88e−59 1.89e−65 1.06e−109 1.71e−82 3.53e−76 3.15e−85 8.74e−79

WCY6 |x1 − α| 1.93e−8 1.76e−9 3.95e−14 9.45e−11 3.02e−10 6.42e−11 1.79e−10
|x2 − α| 2.74e−61 3.68e−70 6.95e−111 5.69e−83 1.05e−81 7.78e−84 1.80e−80

WDX2 |x1 − α| 5.49e−8 1.41e−8 1.55e−13 1.03e−10 2.58e−9 3.00e−14 6.92e−10
|x2 − α| 2.73e−57 4.35e−62 6.01e−106 9.37e−83 2.98e−73 1.06e−110 3.53e−75

WDY7 |x1 − α| 2.05e−8 5.45e−10 7.97e−14 1.19e−10 3.92e−10 7.56e−11 3.76e−10
|x2 − α| 1.35e−61 1.50e−74 3.16e−109 4.63e−82 1.78e−80 3.69e−83 1.27e−77

WDY9 |x1 − α| 2.01e−7 2.37e−8 7.48e−14 1.17e−10 6.94e−9 3.15e−11 3.79e−10
|x2 − α| 2.26e−52 4.77e−60 2.85e−109 2.77e−82 1.49e−69 1.46e−86 1.13e−77

WEX2 |x1 − α| 8.60e−9 4.96e−9 1.22e−13 1.05e−10 2.34e−9 4.48e−11 5.26-10
|x2 − α| 1.66e−64 2.70e−66 4.99e−107 1.40e−82 1.26e−73 4.11e−85 3.19e−76

WEX6 |x1 − α| 4.29e−8 1.17e−8 1.43e−13 1.04e−10 2.32e−9 1.20e−11 6.31e−10
|x2 − α| 3.01e−58 8.11e−63 2.60e−106 1.05e−82 1.16e−73 8.23e−90 1.57e−75

WEY6 |x1 − α| 2.20e−8 9.82e−9 1.36e−13 1.00e−10 2.72e−9 1.90e−11 5.80e−10
|x2 − α| 9.47e−61 1.52e−63 1.52e−106 7.79e−83 4.89e−73 3.28e−88 7.76e−76

WEZ1 |x1 − α| 2.61e−8 5.84e−9 1.88e−13 9.48e−11 6.53e−9 3.32e−11 7.68e−10
|x2 − α| 1.25e−60 1.14e−65 4.42e−105 4.89e−83 1.33e−69 2.90e−86 1.06e−74

WEZ7 |x1 − α| 1.79e−8 5.28e−9 9.66e−14 1.17e−10 1.60e−9 9.55e−11 4.23e−10
|x2 − α| 1.88e−61 8.08e−66 2.21e−108 4.07e−82 4.28e−75 2.62e−82 4.27e−77

WFY4 |x1 − α| 3.15e−8 1.38e−8 1.19e−14 7.57e−11 1.77e−9 7.61e−12 7.64e−11
|x2 − α| 2.49e−59 3.66e−62 7.95e−115 5.58e−84 1.15e−74 1.00e−91 3.22e−84

WFY5 |x1 − α| 1.45e−8 7.85e−9 2.84e−14 8.75e−11 9.80e−10 2.49e−11 1.39e−10
|x2 − α| 2.01e−62 1.93e−64 6.25e−112 2.43e−83 5.37e−77 2.68e−87 1.52e−81

WFY6 |x1 − α| 4.56e−9 1.98e−9 4.53e−14 9.87e−11 1.11e−10 5.80e−11 2.07e−10
|x2 − α| 9.29e−67 4.73e−71 1.82e−110 8.16e−83 2.72e−85 3.44e−84 6.32e−80

SA |x1 − α| 2.66e−8 5.43e−9 6.13e−14 1.08e−10 5.68e−10 9.29e−11 2.65e−10
|x2 − α| 5.10e−60 9.89e−66 1.16e−109 2.16e−82 4.34e−79 1.97e−82 6.58e−79

∗ 1.35e − 8 ≡ 1.35 × 10−8.

Although we have experimented with all methods listed in Table 2, because of space limitations,
we are only able to present the dynamics of 20 selected iterative mapsWAX1,WAX6,WAY4,WAY5,
WAY6, WBX1, WBX6, WBY6, WBZ5, WCX4, WCY2, WCY6, WDY9, WEX6, WEY6, WEZ1,
WEZ7, WFY4, WFY6 and SA, when applied to various polynomials pk(z), (1 ≤ k ≤ 6) and one
non-polynomial equation.
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Example 5.1: As a first example, we have taken a quadratic polynomial with all real roots:

p1(z) = z2 − 1. (55)

Clearly, the roots are ±1. Basins of attraction forWAX1–WFY6 and SA are given in Figure 1. Con-
sulting Tables 7–9, we find that themethod SA uses the least number of iterations per point on average
(ANIP), it also has the least number of black points. The methods WAX6, WCY6 and WEZ7 have
almost the same ANIP as SA. The fastest method is SA with 153.130 s.

Table 7. Averagenumber of iterations per point for each example (1–7).

Example

Map 1 2 3 4 5 6 7 Average

WAX1 2.25 2.52 2.68 3.09 3.11 2.96 2.24 2.69
WAX6 2.18 2.46 2.64 3.11 3.30 3.13 2.29 2.73
WAY4 2.31 2.62 2.81 3.10 3.06 3.02 2.29 2.75
WAY5 2.35 2.74 2.95 3.20 3.21 3.15 2.43 2.86
WAY6 2.42 2.90 3.11 3.59 3.65 3.46 2.45 3.08
WBX1 2.22 2.54 2.71 3.45 4.55 4.02 2.47 3.14
WBX6 2.22 2.58 2.79 3.40 3.52 3.33 2.44 2.90
WBY6 2.28 2.73 2.72 3.77 4.07 3.94 2.69 3.17
WBZ5 2.28 2.63 2.81 3.40 3.67 3.16 2.46 2.92
WCX4 2.28 2.60 2.78 3.05 3.07 2.96 2.34 2.73
WCY2 2.39 2.77 2.99 3.16 3.15 3.08 2.37 2.84
WCY6 2.18 2.47 2.70 3.51 3.72 3.60 2.59 2.97
WDY9 2.28 2.57 2.76 3.72 5.08 3.96 2.63 3.29
WEX6 2.28 2.51 2.70 3.11 3.12 3.28 2.47 2.78
WEY6 2.33 2.59 2.75 5.83 6.24 5.12 2.49 3.91
WEZ1 2.25 2.51 2.65 3.74 4.14 3.42 2.40 3.01
WEZ7 2.18 2.51 2.67 3.38 3.71 3.11 2.25 2.83
WFY4 2.40 2.66 2.91 3.31 3.52 3.49 2.80 3.01
WFY6 2.24 2.57 2.76 3.27 3.33 3.22 2.41 2.83
SA 2.16 2.46 2.62 2.98 3.03 2.89 2.28 2.63

Table 8. CPU time (in seconds) required for each example (1–7) using a Dell Multiplex-990.

Example

Map 1 2 3 4 5 6 7 Average

WAX1 201.116 313.562 292.050 340.425 399.175 983.539 359.536 412.772
WAX6 192.630 313.999 274.749 348.117 418.722 1018.156 354.404 417.253
WAY4 179.417 314.139 277.307 331.190 362.250 956.364 336.041 393.815
WAY5 197.762 336.588 310.629 358.272 391.766 1019.825 363.654 425.499
WAY6 195.048 339.692 304.733 377.148 431.000 1091.351 358.240 442.459
WBX1 182.147 304.560 260.678 343.592 520.326 1258.648 367.569 462.503
WBX6 187.731 310.598 274.998 352.905 426.398 1062.882 354.934 424.349
WBY6 200.758 347.227 280.240 415.446 499.999 1270.940 409.627 489.177
WBZ5 184.299 323.187 271.972 351.891 446.911 1018.858 368.599 423.674
WCX4 169.963 289.834 256.092 297.104 350.222 936.537 326.572 375.189
WCY2 192.864 327.103 283.719 334.545 382.624 992.900 356.353 410.015
WCY6 188.402 310.535 274.889 370.580 453.776 1168.276 375.027 448.784
WDY9 190.259 314.139 280.006 392.217 592.211 1278.116 391.578 491.218
WEX6 170.961 279.725 246.919 307.884 344.216 1024.989 354.075 389.824
WEY6 199.572 317.742 277.192 637.857 749.054 1651.052 375.915 601.198
WEZ1 186.093 306.776 265.544 396.368 486.208 1099.385 351.549 441.703
WEZ7 191.476 317.025 284.655 368.271 449.158 1003.742 337.024 421.622
WFY4 205.844 336.323 300.271 363.014 437.208 1135.063 419.066 456.684
WFY6 194.471 315.262 292.767 359.067 405.041 1037.720 348.943 421.896
SA 153.130 290.364 241.786 294.529 338.740 1252.002 333.967 414.931
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Table 9. Number of points requiring 40 iterations for each example (1–7).

Example

Map 1 2 3 4 5 6 7 Average

WAX1 747 50 0 1201 1 0 330 333
WAX6 769 57 0 1345 1451 1086 694 772
WAY4 795 117 0 1201 5 0 914 433
WAY5 949 534 476 1201 6 158 842 595
WAY6 1175 1217 1024 2001 959 1027 1314 1245
WBX1 753 46 0 1201 1 0 533 362
WBX6 749 15 0 1201 1 5 1714 526
WBY6 761 19 0 1201 19 23 1884 558
WBZ5 769 109 0 1337 1619 5 1580 774
WCX4 765 70 0 1201 1 0 556 370
WCY2 1433 1162 1260 1201 1 1 972 861
WCY6 769 11 0 1201 6 10 1564 509
WDY9 761 53 0 1261 843 0 1598 645
WEX6 765 23 0 1201 1 0 1141 447
WEY6 1281 549 16 28,661 32,016 16,657 1191 11,482
WEZ1 741 84 0 1433 1879 2 950 727
WEZ7 773 83 0 1257 1450 2 705 610
WFY4 1021 14 0 1201 200 5 2395 691
WFY6 745 10 0 1201 1 2 1212 453
SA 601 54 0 1201 1 0 514 339

Example 5.2: In our second example, we have taken a cubic polynomial:

p2(z) = z3 + 4z2 − 10. (56)

Basins of attraction are given in Figure 2. We now consult the tables to find that the method
with the fewest ANIP are SA and WAX6 with 2.46 iteration. All the others require between 2.51
and 2.90. In terms of CPU time in seconds, the fastest is WEX6 (279.725 s) and the slowest is
WBY6 (347.227 s). The method WAY6 has the most black points (1216) and WFY6 has the least
(10 points).

Example 5.3: As a third example, we have taken another cubic polynomial:

p3(z) = z3 − z. (57)

Now all the roots are real. The basins for this example are plotted in Figure 3. Based on Table 7,
we see that again SA has the lowest ANIP followed closely by WAX6. The fastest method is again
SA (241.786 s) followed by WEX6 (246.919 s) and the slowest are WAY5 (310.629 s) and WAY6
(304.733 s). Most of the methods have no black points except WCY2 with 1260, WAY6 with 1024,
WAY5 with 476 andWEY6 with 16 black points.

Example 5.4: As a fourth example, we have taken a quartic polynomial:

p4(z) = z4 − 1. (58)

The basins are given in Figure 4. We now see thatWBZ5,WDY9,WEY6,WEZ1 andWEZ7 are the
worst. The best are thosewith smaller lobes along the diagonals. In terms ofANIP, SA is the best (2.98)
andWEY6 is the worst (5.83). The fastest is again SA (294.529 s) followed byWCX4 (297.104 s) and
the slowest is WEY6 (637.857 s). Most of the methods have 1201 black point with the worst being
WEY6 with 28,661 points.
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Figure 1. The top row forWAX1 (left),WAX6 (centre left),WAY4 (centre right) andWAY5 (right). The second row forWAY6 (left),
WBX1 (centre left),WBX6 (centre right) andWBY6 (right). The third row forWBZ5 (left),WCX4 (centre left),WCY2 (centre right)
andWCY6 (right). The fourth row forWDY9 (left),WEX6 (centre left),WEY6 (centre right) andWEZ1 (right). The bottom row for
WEZ7 (left),WFY4 (centre left),WFY6 (centre right) and SA (right), for the roots of the polynomial (z2 − 1).

Example 5.5: As a fifth example, we have taken a quintic polynomial:

p5(z) = z5 − 1. (59)

The basins for the best methods left are plotted in Figure 5. The worst are WDY9, WEY6, WEZ1,
WEZ7,WBZ5 andWBX1. In terms of ANIP, the best is SA (3.03) followed closely by WAY4 (3.06)
andWCX4 (3.07) and the worst areWEY6 (6.24) andWDY9 (5.08). The fastest is SA using 338.74 s
followed byWEX6 using 344.216 s and the slowest isWEY6 (749.054 s). There are 16 methods with
less than 10 black points. The highest number is for WEY6 (32,016) preceded by WEZ1 with 1879
black points.
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Figure 2. The top row forWAX1 (left),WAX6 (centre left),WAY4 (centre right) andWAY5 (right). The second row forWAY6 (left),
WBX1 (centre left),WBX6 (centre right) andWBY6 (right). The third row forWBZ5 (left),WCX4 (centre left),WCY2 (centre right)
andWCY6 (right). The fourth row forWDY9 (left),WEX6 (centre left),WEY6 (centre right) andWEZ1 (right). The bottom row for
WEZ7 (left),WFY4 (centre left),WFY6 (centre right) and SA (right), for the roots of the polynomial (z3 + 4z2 − 10).

Example 5.6: As a sixth example, we have taken a sextic polynomial with complex coefficients:

p6(z) = z6 − 1
2
z5 + 11(i + 1)

4
z4 − 3i + 19

4
z3 + 5i + 11

4
z2 − i + 11

4
z + 3

2
−3i. (60)

The basins for the best methods left are plotted in Figure 6. It seems that the best methods areWAX6,
WAY6, WBX6, WBY6, WCY6 andWFY6. The worst areWBX1 andWDY9. Based on Table 7, we
find that SA has the lowest ANIP (2.89) followed by WAX1 and WCX4 (2.96). The fastest method
is WCX4 (936.537s) followed by WAY4 (956.364s) and WAX1 (983.539s). There are 10 methods
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Figure 3. The top row forWAX1 (left),WAX6 (centre left),WAY4 (centre right) andWAY5 (right). The second row forWAY6 (left),
WBX1 (centre left),WBX6 (centre right) andWBY6 (right). The third row forWBZ5 (left),WCX4 (centre left),WCY2 (centre right)
andWCY6 (right). The fourth row forWDY9 (left),WEX6 (centre left),WEY6 (centre right) andWEZ1 (right). The bottom row for
WEZ7 (left),WFY4 (centre left),WFY6 (centre right) and SA (right), for the roots of the polynomial (z3 − z).

without black points and 10 methods with 10 or less. The highest number is forWEY6 with 16,657
black points.

Example 5.7: As a last example, we have taken a non-polynomial equation:

p7(z) = (ez+1 − 1)(z + 1). (61)

The basins for this example are plotted in Figure 7. the roots are at ±1 and it is expected that the
boundary will be close to the imaginary axis as in Example 1. All methods show a larger basin for the
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Figure 4. The top row forWAX1 (left),WAX6 (centre left),WAY4 (centre right) andWAY5 (right). The second row forWAY6 (left),
WBX1 (centre left),WBX6 (centre right) andWBY6 (right). The third row forWBZ5 (left),WCX4 (centre left),WCY2 (centre right)
andWCY6 (right). The fourth row forWDY9 (left),WEX6 (centre left),WEY6 (centre right) andWEZ1 (right). The bottom row for
WEZ7 (left),WFY4 (centre left),WFY6 (centre right) and SA (right), for the roots of the polynomial for the roots of the polynomial
(z4 − 1).

root at−1. The methods with the largest basin for+1 areWAX1,WAY4,WCY2,WEY6 andWEZ1.
In terms of ANIP,WAX1 is best (2.24) followed closely by WEZ7 (2.25), SA (2.28) andWAX6, and
WAY4 with 2.29. The worst is WFY4 with 2.80. The fastest method is WCX4 (326.572s) and the
slowest isWFY4 (419.066s).WAX1 has the least number of black points andWFY4 has the highest
(2395) such number. Based on these seven examples we see that SA has six examples with the lowest
ANIP, WAX1 and WAX6 each with one example. WCX4 is the fastest in two examples, WEX6 in
one example and SA is the fastest in the other four examples.
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Figure 5. The top row forWAX1 (left),WAX6 (centre left),WAY4 (centre right) andWAY5 (right). The second row forWAY6 (left),
WBX1 (centre left),WBX6 (centre right) andWBY6 (right). The third row forWBZ5 (left),WCX4 (centre left),WCY2 (centre right)
andWCY6 (right). The fourth row forWDY9 (left),WEX6 (centre left),WEY6 (centre right) andWEZ1 (right). The bottom row for
WEZ7 (left),WFY4 (centre left),WFY6 (centre right) and SA (right), for the roots of the polynomial (z5 − 1).

We now average all these results across the seven examples to try and pick the best method. SA
has the lowest ANIP (2.63) followed by WAX1 with 2.69, WAX6 and WCX4 with 2.73. The fastest
method is WCX4 followed by WEX6 (389.824s). WAX1 has the lowest number of black points on
average (333) followed by SA, WBX1 andWCX4.

Based on this, we recommendWCX4 since it is the only method mentioned as close to the top at
all three categories. SA andWAX1 are close to the top at 2 out of the three categories.

As concluding remarks of our study, we state the following results. Theorem 2.1 verifies that
convergence order of proposed family of methods (2) has been increased to 8 by means of weight
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Figure 6. The top row forWAX1 (left),WAX6 (centre left),WAY4 (centre right) andWAY5 (right). The second row forWAY6 (left),
WBX1 (centre left),WBX6 (centre right) andWBY6 (right). The third row forWBZ5 (left),WCX4 (centre left),WCY2 (centre right)
andWCY6 (right). The fourth row forWDY9 (left),WEX6 (centre left),WEY6 (centre right) andWEZ1 (right). The bottom row for
WEZ7 (left), WFY4 (centre left), WFY6 (centre right) and SA (right), for the roots of the polynomial z6 − 1

2 z
5 + 11(i + 1)/4z4 −

((3i + 19)/4)z3 + ((5i + 11)/4)z2 − ((i + 11)/4)z + 3
2 − 3i.

functions dependent upon function-to-function ratios in their second and third sub-steps. Compu-
tational aspects through a variety of test equations for selected cases well agree with the developed
theory, verifying the convergence order as well as asymptotic error constants. Dynamical aspects
among listed methods have been also illustrated through their basins of attraction not only with a
qualitative stability analysis on purely imaginary extraneous fixed points for a prototype quadratic
polynomial f (z) = z2 − 1 motivated by the earlier work of Vrscay and Gilbert [42], but also with a
quantitative statistical analysis for various polynomials pk(z) as well as a non-polynomial example.
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Figure 7. The top row forWAX1 (left),WAX6 (centre left),WAY4 (centre right) andWAY5 (right). The second row forWAY6 (left),
WBX1 (centre left),WBX6 (centre right) andWBY6 (right). The third row forWBZ5 (left),WCX4 (centre left),WCY2 (centre right)
andWCY6 (right). The fourth row forWDY9 (left),WEX6 (centre left),WEY6 (centre right) andWEZ1 (right). The bottom row for
WEZ7 (left),WFY4 (centre left),WFY6 (centre right) and SA (right), for the roots of the non-polynomial equation (ez+1 − 1)(z + 1).

We can determine which members of the proposed family of methods (2) give better convergence
from the illustrative basins of attraction.

In our future study, we will extend the current approach with other types of weight functions by
means of a different selection of parameters to a high-order family of simple- or multiple-root finders
in order to enhance the desired dynamical characteristics behind their purely imaginary extraneous
fixed points.
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