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Abstract

Hybrid methods for the numerical solution of second order ordinary
differential equations not containing y' are developed. The order p of
such stable k-step methods is not limited to p = k + 1 (k + 2). The
customary linear k-step schemes are modified by including the values of
the second derivative at one "offstep" point. It is shown that the order
of these hybrid methods is not subject to the above restrictions. Nu-
merical experiments are presented. It is shown that the maximal order

is achieved.

§1. Introduction
In this paper we are interested in developing direct methods for
the numerical solution of a special class of second-order ordinary dif-

ferential equation, namely
y'" (x) = £(x,y(x)). (1)

There exist methods of Runge-Kutta type which tackle this problem
directly (Collatz [2, p.61], de Vogelaere [9], Scraton {8]) and linear
k-step methods of the form

k , K
.y =h" L B.f 2)

j=0 1 ot j=0 3 ntj
(Henrici [6, p.289], Lambert {7, p.252]).

The direct application of methods of class (2) to problem (1), rather
than the application of a conventional linear multistep method to an
equivalent first-order system is usually recommended. Ash [1] studied
asymptotic errors by both approaches, for a subclass of methods, and finds

theoretical backing for this recommendation.
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A rigid theory of the stability and convergence of general multi-
step methods was developed by Dahlquist {3,4] and Henrici [6, p.307].
The following two notions are basic in this theory.

Let p(E), 0(E), the first and second characteristic polynomials of
the linear multistep method (2) be defined by

k .
PE) = I ok 3

5 sjaj. )
j=0

a(g)

Definition 1: The method (2) is said to be zero-stable if no root of th
first characteristic polynomial p(£) has modulus greater than one, and i

every root of modulus one has multiplicity not greater than two.

Definition 2: The method (2) has order p if the linear difference oper-
ator

k'
ajy(x+jh)-h2 L

k
Liy(x);h]l = &
=0 j=0

B.y" (x+jh), (5)
3 J

where y(x) is an arbitrary function, can be expanded in Taylor's series

as follows

Liy sl = ¢ hP %y PP 6 + 0@P*) ®)

2

and Cp+2 # 0. The number Cp+2 is called the error constant.

Definition 3: The method (2) is said to be consistent if it has order a
least one.

One can easily show that for a consistent method

p(l) = p'(1) =0, )
p'" (1) = 20(1). (8)

Theorem 1 (Henrici [6, p.307}):
The order p of a zero~stable method (2) cannot exceed k+2. A nec-

essary and sufficient condition for p = k+2 is that k be even, that all



roots of p(£) have modulus one, and that 0(£) be determined by

k' .
G(E) = I c,(E-1)3 9)
j=0 J

and cj are the coefficients in the expansion of

)

; ¢, (=13 (10)
(log £)° =0

N~ g

0

Since stability is a necessary condition for convergence, the last
theorem restricts the order of multistep methods for larger k. Although
p =2k - 1 could actually be attained if both p and O were chosen judi-
ciously (there are 2k + 1 independent parameters, see [3]), one has to
confine oneself to the use of schemes with p = k + 1 (or k + 2) to have
convergence. According to the previous theorem the only way to stable
methods of higher order lies in a modification of the method (2).

The approach to a relaxation of the previous theorem is similar to
that of Gragg and Stetter [5]. We include in (2) the second derivative
at a single offstep point X e with a real r ¢ Ik: = {0,1,...,k}, usually

noninteger. The values of f(x,y) at the point X~ and at Xk if

necessary - are predicted as usual. Since f(xn ) is not needed in

+r ke
further steps it requires no correction. Details are given in the next
section.

For a given p, the generalized k-step method with a 0 of degree k'
is normally of order pj:k' + 3. Even more striking is it, however, that
the attempt to utilize the full number of k + k' + 2 independent para-
meters for the construction of schemes of maximal order succeeds without

destroying stability.

In the next section the generalized algorithms are described. Sec-
tion 3 will be devoted to construction of optimal order algorithms for
which the first charactersitic polynomial, p, is given. Some examples
are given. In section 4 we discuss the construction of optimal stable
algorithms and give some examples. It is shown that such algorithms do

not exist for 2-step method. In the last section we present some of the
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numerical experiments performed. These experiments show that the order

is achieved.

§2, The Generalized Algorithms
The basis of our hybrid algorithms is the k-step difference operatoil

(1.5). This operator can be written in the form
Lly)3hl: = p(B)Y() - h20(E)y" () - h%8 E™y" (), I, )
where the translation operator E is given by
Ey(x) = y(x+h); (2)

p is a polynomial of degree k and O one of degree k' <k.
Predictors are used to obtain approximations to the values of the

derivative at x and also at x if k' = k. Let p*,p,0* and G be

n+r n+k
suitable polynomials of degree k-1 and p and O the polynomials of degree
k-1 for which p(z) = akzk - B(z),ak # 0; o(z) = Bkzk + 0(z). Assuming
the necessary initial data ym,fm* = fm = f(xm,ym) m=0,1,...,k-1, are

known, we have the following algorithms

I. k' <k Explicit Hybrid Method (EHM)

~ 2 A
(P £ 2= £(x sP(E)y, +h" 0(E)E)),
_ = 2 - 2,4
©) Yot = P(E)y +h G(E)f +h" B f .,
€ £t = Ty nds

II. k' = k Implicit Hybrid Method (IHM)

2
. = *
(Pk) f: K’ f(xn ,p*(E)yn +h" o (E)fn)’

]

~ -~ 2 A
(Pr) £ ot f(xn+r,p(E)yn + h O(E)fn),

- 2 - 2 2, %

e = *
c) Yotk P(E)Yn + h U(E)fn +h kan+k + h Brfn+r’
Cp) £t = £ oy n)s
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III. k' = k Simplified Implicit Hybrid Method (SIHM)

_ 2
(B £X ¢ = £(x 4, »P*(E)y + h7o*(E)E %),

A 2~
() £t = £Ge, PE)Y, + hO(EE X,

- 2 2 ~
. *
(©) ¥y 4pf = P(B)Y + h'O(B)E * + h'B £ .

Algorithm III omits the correction step (Cf) of the predicted value of f£.
In the last section we discuss the choice of the characteristic
polynomials S,S,p* and O%.
We now turn to the construction of stable operators (1) which are

of optimal order of accuracy.

§3. Optimal Order Algorithms with given p

The following development follows largely the theory of [6].
Lemma 2: (1.6) is equivalent to
—2@) 5@y - 82" = ¢ @-DP + o(&-1PY). o)
(log c)2 r pt+2

Proof: Express the translation operator E by the exponential of the
differentiation operator 3(8y(x): = y'(x)). Then the following is equiv-
alent to (1.6):

hor

0™y - n2a2[o(eM®) + B_e"T) = Cp+2hp+23p+2 +ow”y. @

Let [ be defined by
hd: log T = log(l + (T-1)). (3)
Thus

p(2) - (log DX [0(2) + 821 = ¢y, (log DFF + 0P, (@)

Dividing by (log C)z and using the Taylor expansion of log C

logg = ¢ L& (gyi-1 (5)



one obtains (1).

Corollary (Consistency conditions):

p(1) = p'(1) = 0,

p" (1)

20(1) + 28:‘

For p>1 it is necessary that

(6]
(7

Note that the second condition differs slightly from the usual conditior

p" (1) = 20(1).

Let's use the following notations:

Kk .k .
p(C) = ¢ ajc3= £ aj(c-l)J
3=0 j=2
k' .k
0@ = & Bzl = I b (D)
3=0 j=o0
__EXEl_E = ¥ dj(c-l)J
(log ) j=0
with
min (j,k-2)
dy = =0 3349851
where
6§ = %
37 4o Y131
and
-1 .

1= L Yi(c-l)i.
i=0

(8)

(9

(10)

11)

(12)

(13)

A table of values of Yi’si computed in quadruple precision on ITEL AS/6

computer follows:



WCoOoNGOTUVPWNRO

€

0.1000000000000Q+01

0.5000000000000Q+00
-0.8333333333333Q-01
0.4166666666667Q-01
-0.2638888888889Q-01
0.1875000000000Q-01
-0.1426917989418Q-01
0.1136739417989Q-01
-0.9356536596120Q-02
0.7892554012346Q-02
-0.6785849984635Q-02
0.5924056412338Q-02
~-0.5236693257950Q-02
0.4677498407042Q-02
-0.4214952239005Q-02
0.3826899553212Q-02
-0.3497349845350Q-02
0.3214496431324Q-02
~-0.2969447715458Q-02
0.2755390299437Q-02
-0.2567022545007Q-02
0.2400162378591Q-02
-0.2251470197759Q-02
0.2118249527295Q-02
-0.1998301255043Q-02
0.1889815463679Q-02
-0.1791290078072Q-02
0.1701468926370Q-02
-0.1619294049096Q-02
0.1543868596928Q-02
-0.1474427689061Q-02
0.1410315320613Q-02
-0.1350965912313Q-02
0.1295889455825Q-02
-0.1244659468109Q-02
0.1196903157952Q-02
~0.1152293347826Q-02
0.1110541798418Q-02
-0.1071393661517Q-02
0.1034622846280Q-02
-0.1000028129257Q-02
0.9674298734228Q-03
-0.9366672485568Q-03
0.9075958663861Q-03
-0.8800857605299Q-03
0.8540196543670Q-03
~-0.8292914703794Q-03
0.8058050428514Q-03
~-0.7834730024921Q-03
0.7622158069591Q-03
-0.7419608956387Q-03

Table 1

Dy

0.1000000000000Q+01

0.1000000000000Q+01
0.8333333333333Q-01
0.5777789833162Q-33
-0.4166666666667Q-02
0.4166666666667Q-02
-0.3654100529101Q-02
0.3141534391534Q-02
-0.2708608906526Q-02
0.2355324074074Q-02
~0.2067782237053Q-02
0.1832085738336Q-02
-0.1636938285923Q-02
0.1473644952946Q-02
-0.1335601777436Q-02
0.1217785362105Q-02
-0.1116346064718Q-02
0.1028304779072Q~02
-0.9513317383875Q~03
0.8835857729287Q-03
-0.8235970347234Q~-03
0.7701807833231Q-03
-0.7223734188781Q-03
0.6793845524365Q~03
-0.6405607345004Q-03
0.6053577377107Q-03
-0.5733191764914Q-03
0.5440598661754Q-03
~0.5172527600200Q-03
0.4926186116083Q-03
-0.4699177312257Q-03
0.4489433643643Q-03
-0.4295163367065Q-03
0.4114806952918Q-03
-0.3947001388135Q-03
0.3790550772309Q-03
-0.3644401964550Q-03
0.3507624308518Q-03
-0.3379392669331Q-03
0.3258973174791Q-03
-0.3145711176325Q-03
0.3039021040964Q-03
-0.2938877460843Q-03
0.2843308026127Q-03
~0.2753386854306Q-03
0.2668229106396Q-03
-0.2587486250710Q-03
0.2510841959113Q-03
~0.2438008540341Q-03
0,2368723830940Q-03
-0.2302748477415Q-03



For many considerations it will prove advantageous to use the trans-

formation

1+ 2z -
C_l-z’z C+1’ (14)

and to regard the polynomials

Kk Kk
R@: = (L32) o (3EE) = 1 Al (15)
§=2
Kk Kk )
s@: = (55 o (FEEy - 2ol (16)
=0
T (z r). = (1_-2_ )k (“_2 )r-_-. ; P k(r)zj (17)
| S 2 1-2 .i=0 j
1+ 2z 4=0
(log( 1X2 ))
with
[j£2]
D, = T'..A
3 jemax(0, [(j-k +1)/2] + 1) 21 3-21+2 (19)
where
h|
and
—= 1 op, .Y, (21)
log( i—t% ) j=0 23

A table of values of I'i,l'"i computed in quadruple precision on ITEL AS/6

computer follows:

210



Ty

0.5000000000000Q+00
~0.1666666666667Q+00
-0.4444444444444Q-01
-0.2328042328042Q-01
-0.1509700176367Q-01
-0.1089840200951Q-01
~0.8393775928167Q-02
-0.6751382525633Q-02
-0.5601872818859Q~02
-0.4758036597264Q-02
-0.4115603283675Q-02
~-0.3612232368697Q-02
-0.3208531515699Q-02
-0.2878477223144Q-02
-0.2604237829187Q-02
-0.2373215346437Q-02
-0.2176275061494Q-02
-0.2006643734005Q-02
-0.1859200541210Q-02
-0.1730007333731Q-02
-0.1615989427391Q-02
~0.1514713770781Q-02
-0.1424231678047Q-02
-0.1342965325821Q-02
-0.1269624507202Q-02
-0.1203144681134Q-02

Table II

211

L
I‘:l.

0.2500000000000Q+00
~0.1666666666667Q+00
-0.1666666666667Q-01
-0.8465608465608Q-02
-0.5361552028219Q-02
-0.3796697130030Q-02
-0.2877041437888Q-02
~0.2281781188307Q-02
-0.1869940275169Q-02
-0.1570735064702Q-02
-0.1345079881829Q-02
-0.1169791323597Q-02
-0.1030327440784Q-02
-0.9171471412289Q-03
-0.8237545952789Q-03
-0.7455881706886Q-03
-0.6793590701780Q-03
-0.6226418420693Q-03
~-0.5736121399162Q-03
-0.5308737971500Q-03
-0.4933418399012Q-03
-0.4601615331193Q-03
-0.4306512229904Q-03
~0.4042612470458Q-03
-0.3805439117184Q-03
-0.3591312314647Q-03



The fact that

r21 <0 fori>1

was proved in [3]. It is evident from table 2 that

A
T 24 <0 fori>1.

(23) implies

M
r.+zxn
2

0 >0 forM>1
i=0

i

since

M
lim £ T.. =o0.
Mro im0 21

Lemma 3: (1.6) is equivalent to

Jﬁ;z - 5(2) - BT (z;1) = zp‘kop+2zp + 0Py,

[log( $3-2)]

Proof: By transforming equation (1) and observing that

2z

t-l=1Ty

= 2z(1+ z +...)

the assertion follows.

One reason for the transormation (14) is

Lemma 4 (Henrici [6, pp.305-306]):
For p to be stable it is necessary that

A, $ 0; AjA, >0 for i = 3,4,...,k.

(22)

(23)

(24)

(25)

(26)

(27)

We will usually use A2 = 1 as a normalization and use (27) in the

form Ai_z 0 for i = 3,4,...,k.
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The next lemma concerning the properties of Pik(r) of the expansion

(17) and

K
) =z Pik(r)
1=0

was proved in [5].
Lemma 5 (Gragg and Stetter [S, p.193]):

sk
i

(1) ?k is a polynomial of degree k; P k

i

@ 20 = D Fo.

(3) P(r)=0 forr=20,1,...,k-1,

§k(r) >0 forr>k-1,

Pik(r) =0 forr=20,1,...k, 1 > k+ 1,

Pik(r) >0 forr>k,i>k+1.

(4) TFor even i

i
) B =1,
PNk +1) =2 fori>k+1
6 B = (), B () = 2G5, PE, () = 2G5

P” and P k have the following properties:

(28)

is a polynomial of degree 1i.

k >0, P k has an additional zero at i = k/2.

2r-k
k+2 °

(7) For i > k + 1, each PE is a polynomial multiple of fk and of

k
k+1°

k
kt+2°

P

of P

Each Pik with even i - k > 0 is a polynomial multiple

Definition 4: A polynomial is called admissible for k' if it is of degree

k > k' and if the coefficients di

213°

in (11) satisfy



deray 105

1]
(&' +2) dpyy, +md,

$0 form-=1,2,...

k' 41

(29)

Theorem 6: Let p be a polynomial admissible for k' and let p(l)=p'(1)=0

Then there exist uniquely a polynomial 0 of degree k', a constant Br and

a real number r ¢ Ik’ such that the order p of the corresponding operato:

L satisfies p > k' + 3.

Proof: By lemma 2 it must be shown that o, Br and T ¢ Ik’ can be chosen

such that
dy=b, +8.(D), §=01,...,k,
r
iy = Bl
dpryp = B (k 42)
Since dk'+1 * 0 by hypothesis, we have from (31) - (32) that

dk '+2

gy

r=k'+1+—"2% (k'+2)¢1 .

This implies that (,,..) + 0; hence

k' +1

dyrn
=k

(

8 r
k'+1)

The bj (and thus 0) are determined from (30).

Examples
I. Generalized Stormer-Cowell methods: p(Z) = Ck
k-2, .2 K2 4o 142
From p(Z) = ¢~ “(z-1)" = I ( {21 we have
i=0

214
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(31)

(32)

(33)

(34)



min(j,k-2)
d, = z 8,
h| i=0 k|

-1 ( i ) -
From (29) - (33) we obtain, e.g., the following corrector:
k=3, k'=2, r=2.8, Br=.1240079

= h2(-.0059524 £ + .1111111f ., +
n n+

Yn#3 ~ 2yn+2 + Yn+1 1

(35)

.7708334 fn+2 + .1240079 fn+2.8)

P25

Note: If k=2, k'=1l then d3=0 and the polynomial is not admissible. If

k=k'=2 then r=2 and again the polynomial is not admissible.
II. Arbitrary stable p for k=3:

pE) = (c-1)*(ay-agta D)

with
2y
0<—2<2 (36)
a
3
a) k' =2,
dg = 385 = 3,
dl = a261 + a360 = a, + a,
2
d2 = a262 + 3351 = i§-+ aq
)
dy = a)83 + 236, = 33
2
d, = 28, * 2383 = - 735
d a a
r=3+4-2=23--2 o>_241 2, 3 (37
d3 5a3 Sa3
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-3
LR
3
by = a, - B,

=1 _r(r-1)
b, =373, % 3, 7 By

If we let a, = %, a 1 (These satisfy (36), (37)), then

2

r=2.9, Br = ,1008267

b, = .5 - .1008267 = .3991733

0
by = 1.5 - 2.9 - .1008267 = 1.2076026
by = 5 + 1 - 2229 3008267 = 7638891
By = --0445402, B, = -.3201756, B, = .7638891
ao = -.5, al =2, az = =2.5, a3 =1
2
Yoa3 = 25 Yoy + 24 - -5y = hO(-.0445402 £ - .3201756 £
+ .7638891 £, + .1008267 £ ,, o).
P25
b) k' =3
] ) 1
ds = a8 + a8, = (s, - a3) 375
a, — a a
r=4+s532—2.53_
2 2
Let a, = 1.5, ay = 1 then r = %, Br = ,2169642
" by = 1.2830358, b, = 1.9937502, b, = .7875002, b, = 0458334,
By = -0309524, B, = .55625, B, = .641, B, = .04858334,
ao = .5, al =0, a2 = -1.5, cx3 = 1.
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2
Yotz = 15 ¥y + -5y, = b (.0309524 £+ .55625 £

+.641 fn+ + .0458334 fn+3 + .2169642 £

2 n+7/3)
p>6.

Note: For k = 2 the polynomial is not admissible as in case I.

§4, Optimal Stable Algorithms

For k > 2, we now try to construct stable operators L of any order

p=k'+ k+ 1, this being the maximum value to be expected with
k' + k + 2 independent parameters.
Extending the approach of the previous section, one could try to

choose r such that the k linear equations for aZ""’ak’Bt’

k-2 '
dj Br(j) iﬁo ai+26j—i (j) Br 0, 3=%k"+1,...,k +k (1)
have a nontrivial solution. The determinant of (1) is a polynomial of
degree k' + k in r which has the k' + 1 trivial zeros r = 0,1,...,k'
leading to Br + 0, all a; = 0. The remaining real zeros, if any, could

be tested as to whether they produce a stable p or not. This straight-
forward method becomes quite complicated even for small values of k.

We would like to describe a method based on the transformation (3.14)
and lemma &.

According to lemma 3, consider the relations

ko - =
By + B Pi(T) =Dy 3= 0,100k, (2)
82X () =D 1=1,2 k (3)
rkH leki® 2Eaeeesls

where the Di are the linear combinations (3.19) of the Ai.

If k' = k, it is sufficient to regard (3) only, since (2) can then
be satisfied by choosing the B
0(L) of degree k:

accordingly and S(z) generates a polynomial

3
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k

o) = (c+ X s(E-E) =5 B, c- Dig+n¥L )
c+17 T 01
k
If k' = k-1, S has to satisfy S(1) = I Bi = 0. Therefore we add all
i=0

equations (2) and obtain another equation of the type (3):

Srl_’k(r) - D, =: D,. (5)

W
(=

[N

~

Hence we will in each case consider a system of k linear equations for

AZ""’Ak’Br’ consisting of either (3) for i = 1,2,...,k or of (5) and

(3) for i = 1,2,...,k-1.

Note that for a stable p whose zeros are not all on the unit circle

Dys < 0 fori=1,2,... (6)

and

D, > 0. n

(6) follows immediately from (3.19), (3.23) and lemma 4, while (7)

requires also (3.24). From lemmas 5,6, we have the necessary condition

for stability

X o if k' = k,
F<r< (8)
k if k' = k-1.

Further restrictions on r may be obtained from the system of equations a
lemmas 5,7. If these restrictions turn out to be contradictory no stabl

operator with maximal order exists. Otherwise we compute the determinan

of the system and obtain a polynomial of degree k' + k but has Pt+l or p

a factor. Thus an algebraic equation of degree k-1 has finally to be
solved to find a value of r which, hopefully, satisfies all the restric-~

tions.
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The following lemma will simplify the construction of optimal stable

methods.

Lemma 7 The polynomial Pt+j(r) can be written in the form

k _ I 4 j-1 r
Py @ = 220 (3 00 Gy 9)
i=1
Proof:
l1-2z 1+z
> oy 5Ty () g ke 14z j
L D,z" = = ) L d.( -1)
j=0 i l+z 2 2 j=0 it 1l-2
(log (1))
oo .k; k.
= 1 d,29” zJ(l-z) ~J
j=0
Thus
i i
= Jeoqyi=d -3y 2 j  i-1
Dyts jil dpy 27D ‘23) = jil dewy 2 G450 (10)

Combine (10) with lemmas 2 and 3 yields (9). (9) is particularly helpful

for the evaluation of the quotients

k

P (r)
Qf(r) ¢ = 2L an
P
k+1
and
k
- P (r)
oy = 2 (12)
2 (T
Examples

I. k=3, k'=2
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Find A2, A3, Br such that

3,0y 2 pr
BrPa(r) = I‘4 A2
3,y = pr
Brps(r) = r4 A, (13)

r=._ 1 1 1] ]
Br(k) (I‘0 + Fz) A2 + (I‘O + FZ) A3
A2 will be taken to be 1.
It can be shown that
I‘l

r2-2r-3-5 r'_+ll:' = 0. (14)
o'z

The only acceptable root is r = 2.7320522.

For this r one obtains

™
[}

.215469

.4928203

>
1

The coefficients aj’sj are given by

% 2.9433755, o = -4.886751, o, = .9433754, a, = 1,

2 3

B .0173967, Bl = 1.542232, B2 = 2.1411683.

0
The following method of order 6 is then obtained

+ .9433754 Yot2 = 4.886751 Yot1 ¥ 2.943375 Y =

Yn+3 1

2
h™(.0173967 fn + 1.5422232 fn+ + 2.1411683 fn+2 (15)

1

+ .215469 £ 5 732052

II. k=k'=4

Find Az, A3, A4’ Br such that
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I
=]
It
ar ]
>

4
(1) BPBs(r) =Dg=T," Ay

"
=
]

4
(ii) B P, (x) r'a
r6 6 4 (16)

1]
=
1
-1
>

(i11) B P1(r)

(1v) B Pg(x)

[}
(=)
[}
—~
>
+
-
®

>

Az will be taken to be 1.

From (iii)/(i) we have

2
(2r —42) + 6 _ Qi (r) = ———— = =2 = ,5079364

—~
N
[a]
[~
[a] I
|
~
-~ ~
" n
[
w
W

+ 3.91575
3.957875

2]
L}

.04211

o]
L}

It turns out that these are the zeros of the determinant of the system.

Note that only Ty satisfies the stability condition (8). The system can

now be solved for the Ai and yields A2=l, A3=.793357, A4=.00983138,

B_=.8580827. The polynonial b(£)=1.903188" -1.6260388¢> -1.941022¢7

+1.547388c+ .2164753.

The coefficients Bi are as follows

Bo=.1963698, Bl=—.01166&8, B2=-.4705706, B3=-.318896, B4=_'0490925'

Thus the second characteristic polynomial

0(z) = -.758837¢% +1.596311c> +1.824805¢7 +.367384C +.0072672 .
The following method of order 9 is obtained

Yot = .8543763 Yot3 1.019879 Y42 + .8130508 Yo+l + .1137435 Yo

2
= h%(.0038184 £_+ .1930378 £, + .9588148 £ ., + .8387563 f 4

- .3987188 fn+ + .4508657 £ ).

4 n+3.9578899
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§5. Numerical Experiments

In this section we report on some of the numerical experiments per-
formed. The following two simple differential equations were solved
using method (3.35) of order 5 and method (4.15) of order 6.

I. y" =y 0<x<1
y(0) =1
y'(0) = 1 (1)
Yexact
II. y" =~y 0<x <27
y(@) =1 (2)
y'@) =0
Yexact = €08 ¥
The predictors used can be obtained (see Lambert [7]) by solving a systen
of equationms.
Predictor for method (3.35):

Ynt2.8 ° °8yn+2 1.2 Va1 ~ Yn

2
+ h™ (.781733 fn+2 + .828533 fn+ + .109733f ). (3)

n

1

Predictor for method (4.15):

Ya+3.732052 = -2.778418 Yot3 + 8.123930 Ynt2 = 4.180555 Yo+l

- .164957 Yo + hz(.986623 fn+ + 3.743048 fn+ + .585227 fn+

3 2 1
- .005498 fn). (4)

The results for various values of n for each problem and method are given

in the following four tables. The order of the method was computed numer-

ically and shown to be at least as it was proved theoretically.
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10
20
30
40
50
60
70
80
90

Error
.54982119(-5)
.16540029 (-6)
.21363790(~7)
.50158089 (-8)
.16325752(-8)
.65308425(-9)
.30115020(-9)
.15407098(-9)
.85328238(-10)

Table I

Problem (I), method (3.35) of order 5

10
20
30
40
50
60
70
80
90

Error
.55863299(~7)
.87891486(-9)
.75632642(-9)
.13281541(-10)
.34502395(-11)
.11480433(-11)
.45309596(-12)
.20239435(-12)
.99639686(-~13)

Table II

Problem (I), method (4.15) of order 6
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4.69
4.84
4.89
4.92
4.93
4.94
4.95
4.96

5.56
5.80
5.87
5.90
5.92
5.94
5.95
5.95



10
20
30
40
50
60
70
80
90

Error

.12554858(-2)
-33795300(-4)
.41327168(-5)
.94311463(-6)
.30172961(-6)
.11931829(-6)
.54567916(~7)
.27744983(-7)
.15291934(-7)

Table III

Problem (II), method (3.35) of order 5

10
20
30
40
50
60
70
80

Error

<24116254 (-4)
.45827052(-7)
.23188211(-8)
.30586932(-9)
.64652911(-10)
.62572205(-11)
+24776324(~11)
.10940173(~11)

Table IV

Problem (II), method (4.15) of order 6.

Note the superconvergence in this last experiment.
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4.84
4.97
4.99
4.99
4.99
5.00
5.00
5.00

8.38
7.06
6.84
6.81
6.82
6.84
6.86
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