CONGRESSUS NUMERANTIUM

VOLUME 46

MAY, 1985

WINNIPEG, CANADA

Hybrid Predictors and Correctors for Solving a Special Class of Second Order Differential Equations

by

Beny Neta Texas Tech University Department of Mathematics Lubbock, Texas 79409

Abstract

Hybrid predictors and correctors of order k+k'+1 are constructed for the numerical solution of second order differential equations not containing the first derivative explicitly. These methods are based on both explicit (k'=k-1) and implicit (k'=k) linear k-step methods.

§1. Introduction

The numerical solution of the special class of second order differential equations

$$y^{*}(x) = f(x,y(x)),$$

$$y(x_{0}) = y_{0},$$

$$y^{*}(x_{0}) = y_{0}^{*},$$

via Runge-Kutta type method was discussed by e.g., Collatz [2, p. 61], de Vogelaere [11] and Scraton [10]. Linear k-step methods of the form

for the solution of (1) were discussed by e.g., Henrici [6, p. 289] and Lambert [7, p. 252]. The direct application of methods of class (2) to problem (1), rather than the application of a conventional linear multistep method to an equivalent first-order system is usually recommended (see Ash [1]).

A rigid theory of the stability and convergence of general multistep methods was developed by Dahlquist [3, 4] and Henrici [6, p. 307].

<u>Definition 1</u>: The method (2) is said to be zero-stable if no root of the first characteristic polynomial

(3)
$$\rho(\xi) = \sum_{j=0}^{k} \alpha_{j} \xi^{j}$$

CONGRESSUS NUMERANTIUM, 46 (1985), pp. 241-248

has modulus greater than one, and if every root of modulus one has multiplicity not greater than two.

<u>Definition 2</u>: The method (2) has order p if the linear difference operator

(4)
$$L[y(x);h] = \sum_{j=0}^{k} \alpha_{j} \underline{v}(x+jh) - h^{2} \sum_{j=0}^{k'} \beta_{j} \underline{v}''(x+jh),$$

where y(x) is an arbitrary function, can be expanded in Taylor's series as follows

(5)
$$L[y(x);h] = C_{p+2}h^{p+2}y^{(p+2)}(x) + 0(h^{p+3})$$

and $C_{p+2} \neq 0$. The number C_{p+2} is called the error constant.

<u>Definition 3</u>: A method (2) is said to be consistent if it has order at least one.

One can easily show that for a consistent method

(6)
$$\rho(1) = \rho'(1) = 0,$$

(7)
$$\rho^*(1) = 2\sigma(1),$$

where

(8)
$$\sigma(\xi) = \sum_{j=0}^{k'} \beta_j \xi^j$$

is called the second characteristic polynomial.

Theorem (Henrici [6, p. 307]):

The order p of a zero-stable method (2) cannot exceed k + 2. A necessary and sufficient condition for p = k + 2 is that k be even, that all roots of $\rho(\xi)$ have modulus one, and that $\sigma(\xi)$ be determined by

(9)
$$\sigma(\xi) = \sum_{j=0}^{k^*} c_j (\xi-1)^j$$

and $C_{\underline{j}}$ are the coefficients in the expansion of

(10)
$$\frac{\rho(\xi)}{(\log \xi)^2} \approx \sum_{j=0}^{\infty} C_j (\xi-1)^j.$$

Since stability is a necessary condition for convergence, the last theorem restricts the order of multistep methods for larger k. Although p=k+k'-l could actually be attained, one has to confine oneself to the use of methods of order k+l (or k+2) to have convergence.

The approach to a relaxation of the previous theorem is discussed by Neta and Lee [8]. One includes in (2), the second derivative at a single offstep point \mathbf{x}_{n+r} , with a real $\mathbf{r} \notin \mathbf{I}_k \colon \# \{0,1,\ldots,k\}$, usually noninteger.

For a given ρ , the generalized k-step method with a σ of degree k' is of order $p \geq k' + 3$. Such correctors with the necessary predictors for $k \leq 10$ were constructed by Neta [9] for Störmer-Cowell type methods. In [8], it was shown that methods of maximal order (p=k+k'+1) exist. The purpose of this note is to construct explicit and implicit maximal order correctors of step $k \leq 10$ if exist. We also construct predictors of the same or higher order. The general form of the corrector is

(11)
$$y_{n+k} + \sum_{i=0}^{k-1} \alpha_i y_{n+i} = h^2 \sum_{i=0}^{k} \beta_i f_{n+i} + h^2 \beta_r f_{n+r}$$

and the predictor

$$(12) \quad \gamma_{n+r} + \sum_{i=m_1}^{k-1} \alpha_i^p \gamma_{n+i} + \alpha_{r-1}^p \gamma_{n+r-1} = h^2 \sum_{i=m_1}^{k-1} \beta_i^p f_{n+i} + h^2 \beta_{r-1}^p f_{n+r-1}$$

where m_1 may take the value of -1. Note that this predictor is using the values y_{n+r-1} , f_{n+r-1} . These values are available after the first application of this hybrid method (n > 0). This idea is new and may replace the necessity of taking m_1 equal to -2. For implicit method one requires also a predictor for y_{n+k} .

(13)
$$y_{n+k} + \sum_{i=m_3}^{k-1} \alpha_i^e y_{n+i} + \alpha_r^e y_{n+r} = h^2 \sum_{i=m_3}^{k-1} \beta_i^e f_{n+i} + h^2 \beta_r^e f_{n+r}$$

where m_3 may take the value of -1. Note that this predictor is using the values y_{n+r} , f_{n+r} . This form of predictor is different from the one suggested in [8, 9].

In the next section we construct the maximal order correctors.

In Section 3 we give the predictors.

\$2. Corrector methods

In this section we construct explicit and implicit correctors of order k+k'+1. We follow the method described in [8] for constructing such correctors. We choose r such that the k homogeneous linear equations for $a_2, \ldots, a_k, \beta_r$,

have a nontrivial solution. The number $\delta_{\,\ell}$ are given in Table 1 [8] and the $a_{\,i}\,'s$ relate to $\alpha_{\,i}\,'s$ via

(15)
$$\rho(\xi) = \sum_{i=2}^{k} a_{i}(\xi-1)^{i}.$$

The determinant of (14) is a polynomial of degree k' + k in r which has the k' + l zeros r = 0,1,...,k', leading to $\beta_r \neq 0$ and all $a_1 = 0$. The remaining real zeros, if any, could be tested as to whether they produce a stable ρ or not. The necessary condition for stability is given in [8]

(16)
$$\frac{k}{2} < r < \begin{cases} \infty & \text{if } k' = k \\ k & \text{if } k' = k - 1. \end{cases}$$

Using this method we found there exists no explicit method of step $7 \le k \le 10$ and no implicit method of step $5 \le k \le 10$. In all these cases we found that all remaining zeros r were complex. For explicit methods with step k = 4, 5 the only real zero was r = k, i.e., $r \in I_k$, which is not admissible.

The only four methods are given in Table 1. The results obtained using quadruple precision.

Predictors

In this section we first discuss the predictors for y_{n+r} and then the predictors for y_{n+k} required for implicit methods only. The predictors suggested in the literature (Gragg and Stetler [5], Neta and

Lee [8] and Neta [9]), require the knowledge of y_{n-1} and even y_{n-2} . Clearly, the problem is for n < 2. Here we suggest to use y_{n+r-1} instead of y_{n-2} , thus remedying those cases for which one requires y_{n-2} . The value of y_{n+r-1} is available to the user for n > 1. We

k	3	3	4	6
k'	2	3	4	5
Р	6	7	9	12
error constant	.19506961-2	40974629-3	.10237162-3	26351551-3
α0	.33974596	.21955646	.12005172	.44073883
α1	.32050807	.56088708	.85814015	23561119-1
α2	1660254+1	17804435+1	10764355+1	24600533+2
^α 3	1.	1.	90175640	.16340591+2
3 4	-	30	1.	.40010967+2
^a 5		-	-	33168203+2
α ₆	-	÷	-	1.
r	.27320508+1	.30998512+1	.39578900+1	.52609010-1
βr	.14433757	17060250	.47587450	.22793114+1
βo	24519053-1	.19037446	47607846	24788779+1
81	58384716-1	.42966196	24184615	32420131
β2	.10283122+1	.10399476+1	.46318699	73093719+1
β3	-	.88414818-1	.51181710	19288598+2
β4	-	-	.7775689-1	33695301+2
ß ₅	-	-	- 1	10898672+1

Table 1

write the predictors as follows:

$$\mathbf{y_{n+r}} + \sum_{i=m_1}^{k-1} \alpha_{i}^{p} \mathbf{y_{n+i}} + \alpha_{r-1}^{p} \mathbf{y_{n+r-1}} = \mathbf{h}^{2} \sum_{i=m_1}^{k-1} \beta_{i}^{p} \mathbf{f_{n+i}} + \mathbf{h}^{2} \beta_{r-1}^{p} \mathbf{f_{n+r-1}}$$

where m₁ may take the value of -1.

The coefficients α_1^p , β_1^p , i = m_1,\ldots,k - 1, α_{r-1}^p , β_{r-1}^p , the order p and the error constant are given in Table 2 for all methods.

Note that for 3-step method we need values at x_{n-1} and x_{n+r-1} to be able to construct a method of order higher than 6. The 6th-order method, using only values at x_{n-1} , has an error constant larger

than the corrector and order equal to that of the corrector. For the 4-step method we constructed two methods of order 10, one uses the values at \mathbf{x}_{n-1} and \mathbf{x}_{n+r-1} and the other using the values at \mathbf{x}_{n-1} and \mathbf{x}_{n-2} . As mentioned before, the first one can be used for n > 1 whereas the second can be used only after n > 2. The 6-step, 12th-order method requires only values at \mathbf{x}_{n+r-1} .

Now, we turn to the predictor for \mathbf{y}_{n+k} . Since \mathbf{y}_{n+r} is computed we can utilize it to obtain \mathbf{y}_{n+k} . The predictors are of the form

$$y_{n+k} + \sum_{i=m_3}^{k-1} \alpha_i^e y_{n+i} + \alpha_r^e y_{n+r} = h^2 \sum_{i=m_3}^{k-1} \beta_i^e f_{n+i} + h^2 \beta_r^e f_{n+r}$$

Since y_{n+r} , f_{n+r} increase the number of free parameters by 2, it was possible to take $m_3 = -1$. We also were able to obtain predictors of order higher than correctors. This alleviated the problem created by the relatively large error constants of predictors compared to correctors. If we take $m_3 = 0$ the number of parameters is not enough to obtain a method of order k + k' + 1.

â.	j 3	3	4	4	6
k*	2	3	4	4	5
P	6	8	10	10	12
C _{p+2}	.15345044-2	.37799083-3	.33457995-3	.45316620-4	.24939624-7
α ^p τ-1	-	16367041+3		.43155998+3	27870041+1
α ^p 2	-	-	.89183517	-	-
a_{-1}^p	.16495722	34707085+1	.48225668+2	20987953+1	-
αP	.41805548+1	17210929+2	.97142753+2	21742056+2	65123495-2
a_1^p	81239305+1	.29591150+2	29265853+3	.53587174+1	11831175
n ^p	.27784184+1	.15376090+3	.97484840+2	.45688822+2	22584136
αP 3	-	-	.47913432+2	45976667+3	.32949617
o4 P	-	-	_	-	.28451133+1
α ^p ₅	-	-	-	-	10369400+1
β ^p r-1	-	.15573287+2	-	55893549+2	.37920207
8 ^p -2	•	-	.38973204-2	-	-
β ^P -1	54985740-2	16795316	.40910386+1	87317361-1	-
8°	.58522790	53312061+1	.62017857+2	39967164+1	23807188-3
8 ^p	.37430479+1	21107539+2	.16583176+3	26064624+2	15269409-1
8 ^p ₂	.98662380	-,24422142+2	.61918294+2	38785414+2	15557853
ßP	-	-	.41169635+1	.44601261+2	44728515
6 ^p	-	-		-	54763223
£p	-	-	- 1	-	.96975979-1

Table 2

k	3	4
k*	3	4
P	8	10
error constant	49880214-3	47842068-6
ae E	.13941424+1	11071926+1
ae -1	.35465085+1	.15454834-1
α ∈ 0	.14205646+2	.13557671
a_1^e	36517468+2	13269980
oe 2	.16371171+2	26371860
ne 3	-	.35257943
8°	.11444377	.57198711-2
8e_1	.17609964	.66125882-3
βe	.52155324+1	.27989375-1
8 ^e	.17504634+2	.15770493
βe 2	.44443744+1	.15303799
βe 3	-	16592532-1

Table 3

Acknowledgement

This research was supported in part by a Grant-in-Aid of Research from Sigma Xi, The Scientific Research Society.

References

- J. H. Ash, Analysis of multistep methods for second-order ordinary differential equations, Ph.D. Thesis, University of Toronto (1969).
- L. Collatz, Numerical Treatment of Differential Equations, Springer, 1960.
- G. Dahlquist, Convergence and stability in the numerical integration of ordinary differential equations, Math. Scand., 4 (1956), 33-53.
- 4. G. Dahlquist, A special stability problem for linear multistep methods, BIT, $\underline{3}$ (1963), 27-43.
- 5. W. B. Gragg, H. J. Stetler, Generalized multistep predictor-corrector methods, J. ACM, $\underline{11}$, (1964), 188-209.
- P. Henrici, Discrete Variable Methods in Ordinary Differential Equations, Wiley, 1962.
- J. D. Lambert, Computational Methods in Ordinary Differential Equations, Wiley, 1973.
- B. Neta, S. C. Lee, Hybrid methods for a special class of secondorder differential equations, Congressus Numerantium, 38 (1983), 203-225.
- B. Neta, Higher order hybrid Störmer-Cowell methods for ordinary differential equations, Congressus Numerantium, accepted for publication.
- 10. R. E. Scraton, The numerical solution of second-order differential equations not containing the first derivative explicitly, Comput. J., $\underline{6}$ (1964), 368-370.
- R. de Vogelaere, A method for the numerical integration of differential equations of second-order without explicit first derivative, J. Res. Nat. Bur. Standards, 54 (1955), 119-125.