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Abstract

Problems of linear time-dependent dispersive waves in an unbounded domain are considered. The infinite domain is truncated
via an artificial boundaryB, and a high-order non-reflecting boundary condition (NRBC) is imposed onB. Then the problem
is solved by a finite difference (FD) scheme in the finite domain bounded byB. The sequence of NRBCs proposed by Higdon
is used. However, in contrast to the original low-order implementation of the Higdon conditions, a new scheme is devised
which allows the easy use of a Higdon-type NRBC ofanydesired order. In addition, a procedure for the automatic choice of
the parameters appearing in the NRBC is proposed. The performance of the scheme is demonstrated via numerical examples.
© 2002 Elsevier Science B.V. All rights reserved.

1. Introduction

In many fields of application involving the propagation of waves, the domain of the problem under investigation
is unbounded (or very large). One of the common methods used for the numerical solution of such problems[1]
is the method of non-reflecting boundary conditions (NRBCs). In this method the original domain is truncated
via an artificial boundaryB, thus forming a finite computational domainΩ bounded byB. A special boundary
condition is imposed onB, in order to complete the statement of the problem (i.e., make the solution unique) and,
most importantly, to ensure that no (or little) spurious wave reflection occurs fromB. Then the problem is solved
numerically inΩ.

The boundary condition applied onB is called a NRBC, although a few other names are often used too[2].
Naturally, the quality of the numerical solution strongly depends on the properties of the NRBC employed. In the
last 25 years or so, much research has been done to develop NRBCs that after discretization lead to a scheme which
is stable, accurate, efficient and easy to implement. See[3,4] for recent reviews on the subject. Of course, it is
difficult to find a single NRBC which is ideal in all respects and all cases; this is why the quest for better NRBCs
and their associated discretization schemes continues.
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Some low-order local NRBCs have been proposed in the late 1970s and early 1980s and have become well-known,
e.g., the Engquist–Majda NRBCs[5] and the Bayliss–Turkel NRBCs[6]. The late 1980s and early 1990s have
been characterized by the emerging of the exact non-local Dirichlet-to-Neumann (DtN) NRBC[7,8] and the per-
fectly matched layer (PML)[9]. More recently,high-order local NRBCs have been introduced. Sequences of
increasing-order NRBCs have been available before (e.g., the Bayliss–Turkel[6] conditions constitute such a se-
quence), but they had been regarded as impractical beyond 2nd or 3rd order from the implementation point of view.
Only since the mid-1990s, practical high-order NRBCs have been devised.

The first such high-order NRBC has apparently been proposed by Collino[10], for two-dimensional time-depen-
dent waves in rectangular domains. Its construction requires the solution of the one-dimensional wave equation on
B. Grote and Keller[11] developed a high-order converging NRBC for the three-dimensional time-dependent wave
equation, based on spherical harmonic transformations. They extended this NRBC for the case of elastic waves in
[12]. Sofronov[13] has independently published a similar scheme in the Russian literature. Hagstrom and Hariharan
[14] constructed high-order NRBCs for the two- and three-dimensional time-dependent wave equations based on the
analytic series representation for the outgoing solutions of these equations. It looks simpler than the previous two NR-
BCs. For time-dependent waves in a two-dimensional waveguide, Guddati and Tassoulas[15] devised a high-order
NRBC by using rational approximations and recursive continued fractions. Givoli[16] has shown how to derive
high-order NRBCs for a general class of wave problems, leading to a symmetric finite element formulation. In[17],
this methodology was applied to the particular case of time-harmonic waves, using optimally localized DtN NRBCs.

Most of the NRBCs mentioned above have been designed for either time-harmonic waves or for non-dispersive
time-dependent waves. The presence ofwave dispersionmakes the time-dependent problem much more difficult
as far as NRBC treatment is concerned. Dispersive media appear in various applications. One important exam-
ple is that of meteorological models which take into account the earth rotation[18]. Other examples include
quantum-mechanics waves, the vibration of structures with rotational rigidity such as beams, plates and shells, and
many non-linear wave problems, with or without linearization. Very recently, Navon et al.[19] developed a PML
scheme for the dispersive shallow water equations (SWEs). In the present paper we develop high-order NRBCs
for dispersive waves. Naturally, our scheme is just as applicable to the non-dispersive case, by simply taking the
dispersion parameter to be zero.

Higdon [20] proposed a sequence of NRBCs for the dispersive (Klein–Gordon) wave equation. In fact, these
NRBCs were developed originally for non-dispersive waves[21–25], but Higdon showed in[20] that they can be
applied in the dispersive case too. Indeed, our scheme is based on Higdon’s NRBCs. However, in contrast to the
original low-order formulation of these conditions, a new scheme is devised here which allows the easy use of
a Higdon-type NRBC ofany desired order. In addition, a procedure for the automatic choice of the parameters
appearing in the NRBC is proposed.

Following is the outline of the rest of this paper. InSection 2we state the problem under investigation. We
emphasize that the setup taken here, namely that of a semi-infinite waveguide, serves merely as an example, and in
fact the proposed approach is general and can easily be extended to other configurations, such as two-dimensional
exterior problems with a rectangular artificial boundary. InSection 3we present the Higdon NRBCs and briefly
recall their properties. InSection 4we show how to implement the Higdon NRBCs, using a finite difference (FD)
scheme, in a high-order way. Then we show, inSection 5, how the basic FD approximations used in this scheme
can be improved if one desires, and inSection 6we present a procedure for the automatic choice of the NRBC
parameters. We demonstrate the performance of the new method via some numerical examples inSection 7. We
conclude, inSection 8, with some remarks.

2. Statement of the problem

We consider the linear inhomogeneous Klein–Gordon equation

∂2
t u− C2

0∇2u+ f 2u = S (1)
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Fig. 1. Setup for the waveguide problem: (a) the original problem in a semi-infinite waveguide; (b) the computational problem in a finite domain
Ω.

in a two-dimensional uniform semi-infinite channel or waveguide. A Cartesian coordinate system(x, y) is introduced
such that the waveguide is parallel to thex-direction. The width of the waveguide is denoted asb. The setup is shown
in Fig. 1(a). In (1), u is the unknown wave field,C0 is the given reference wave speed,f is the given dispersion
parameter andS is a given wave source function. TheC0 andf are allowed to be functions of location; however, it
is assumed that the region where they are not constant is finite (and typically located near the west boundaryΓW).
The wave sourceS is a function of location and time, but it is assumed to have a local support.Eq. (1)describes, for
example, the lateral vibration of a membrane strip on an elastic foundation, or the acoustic pressure in a dispersive
medium (say, a linearized bubbly medium). Also, it can be shown that the linearized SWEs, with a flat bottom and
zero initial conditions, reduce to(1), whereu is the water elevation above the reference level[18]. In the geophysical
context,f is called the Coriolis parameter and is related to the angular velocity of the earth.

On the south and north boundariesΓS andΓN we specify the Neumann condition:

∂yu = 0 on ΓS and ΓN. (2)

In acoustics this corresponds to a “hard wall” condition. On the west boundaryΓW we prescribeu using a Dirichlet
condition, i.e.

u(0, y, t) = uW(y, t) on ΓW, (3)

whereuW(y, t) is a given function (incoming wave). Atx → ∞ the solution is known to be bounded and not to
include any incoming waves.

To complete the statement of the problem, the initial conditions

u(x, y,0) = u0, ∂tu(x, y,0) = v0 (4)

are given at timet = 0 in the entire domain. We assume that the functionsu0 andv0 have a local support.
We now truncate the semi-infinite domain by introducing an artificial east boundaryB ≡ ΓE, located atx = xE.

SeeFig. 1(b). This boundary divides the original semi-infinite domain into two subdomains: an exterior domainD,
and a finite computational domainΩ which is bounded byΓW, ΓN, ΓS andΓE. We choose the location ofΓE such
that the entire support ofS, u0 andv0 and the region of non-uniformity ofC0 andf are all contained insideΩ.
Thus, onΓE and inD, the homogeneous counterpart of(1) holds, i.e.

∂2
t u− C2

0∇2u+ f 2u = 0 (5)

with constant coefficientsC0 andf 2, and the medium is initially at rest.
To obtain a well-posed problem in the finite domainΩ we need to impose a boundary condition onΓE. This must

be a NRBC, so as to prevent spurious reflection of waves. In the next section we discuss the choice of this NRBC.
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3. Higdon’s NRBCs

On the artificial boundaryΓE we use one of theHigdon NRBCs[20]. These NRBCs were presented and analyzed
in a sequence of papers[21–25] for non-dispersive acoustic and elastic waves, and were extended in[20] for the
dispersive case. The Higdon NRBC of orderJ is

HJ :


 J∏
j=1

(∂t + Cj∂x)

 u = 0 on ΓE. (6)

Here, theCj are parameters which have to be chosen and which signify phase speeds in thex-direction. The main
advantages of the Higdon conditions are as follows:

• The Higdon NRBCs are verygeneral, namely they apply to a variety of wave problems, in one, two and three
dimensions and in various configurations. Moreover, they can be used, without any difficulty, fordispersive
wave problems and for problems with layers. Most other available NRBCs are either designed for non-dispersive
homogeneous media (as in acoustics and electromagnetics) or are inherently of low order (as in meteorology and
oceanography).
• The Higdon NRBCs constitute asequenceof conditions of increasing order. This, and the fact that no asymptotic

approximation is involved in their construction, enables one in principle (leaving implementational issues aside
for the moment) to obtain solutions with unlimited accuracy.
• For certain choices of the parameters, the Higdon NRBCs are equivalent to NRBCs that are derived from rational

approximation of the dispersion relation (the Engquist–Majda conditions[5] being the most well-known example).
This has been proved by Higdon in[20,21]. More precisely, Higdon’s theorem states that if a NRBC is based on
a symmetric rational approximation to the dispersion relation corresponding to outgoing waves, then it is either
(a) equivalent to(6) for a suitable choice ofJ and the parametersCj , or (b) unstable, or (c) not optimal. Lack
of optimality means here that the coefficients in the NRBC can be modified so as to reduce the amount of the
spurious reflection. Thus, the Higdon NRBCs can be viewed as generalization of rational approximation NRBCs.

The scheme developed here is different than the original Higdon scheme[20] in the following ways:

(a) The discrete Higdon conditions were developed in the literature up to third order only, because of their algebraic
complexity which increases rapidly with the order. Here we show how to easily implement these conditions
to anarbitrarily high-order. The scheme is coded once and for all for any order; the order of the scheme is
simply an input parameter.

(b) The Higdon NRBCs involve some parameters which must be chosen. Higdon[20] discusses some general
guidelines for their manual a priori choice by the user. We shall show how these parameters can be chosen
automatically.

(c) We shall show how to improve the discretization of the basic operators involved in the Higdon NRBCs, by
using more accurate FD stencils, and how to incorporate these improved discretizations in the new scheme.

We now make a few remarks recalling the properties of the Higdon NRBCs:

1. The boundary condition(6) is exact for all waves that propagate with anx-direction phase speed equal to either
of C1, . . . , CJ . To see this, consider a wave which satisfies the waveequation (5)and boundary condition (2)
with constantC0 andf . Such a wave has the form

u = A cos
nπy

b
cos(kx− ωt + ψ), (7)

where

ω2 = C2
0

(
k2+ n2π2

b2

)
+ f 2, n = 0,1,2, . . . . (8)
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Also, let

Cx = ω

k
, (9)

which is thex-direction phase velocity. In(7)–(9),A is the wave amplitude,ψ is its phase,k is thex-component
wavenumber, andω is the wave frequency.Eq. (8)is the dispersion relation. In general, solutions of(5) consist of
an infinite number of waves of the form(7). There are also solutions that decay exponentially in thex-direction;
however, they are usually not of great concern, since the decaying modes are expected to be insignificant at the
time they reachΓE. Now, it is easy to verify that if one of theCj ’s in (6) is equal toCx , then the wave(7) satisfies
the boundary condition(6) exactly.

2. From(8) and (9)we have

Cx =
√
C2

0 +
C2

0n
2π2/b2+ f 2

k2
, n = 0,1,2, . . . . (10)

Thus, alwaysCx ≥ C0, hence one should takeCj ≥ C0.
3. The first-order conditionH1 is a Sommerfeld-like boundary condition. If we setC1 = C0 we get the classical

Sommerfeld-like NRBC. A lot of work in the meteorological literature is based on usingH1 with a specially
chosenC1. Pearson[26] used a special but constant value ofC1, while in the scheme devised by Orlanski[27]
and in later improved schemes[28–31]theC1 changes dynamically and locally in each time-step based on the
solution from the previous time-step. Some of the limited-area weather prediction codes used today are based on
such schemes, e.g., COAMPS[32]. See also the recent papers[33–35]where several such adaptiveH1 schemes
are compared.

4. The conditionHJ involves normal and temporal derivatives up toJ th order. In fact, it has the form

J∑
j=0

wj∂
j
x ∂

J−j
t u = 0, (11)

which is obtained by expanding(6). Finding the general formula for the coefficientswj in (11) is difficult, but
fortunately we shall not need it in our new scheme.

5. It is easy to show (see Higdon[20] for a similar setting) that when a wave of the form(7) impinges on the
boundaryΓE where the NRBCHJ is imposed, the resultingreflection coefficientis

R =
J∏
j=1

∣∣∣∣Cj − CxCj + Cx

∣∣∣∣ . (12)

Again we see that ifCj = Cx for any one of thej ’s thenR = 0, namely there is no reflection and the NRBC
is exact. Moreover, we see that the reflection coefficient is a product ofJ factors,each of which is smaller than
1. This implies that the reflection coefficient becomes smaller as the orderJ increases regardless of the choice
made for the parametersCj . Of course, a good choice for theCj would lead to better accuracy with a lower
orderJ , but even if we miss the correctCj ’s considerably (say, if we make the simplest choiceCj = C0 for
j = 1, . . . , J ), we are still guaranteed to reduce the spurious reflection as we increase the orderJ . This is an
important property of the Higdon’s NRBCs and is the reason for their robustness.

6. In [23], Higdon points to the possibility of a long-time instability that might occur when one uses a NRBC
with high-order derivatives. If the interior governing equations and the NRBC both admit solutions at zero
wavenumber and frequency, and if the data in the problem include such “zero modes”, then a slowly growing
smooth instability is possible. Whether this shows up in practice depends on the order of the derivatives in the
NRBC and on the number of spatial dimensions. However, these difficulties do not arise in the presence of
dispersion, or if the data are confined to non-trivial modes.
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4. Discretization of Higdon’s NRBCs

The Higdon conditionHJ given by(6) is a product ofJ operators of the form∂t +Cj∂x . Consider the following
FD approximations:

∂t � I − S−t
�t

, ∂x � I − S−x
�x

. (13)

In (13),�t and�x are, respectively, the time-step size and grid spacing in thex-direction,I is the identity operator,
andS−t andS−x are shift operators defined by

S−t u
n
pq = un−1

pq , S−x u
n
pq = unp−1,q . (14)

Here and elsewhere,unpq (and alsounp,q ) is the FD approximation ofu(x, y, t) at grid point(xp, yq) and at timetn.
We use(13) into (6) to obtain

 J∏
j=1

(
I − S−t
�t

+ Cj I − S
−
x

�x

)
 unEq = 0. (15)

Here, the indexE correspond to a grid point on the boundaryΓE. Higdon has solved this difference equation (and
also a slightly more involved equation that is based on time- and space-averaging approximations for∂x and∂t ;
see next section) forJ ≤ 3 to obtain an explicit formula forunEq. This formula is used to find the current values on
the boundaryΓE after the solution in the interior points and on the other boundaries has been updated; thus it is an
explicit formula. The formula forJ = 2 is found in[25], and the one forJ = 3 appears in the appendix of[24].
The algebraic complexity of these formulas increases rapidly with the orderJ . It is thus not surprising that we have
not found in the literature any report on the implementation of the Higdon NRBCs beyondJ = 3.

Now we show how to implement the Higdon NRBCsto any orderusing a simple algorithm. To this end, we first
multiply (15)by�t and rearrange to obtain

Z ≡

 J∏
j=1

(aj I + djS−t + ejS−x )

 unEq = 0, (16)

where

aj = 1+ Cj�t

�x
, (17)

dj = −1, (18)

ej = −Cj�t
�x

. (19)

The coefficientdj actually does not depend onj , but we keep this notation to allow easy extensions to the scheme
(see next section). Now,Z in (16)can be written as a sum of 3J terms, each one is an operator acting onunEq, namely

Z ≡
3J−1∑
m=0

AmPmu
n
Eq = 0. (20)

HereAm is a coefficient depending on theaj , dj andej , andPm is an operator involving products ofI , S−t andS−x .
All the terms in the sum in(20) are computable at the current time-stepn, except the one which involves only the
identity operator and no shift operators. If we let this term correspond tom = 0, thenP0 = I and

A0 =
J∏
j=1

aj . (21)
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Thus we get from(20)

Z ≡ A0u
n
Eq+ Z∗ = 0, (22)

where

Z∗ =
3J−1∑
m=1

AmPmu
n
Eq. (23)

From(22)we get

unEq = −
Z∗

A0
, (24)

which is the desired value ofu on the boundaryΓE.

Box 1. Algorithm for implementing the Higdon NRBC of order J .

• Start withZ∗ = 0. CalculateA0 =
∏J

j=1 aj .

• Loop over the integersm = 1, . . . ,3J − 1.

◦ For a givenm, transformm into a numberr in base 3, consisting of the digits 0, 1 and 2 only. The length of
r will be at mostJ digits. Store theJ digits of r in the vectorDr(j), j = 1, . . . , J .

Example: Suppose thatJ = 6 andm = 227. Since 227 in base 3 isr = 22102, we will getDr =
{ 0 2 2 1 0 2}.
◦ UseDr to calculate the coefficientAm. To this end, start withAm = 1, loop overj = 1, . . . , J , and for each
j multiply Am by the factoraj (if Dr(j) = 0) ordj (if Dr(j) = 1) or ej (if Dr(j) = 2).

Example: ForJ = 6 andm = 227, we have received the vectorDr above. ThenA227= a1e2e3d4a5e6.
◦ UseDr to calculate the operator actionPmunEq. To this end, start witĥn = n and î = E, loop over

j = 1, . . . , J , and for eachj subtract 1 fromn̂ (if Dr(j) = 1) or subtract 1 from̂i (if Dr(j) = 2) or do
nothing (ifDr(j) = 0). After the loop ends we havePmunEq = un̂

îq
.

Example: For the caseJ = 6 andm = 227 considered above, we getn̂ = n − 1 (because the digit
“1” appears only once inDr ), and î = E − 3 (because the digit “2” appears three times inDr ). Hence
P227u

n
Eq = un−1

E−3,q .

◦ Update:Z∗ ← Z∗ + Amun̂
îq

.

• Nextm.
• unEq = −Z∗/A0.

The problem now reduces to calculatingZ∗ given by(23). We do this using the algorithm described in Box 1.
The basic idea is to calculate the coefficientsAm and the operator actionsPmunEq term by term. This is done
systematically by transforming the integer counterm to a number in base 3 withJ digits. TheAm andPm are not
simple functions of the decimal representation of the numberm, but theyare simple functions of the digits of the
base-3 representation ofm.

Note that we need to storeun̂
îq

values for̂i = E,E− 1, . . . , E− J andn̂ = n, n− 1, . . . , n− J . In other words,

we have to store the history of the values ofu for a layer of thicknessJ + 1 points near the boundaryΓE and for
J + 1 time levels (including the current one). If there areNy grid points in they-direction, then the amount of
storage needed in a simple storage scheme is(J + 1)2Ny . However, one can save in storage by exploiting the fact
that not all valuesun̂

îq
are needed, but only those for which(E − î)+ (n− n̂) ≤ J . This is clear from(11)and also

from (16). For example, the solution at timetn−J should be stored only for points on the boundaryΓE itself.
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Higdon [20] has proved, in the context of the scalar Klein–Gordonequation (5), that the discrete NRBCs(15)
are stable if the interior scheme is the standardsecond-order centereddifference scheme

un+1
pq = 2unpq− un−1

pq +
(
C0�t

�x

)2

(unp+1,q − 2unpq+ unp−1,q)

+
(
C0�t

�y

)2

(unp,q+1− 2unpq+ unp,q−1)− (f�t)2unpq. (25)

We use this interior scheme in the numerical experiments presented inSection 7. Since both(25)and the discretized
Higdon NRBC are explicit, the whole scheme is explicit.

An alternative formulation of the Higdon NRBC, where all the high-order derivatives are eliminated by the use
of auxiliary variables, is currently under development and will be reported in a future publication.

5. Improved discrete Higdon NRBCs

The discretization scheme described in the previous section is based on the basic FD approximations given by
(13). These approximations can be improved in several ways. For example

(a) We can take

∂t � I − S−t
�t

((1− b)I + bS−x ), ∂x � I − S−x
�x

((1− b)I + bS−t ), (26)

where 0≤ b ≤ 1. Thus, the temporal difference is calculated with a weighted average in space while the spatial
difference is calculated with a weighted averaged in time. The formulas(13) correspond tob = 0. In [20],
Higdon has used this approximation withb = 0.5, and reported a slight improvement in the results compared
to the use of(13).

(b) We can take one-sided approximations for thex- andt-derivatives[36], i.e.

∂t � 3I − 4S−t + (S−t )2
2�t

, ∂x � 3I − 4S−x + (S−x )2
2�x

. (27)

These approximations are second-order accurate, as opposed to those in(13)which are first-order accurate.
(c) We can combine the two types of approximations given above, namely

∂t � 3I − 4S−t + (S−t )2
2�t

((1− b)I + bS−x ), ∂x � 3I − 4S−x + (S−x )2
2�x

((1− b)I + bS−t ). (28)

The procedure described in the previous section for implementing the Higdon NRBCs can easily be modified to admit
each of these improved approximations. The main feature that has to be changed in the algorithm outlined in Box 1 is
thebaseto which the counting decimal integerm is transformed. For example, consider the weighted approximation
(26) replacing(13). In this case(16), which involves three basic operators (I , S−t andS−x ) is replaced by

Z ≡

 J∏
j=1

(aj I + djS−t + ejS−x + gjS−t S−x )

 unEq = 0, (29)

which involvesfour basic operators (I , S−t , S−x andS−t S−x ). Therefore, the counterm in the main loop in Box 1
will range from 1 to 4J − 1, and all the calculation will be performed in base 4 rather than in base 3. Similarly, the
approximations(27) and (28)will require calculations in base 5 and base 8, respectively. The alternations needed in
the coding are minor, but naturally the computational time associated with these improved approximations would
increase dramatically.
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We note that when one uses a high-order Higdon NRBC, the discrete operator involved is of high-order even
when the simplest formulas(13) are used to approximate thex- and t-derivatives. Thus, the importance of the
improvements discussed above diminishes whenJ increases. In fact, it is probably worthwhile to incorporate such
improvements in the scheme only if a low-order condition (say,J ≤ 3) is employed.

6. Controlling the parameters

The Higdon NRBCs involve the parametersCj which must be chosen. There are three approaches in this context:

(a) The user chooses theCj a priori in a manual manner based on an “educated guess”. This is the procedure
recommended in Higdon’s papers[20–25].

(b) TheCj are chosen automatically by the computer code as a preprocess.
(c) TheCj are not constant, but are determined dynamically by the computer code. Namely, a value forCj is

estimated for every grid point on the boundary at each time-step, from the solution in the previous time-steps.

We have adopted approach (b), which is automatic yet very inexpensive computationally. The algorithm we
propose is described in Box 2. It is based on themaximum resolvablewavenumbers in thex- andy-directions, and
on the minimax formula[37] for choosing thex-component wavenumbers.

Box 2. Algorithm, used as a preprocess, for determining the parameters Cj in the Higdon NRBC.

• Given the grid parameter�x, estimate the maximum resolvable wavenumberk in thex-direction. Assuming
a maximum of 10 grid points per wavelength, a reasonable estimate is

kmax= π

5�x
.

• ChooseJ − 1 values ofk from the interval(0, kmax). This is done using the symmetric minimax formula
(based on the Chebyshev polynomial) proposed by Sommeijer et al.[37]

kj =
[
k2

max

2

(
1+ cos

(
2j − 1

2(J − 1)
π

))]1/2

, j = 1, . . . , J − 1.

• Given the grid parameter�y, estimate the maximum resolvable wavenumberky in the y-direction. Again
assuming a maximum of 10 grid points per wavelength, a reasonable estimate is

(ky)max= π

5�y
.

• For eachkj , calculate the corresponding (and maximal in they-direction) frequencyωj from the dispersion
relation(8)

ωj =
√
C2

0[k2
j + (ky)2max] + f 2.

• Calculate

Cj = ωj

kj
for j = 1, . . . , J − 1.

• Add the valueC0 (the minimum possible phase speed) to theJ − 1 values calculated above. These constitute
the desiredJ valuesCj .
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7. Numerical examples

We first apply the new scheme to a simple test problem whose exact solution is synthesized a priori. We consider
the waveguide problem described inSection 2and illustrated inFig. 1(a). We setb = 5, C0 = 1 andf = 0.5.
The boundary functionuW(y, t) onΓW and the initial conditions are those that correspond to a solutionu(x, y, t)

which is a linear combination of three waves of the form(7), i.e.

u =
3∑

m=1

Am cos
nmπy

b
cos(kmx − ωmt). (30)

The parameters chosen in(30)areAm = 1,1,1;nm = 1,2,2;ωm = 0.81,1.37,1.68. This corresponds to the three
phase velocities (obtained from(10)): Cx/C0 = 7.61,6.27,1.69. Thekm in (30) is obtained from theωm and the
nm via the dispersion relation(8).

We introduce the artificial boundaryΓE (seeFig. 1(b)) atxE = 5. Thus, the computational domainΩ is a 5× 5
square. InΩ we use a uniform grid with 21× 21 points. We discretize the Klein–Gordon equation inΩ using
the explicit central-difference FD interior scheme(25). OnΓE we impose the Higdon NRBC implemented in its
high-order form. The time-step size is�t = 0.025, which is smaller than the CFL limit and thus guarantees stability.

In Figs. 2(a)–(d), we plot the solutionu at the pointx = 5, y = 2.75 (located onΓE) as a function of time. In
each of the four figures the exact solution is compared to a number of numerical solutions obtained with different

Fig. 2. Solution of the three-wave test problem:u at the pointx = 5, y = 2.75 (onΓE) as a function of time. (a) Exact solution and theH1,H2

andH3 solutions withCj = 1. (b) Exact solution and theH5 andH7 solutions withCj = 1. (c) Exact solution and theH3,H4 andH5 solutions
with automatically chosenCj . (d) Exact solution and theH3 andH4 solutions with the exactCj .
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NRBC schemes, namely with different choices of the orderJ and the parametersCj . First we chooseCj = 1 for
all j . Fig. 2(a) shows theH1,H2 andH3 solutions. Their accuracy is poor, although theH3 solution is significantly
better than the other two.Fig. 2(b) shows theH5 andH7 solutions. TheH7 solution is quite accurate in the entire
time interval shown. Thus, if theCj ’s are not specially chosen, we need the order of the Higdon NRBC to be as
high as 7 for high accuracy.

Now we employ the procedure given by Box 2 to automatically choose theCj ’s. Fig. 2(c) shows the resulting
H3, H4 andH5 solutions. We see that in this case the approach of the numerical solutions to the exact solution
is monotone. Moreover, forJ = 5 we get about the same level of accuracy as we did withJ = 7 when all the
Cj had the value one (Fig. 2(b)). For additional reference, we show inFig. 2(d) theH3 solution obtained with the
Cj corresponding to the three phase velocitiesCx of the exact solution. It is about as accurate as theH5 solution
in Fig. 2(c). We also show theH4 solution obtained with the exactC1, C2, C3 and withC4 = 1. The numerical
solution is indistinguishable from the exact solution. In this case not only the NRBC is exact, but we gain additional
accuracy on the boundary due to the increased order of the FD scheme.

This example demonstrates, albeit in a simplified setting, that the same level of accuracy obtained with parameter
valuesCj that are well-estimated can be achieved with ill-chosen parameter values but with an increased orderJ .
Of course, increasing the order to ensure high accuracy is computationally expensive, and therefore it is usually
beneficial to use the algorithm given in Box 2.

We now consider another problem in the same waveguide, again withb = 5,C0 = 1 andf = 0.5. The initial
conditions are all zero, and the boundary functionuW onΓW is given by

uW(y, t) =
{

cos
[ π

2r
(y − y0)

]
if |y − y0| ≤ r and t ≤ t0,

0 otherwise.
(31)

Thus, the wave source on the west boundary is a cosine function iny with three parameters: its center locationy0,
its widthr, and its time durationt0. We sety0 = 2.5, r = 1.5, andt0 = 0.5. In contrast to the previous test problem,
the solution of this problem involves an infinite number of modes and frequencies.

The computational parametersxE, �t and the grid are the same as in the previous example. However, here we
use the Higdon NRBCH4 onΓE, with the fourCj ’s obtained automatically by using the procedure given in Box 2.
These turn out to beCj/C0 = 1, 1.45, 1.75 and 4.06.

We compare the solution obtained by the new scheme with two other solutions:

• A solution obtained in the same domain, but with the Higdon NRBCH1 onΓE, usingC1 = 5. (Results obtained
for H1 with a smallerC1 had a similar character, although less dramatic quantitatively.)
• A solution obtained in a domain twice as long, namely the domain 0≤ x ≤ 10, 0≤ y ≤ 5, using a 42× 21 grid

with the same resolution. During the simulation time the wave generated onΓW does not reach the remote (east)
boundary of this large domain, and thus the issue of spurious reflection is avoided altogether, regardless of the
boundary condition used on the remote boundary. Hence this will serve as a “reference solution” which is exact
as far as the boundary condition treatment is concerned.

Fig. 3(a) shows the three solutions at timet = 4. In this and the next figures, the top plot is that of the reference
solution, the middle plot corresponds to the solution obtained by the new scheme with theH4 NRBC, and the lower
plot describes theH1 solution. Both the colors and the contour lines represent values ofu. At time t = 4 the main
bulk of the wave packet generated onΓW has not reached the boundaryΓE yet, and hence all three plots are similar.

Fig. 3(b) shows the three solutions at timet = 6. The wave packet has already passed the boundaryΓE. TheH4
solution is indistinguishable from the reference solution, whereas in theH1 solution spurious reflection is evident.
Figs. 3(c) and (d) correspond to timest = 8 and 10, respectively. The reflected wave moves backward in theH1
solution and pollutes the entire computational domain. On the other hand, theH4 solution exhibits the wave traces
which are also present in the reference solution.

Finally, we repeat this experiment while increasing the dispersion parameter by a factor of 20, i.e., we takef = 10.
The group velocity decreases with increasing dispersion; hence the wave packet will move much more slowly now.
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Fig. 3. Solution of the west-source problem, dispersion parameterf = 0.5. Top plot—reference solution, middle plot—H4 solution, lower
plot—H1 solution. Times: (a)t = 4, (b) t = 6, (c) t = 8, (d) t = 10.
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Fig. 4. Solution of the west-source problem, dispersion parameterf = 10. Top plot—reference solution, middle plot—H4 solution, lower
plot—H1 solution. Times: (a)t = 12.5, (b) t = 15, (c)t = 19, (d)t = 22.5.
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Also, the solution is expected to be much “richer”, being composed of many waves with different frequencies and
phase speeds. Indeed, this is seen inFig. 4(a), which illustrates the solution at timet = 12.5. The wave has just
reached the boundaryΓE, and the beginning of spurious reflection in theH1 solution is apparent.Figs. 4(b), (c) and
(d) show the solutions at timest = 15, 19 and 22.5, respectively. Again theH1 solution exhibits spurious reflection,
while theH4 solution performs very well in this high-dispersion case too.

8. Concluding remarks

In this paper we have presented a new numerical procedure based on FDs, which allows the use of the Higdon
NRBCs up to anarbitrarily high-order. The scheme is coded once and for all for any order; the order of the scheme
is simply an input parameter. This adds an important computational tool for use in the solution of infinite domain
time-dependent wave problems. Moreover, due to the generality of the Higdon NRBCs it is possible to use this tool
for problems with dispersive and layered media. We have focused on dispersive waves in this paper, although the
scheme is effective in the non-dispersive case as well. We have demonstrated that the high-order scheme, with the
automatically chosen parameters, performs very well in both the low and high dispersion regimes.

Related future work will include the adaptation of the proposed approach to more complicated configurations,
such as exterior problems with a rectangular artificial boundaryB, and three-dimensional problems. It should be
remarked that no difficulties are expected in the case whereB hascorners. The Higdon NRBCs do not involve
mixed spatial derivatives, and thus the corner grid point can arbitrarily be associated with one of the two straight
edges that meet at this corner, and can be treated just as any other grid point on this chosen edge.

In addition, the high-order Higdon NRBCs will be applied to the SWEs. The shallow water model serves as an
important test-bed for more complicated models in meteorology[38]. It would be interesting, among other things,
to test the performance of the high-order Higdon NRBCs when thenon-linearSWEs are used in the computational
domainΩ.

An alternative formulation of the Higdon NRBCs is currently under development. In this formulation some
auxiliary variables are introduced on the artificial boundary, in order to eliminate all the high-order derivatives. This
form of the NRBC has the advantages that after discretization it involves only degrees of freedom on the boundary
B itself, that no high-order discrete schemes are needed, and that the history of the solution does not have to be
stored. As a result, it is more amenable, compared to the formulation presented in this paper, for incorporation in a
Finite Element scheme. This alternative formulation will be reported in a future publication.
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