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Abstract

Hybrid predictors and correctors of order k + k' + 1 are con-
structed for the numerical solution of second order differential
equations not containing the first derivative explicitly. These
methods are based on both explicit (k'=k-1) and implicit (k'=sk) linear
k-step methods.

§1. Introduction

The numerical solution of the special class of second order dif-

ferential equations

y*{x} = £(x,y(x)),
(1) y(xo) =Yg

y'(xg) = Yor

via Runge-Kutta type method was discussed by e.g., Collatz (2, p. 61},

de Vogelaere [l1) and Scraton [10]). Linear k-step methods of the form
k 2 k'
2 . . =h S S
(2) jzoajyn+J jZOBJ n+j

for the solution of (1) were discussed by e.g., Henrici [6, b. 289])
and Lambert [7, p. 252]. The direct application of methods of class
(2) to problem {1), rather than the apolication of a conventional
linear multistep method to an equivalent first-order system is usually
recormended (see Ash [l]1).

A rigid theory of the stability and convergence of general multi-

step methods was developed by Dahlquist {3, 4] and Henrici [6, p. 307].

Definition 1: The method (2) is said to be zero-stable if no root of

the first characteristic polynomial

LI
(&) p(g) = ] aiE
j=0 J
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has modulus greater than one, and if every root of modulus one has

multiplicity not greater than two.

Definition 2: The method (2) has order p if the linear difference

operator

k k'
(4) Ly(x)ihl = ] ay(xrsh) = h? ] gy (x+3h),
3=0

where y(x) is an arbitrary function, can be expanded in Taylor's

series as follows
(s) Liy(x)sh) = ¢, hP* 2y P*2) ) 4 o mP*Y)

and Cp+2 # 0. The number Cp+2 is called the error constant.

Definition 3: A method (2) is said to be consistent if it has order

at least one.

One can easily show that for a consistent method

(6) p(l) = p'(1) = 0,
(7 o™ (1) = 20(1),
where
k' .
(8) atg) = J B.gl
j=o )

is called the second characteristic polynomial.
Theorem {(Henrici [6, p. 307]):

The order p of a zero-stable method (2) cannot exceed k + 2. A
necessary and sufficient condition for p = k + 2 is that k be even,
that all roots of P(f) have modulus one, and that o(f) be determined
by

k
(9) olg) = ]

c. (g-13
j=o0 7

and Cj are the coefficients in the expansion of

(10) ol8) . 7y ¢, (e-nd,
{logk) j=0 3
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since stability is a necessary condition for convergence, the
last theorem restricts the order of multistep methods for larger k.
Although p=k +k'-1 could actually be attained, ore has to confine
oneself to the use of methods of order k + 1 (or k + 2) to have con-
vergence.

The approach to a relaxation of the previous theorem is discussed
by Neta and Lee [8]. One includes in (2), the second derivative at
a single offstep point Xosr’ with a real r ¢ Ik: = {0,1,...,k}, usu-
ally noninteger.

For a given o, the generalized k-step method with a o of degree
k' is of order p > k' + 3. Such correctors with the necessary pre-
dictors for k < 10 were constructed by Neta [9] for Stdrmer-Cowell
type methods. In [8], it was shown that methods of maximal order
(p=k+k'+l) exist. The purpose of this note is to construct explicit
and implicit maximal order correctors of step k < 10 if exist. We
also construct predictors of the same or higher order. The general
form of the corrector is

k-1 zk' 2
(11) Yn+k + izoaiyn+i =h Z Bifn+i +h erfn+t

and the predictor

k-1

« 7 oPy 4Py - hzkfl BPe . + n’gP_ £
iY r-1"n+r-1 icm i“n+d
=

(12) Yoer jom, & n+i r-l n+r-1
1

where m, may take the value of -1. Note that this predictor is using
the values y . 3/ fn+r-1' These values are available after the
first application of this hybrid method (n>0). This idea is new and
may replace the necessity of taking my vqual to -2. For implicit
method one requires also a predictor for Yosk®

(13 + kil & 4o = hzkil 8% . + n2gSf
3} Yo e ¥nsi * Or¥nar T 7 L Fitnei rin+r’

where m, may take the value of -l1. Note that this predictor is using

£ . This form of predictor is different from the

the values Yosr' fnsr

one suggested in (8, 9].

In the next section we construct the maximal order correctors.
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In Section 3 we give the predictors.
§2. Corrector methods

In this section we construct explicit and implicit correctors of
order k + k' + 1. We follow the method described in (8] for construct-
ing such correctors. We choose r such that the k homogeneous linear

equations for LD YERRTL Ny -

k-2
r . e
(14) iﬁoam“j--i - ()8 =0 § = k" +1,k' +2,...,k' +k
have a nontrivial solution. The number Gl are given in Table 1 [g]

and the ai's relate to ui's via

k .
1
(15) plg) = Zzai(i'-l) .

1=

The determinant of (14) is a polynomial of degree k' + k in r which
has the k' + 1 zeros r = 0,1,...,k', leading to Br # 0 and all a; = 0.
The remaining real zeros, if any, could be tested as to whether they
produce a stable p or not. The necessary condition for stability is

given in [8]

o if k' = k
(16) §<x<
k if k' =k - 1.

Using this method we found there exists no explicit method of step
7 ¢ k <10 and no implicit method of step 5 < k < 10. 1In all these
cases we found that all remaining zeros r were complex. For explicit
methods with step k = 4, 5 the only real zero was r = k, i.e.,
r € I,, which is not admissible.

The only four methods are given in Table 1. The results obtained

using quadruple precision.
§3. Predictors

In this section we first discuss the predictors for Yosr and then

the predictors for y required for implicit methods only. The pre-

n+k
dictors suggested in the literature (Gragg and Stetler [5], Neta and
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Lee [8) and Neta [9])}, require the knowledge of Y,.; and even Ynoo-

Clearly, the problem is for n < 2.

instead of y

Yn-2-

k
K
P

error
constant

The value of y

n-2"'

.19506961-2

.33974596
.32050807
~.1660254+1

1.

.27320508+1

.14433757
~.24519053-1
-.58384716-1

.10283122+1

a+r-1

write the predictors as follows:

B
+ a
r

where m, may take the value of -L.

The coefficients u?, ﬁf, i=

Here we suggest to use y

n+r-1

thus remedying those cases for which one requires

is available to the user for n > 1. We
3 q &
3 4 5
7 9 12
~.40974629-3 .10237162-3 ~.26351551-1
.21955646 .12005172 .44073883
.56088708 .85814015 -.23561119-1
-.17804435+1 -.10764355+1 -.24600533+2
1. -.90175640 .16340591+2
- 1. .40010967+2
- - ~-.33168203+2
- - 1.
.30998512+1 .39578900+1 .526096G10:1
-.17060250 .47587450 .22793114+1
.19037446 -.47607846 -.24788779+1
.42966196 -.24184615 -.32420131
.10399476+1 .46318699 -.73093719+1
.88414818-1 .51181710 -.19288598+2
- .7775689-1 ~.33695301+2
- - -.10898672+1
Table 1
k-1
-1¥n+r-1 < hz.z B?fnﬂ'. + h“,Bll.:',-lfn-l»r-l
i=m,
LITRRN R Y ughl. 35-1' the order

p and the error constant are given in Table 2 for all methods.

Note that for j-step method we need values at 0

-1
to be able to construct a method of order higher than 6.

and
e Xner-1

The 6th-

order method, using only values at Apoyr has an error constant larger

245



than the corrector and order equal to that of the corrector. For the
4-step method we constructed two methods of order 10, one uses the

values at x _, and x and the other using the values at X,y @nd

n+r-1

X2 As mentioned before, the first one can be used for n > 1 where-

as the second can be used only after n > 2. The 6-step, l2th-order

method requires only values at Xosr-1°

Since v is computed

Now, we turn to the predictor for Yo+k® Yo+r

we can utilize it to obtain Yoek® The predictors are of the form

k-1 k-1
- 2 e, _ .2 e 2.e
Yrex * z i¥nsi * OTper T D Z Bifnes * P 3 500y
i=m i=m,
Since y f increase the number of free parameters by 2, it was

“n+ir’ Tn+r
possible to take my = ~l. We also were able to obtain predictors of

order higher than correctors. This alleviated the problem created
by the relatively large error constants of predictors compared to
correctors. If we take my = 0 the number of parameters is not enough

to obtain a method of order k + k' + 1.

. 3 3 ) ‘ 6
k' H 3 ) 4 s

p 6 8 10 10 12

Cpyg | -15343044-2 | .37799083-3 | .32657995-3 | .45316620-4 | 269296247
o - -.1636704143 - .43155998+3 | -.2787004141
of, - - .89183517 - -

of 16495722 -.3470708541 | 4822566842 | -.20987953+1 -

af 4180554841 [ =.17210929+2 | .9714275342 | -.2174205642 | -.65123495-2
of -.81239305+1 | .29591150+2 | -.29265853+3 | .5358717441 | -.11831175
nd 2778418441 | .15376090+3 | .974B4B40+2 | .45ABBB2242 | -.22584136
af - - L4791363242 | -.4597666743 | .32949617
uz - - - - 2865113341
u; - - - - -.10369400+1
8%, - 1557328742 - -.5589154942 | .37920207
8%, - - .38973204-2 - -

8%, | -.54985740-2 | -.16795316 .40910386+1 | -.87317361-1 -

14 58522790 L.5301206141 | .6201785742 | -.3996716641 | -.23607188-3
8? LI743047941 | -.2010753942 | .16583176+) | -.2606462442 | -.15269409-1
8% 98662380 -.2642214242 | 6191829442 | -.3878541442 | -.15557853
8% - - 4116963541 | 4460126142 { -.44728515
6 - - - - -.54763223
€l - - - - 969759791

Table 2
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k* 3 4
P 8 10
c:;:::nt -.496080214-3  -.47842068-6
af 1394142441 -.11071926+1
o, .35465085+1  .15454834-1
u: .14205646+2 .13557671
u§ -.36517468+42  -.13269980
L L16371171+42  -.26371860
n§ - 35257943
8% 11444377 .57198711-2
8%, .17608964 .66125882-3
83 .52155324+41 .27989375-1
87 1750463442 .15770493
83 L 4444374441 .15303799
83 - -.16592532-1

Table 3
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