WAVE
MOTION

www.elsevier.com/locate/wavemoti

Wave Motion 37 (2003) 257-271

High-order non-reflecting boundary conditions
for dispersive waves

Dan Givoli#*1, Beny Net&:2

a Department of Aerospace Engineering, and Asher Center for Space Research
Technion-Israel Institute of Technology, Haifa 32000, Israel
b Department of Mathematics, Naval Postgraduate School, 1141 Cunningham Road, Monterey, CA 93943, USA

Received 3 April 2002; received in revised form 17 July 2002; accepted 1 August 2002

Abstract

Problems of lineartime-dependent dispersive waves in an unbounded domain are considered. The infinite domainis truncated
via an artificial boundarys, and a high-order non-reflecting boundary condition (NRBC) is imposé$l dien the problem
is solved by a finite difference (FD) scheme in the finite domain boundé?i Bie sequence of NRBCs proposed by Higdon
is used. However, in contrast to the original low-order implementation of the Higdon conditions, a new scheme is devised
which allows the easy use of a Higdon-type NRBGaj desired order. In addition, a procedure for the automatic choice of
the parameters appearing in the NRBC is proposed. The performance of the scheme is demonstrated via numerical examples
© 2002 Elsevier Science B.V. All rights reserved.

1. Introduction

In many fields of application involving the propagation of waves, the domain of the problem under investigation
is unbounded (or very large). One of the common methods used for the numerical solution of such pfbblems
is the method of non-reflecting boundary conditions (NRBCSs). In this method the original domain is truncated
via an artificial boundarys, thus forming a finite computational domafa bounded byB. A special boundary
condition is imposed o, in order to complete the statement of the problem (i.e., make the solution unique) and,
most importantly, to ensure that no (or little) spurious wave reflection occurstofhen the problem is solved
numerically ins2.

The boundary condition applied diis called a NRBC, although a few other names are often usejoo
Naturally, the quality of the numerical solution strongly depends on the properties of the NRBC employed. In the
last 25 years or so, much research has been done to develop NRBCs that after discretization lead to a scheme whick
is stable, accurate, efficient and easy to implement.[$dé for recent reviews on the subject. Of course, it is
difficult to find a single NRBC which is ideal in all respects and all cases; this is why the quest for better NRBCs
and their associated discretization schemes continues.
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Some low-order local NRBCs have been proposed in the late 1970s and early 1980s and have become well-known
e.g., the Engquist—-Majda NRB({S] and the Bayliss—Turkel NRBC$]. The late 1980s and early 1990s have
been characterized by the emerging of the exact non-local Dirichlet-to-Neumann (DtN) NRB@nd the per-
fectly matched layer (PML]9]. More recently,high-orderlocal NRBCs have been introduced. Sequences of
increasing-order NRBCs have been available before (e.g., the Bayliss—T&irkehditions constitute such a se-
guence), but they had been regarded as impractical beyond 2nd or 3rd order from the implementation point of view.
Only since the mid-1990s, practical high-order NRBCs have been devised.

The first such high-order NRBC has apparently been proposed by Cdlbihdor two-dimensional time-depen-
dent waves in rectangular domains. Its construction requires the solution of the one-dimensional wave equation or
B. Grote and Kellef11] developed a high-order converging NRBC for the three-dimensional time-dependent wave
equation, based on spherical harmonic transformations. They extended this NRBC for the case of elastic waves ir
[12]. Sofronov{13] has independently published a similar scheme in the Russian literature. Hagstrom and Hariharan
[14] constructed high-order NRBCs for the two- and three-dimensional time-dependent wave equations based on the
analytic series representation for the outgoing solutions of these equations. It looks simpler than the previous two NR-
BCs. For time-dependent waves in a two-dimensional waveguide, Guddati and Tafssjdievised a high-order
NRBC by using rational approximations and recursive continued fractions. Gh&jlhas shown how to derive
high-order NRBCs for a general class of wave problems, leading to a symmetric finite element formuldtia]y. In
this methodology was applied to the particular case of time-harmonic waves, using optimally localized DtN NRBCs.

Most of the NRBCs mentioned above have been designed for either time-harmonic waves or for non-dispersive
time-dependent waves. The presencavatie dispersiomakes the time-dependent problem much more difficult
as far as NRBC treatment is concerned. Dispersive media appear in various applications. One important exam-
ple is that of meteorological models which take into account the earth rotgt&n Other examples include
guantum-mechanics waves, the vibration of structures with rotational rigidity such as beams, plates and shells, anc
many non-linear wave problems, with or without linearization. Very recently, Navon gt%ldeveloped a PML
scheme for the dispersive shallow water equations (SWESs). In the present paper we develop high-order NRBCs
for dispersive waves. Naturally, our scheme is just as applicable to the non-dispersive case, by simply taking the
dispersion parameter to be zero.

Higdon [20] proposed a sequence of NRBCs for the dispersive (Klein—Gordon) wave equation. In fact, these
NRBCs were developed originally for non-dispersive wa\&is-25] but Higdon showed ifi20] that they can be
applied in the dispersive case too. Indeed, our scheme is based on Higdon’s NRBCs. However, in contrast to the
original low-order formulation of these conditions, a new scheme is devised here which allows the easy use of
a Higdon-type NRBC ofiny desired order. In addition, a procedure for the automatic choice of the parameters
appearing in the NRBC is proposed.

Following is the outline of the rest of this paper. 8®ction 2we state the problem under investigation. We
emphasize that the setup taken here, namely that of a semi-infinite waveguide, serves merely as an example, and |
fact the proposed approach is general and can easily be extended to other configurations, such as two-dimension
exterior problems with a rectangular artificial boundarySkection 3we present the Higdon NRBCs and briefly
recall their properties. I&ection 4we show how to implement the Higdon NRBCs, using a finite difference (FD)
scheme, in a high-order way. Then we showSkerction 5 how the basic FD approximations used in this scheme
can be improved if one desires, andSection 6we present a procedure for the automatic choice of the NRBC
parameters. We demonstrate the performance of the new method via some numerical exa8gaésnn/ We
conclude, inSection 8 with some remarks.

2. Statement of the problem

We consider the linear inhomogeneous Klein—Gordon equation

afu - CSVZM +fu=Ss Q)
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Fig. 1. Setup for the waveguide problem: (a) the original problem in a semi-infinite waveguide; (b) the computational problem in a finite domain
2.

in atwo-dimensional uniform semi-infinite channel or waveguide. A Cartesian coordinate gysters introduced
such that the waveguide is parallel to thdirection. The width of the waveguide is denotedathe setup is shown
in Fig. 1(a). In (1), u is the unknown wave field; is the given reference wave spegdis the given dispersion
parameter and is a given wave source function. Tl and f are allowed to be functions of location; however, it
is assumed that the region where they are not constant is finite (and typically located near the west gyndary
The wave sourcS§ is a function of location and time, but it is assumed to have a local sugimprfl)describes, for
example, the lateral vibration of a membrane strip on an elastic foundation, or the acoustic pressure in a dispersive
medium (say, a linearized bubbly medium). Also, it can be shown that the linearized SWEs, with a flat bottom and
zero initial conditions, reduce {4), whereu is the water elevation above the reference I§18]. In the geophysical
context, f is called the Coriolis parameter and is related to the angular velocity of the earth.

On the south and north boundariesand I'yy we specify the Neumann condition:

dyu=0 on I's and I'y. @)

In acoustics this corresponds to a “hard wall” condition. On the west bourigarye prescribe: using a Dirichlet
condition, i.e.

u(,y, 1) =uw(y,t) on Iy, (3

whereuw (y, t) is a given function (incoming wave). At — oo the solution is known to be bounded and not to
include any incoming waves.
To complete the statement of the problem, the initial conditions

u(x,y,0) = uo, du(x,y,0) =g 4)

are given at time = 0 in the entire domain. We assume that the functianandvg have a local support.

We now truncate the semi-infinite domain by introducing an artificial east boutlary &, located atc = xg.
SeeFig. 1(b). This boundary divides the original semi-infinite domain into two subdomains: an exterior ddmain
and a finite computational domafa which is bounded by, I'y, I's andI'e. We choose the location @iz such
that the entire support df, ug andvg and the region of non-uniformity afo and f are all contained inside.
Thus, on/t and inD, the homogeneous counterpart(df holds, i.e.

92u — C3V%u + fu =0 (5)
with constant coefficient€p and £2, and the medium is initially at rest.

To obtain a well-posed problem in the finite dom#trwe need to impose a boundary condition/gn This must
be a NRBC, so as to prevent spurious reflection of waves. In the next section we discuss the choice of this NRBC.
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3. Higdon’sNRBCs

On the artificial boundarye we use one of theligdon NRBC$20]. These NRBCs were presented and analyzed
in a sequence of papefdl-25]for non-dispersive acoustic and elastic waves, and were extendgd]ifor the
dispersive case. The Higdon NRBC of ordeis

J
Hjy: l_[(at + Cjax) u=0 on k. (6)
j=1

Here, theC; are parameters which have to be chosen and which signify phase speeds-tliréetion. The main
advantages of the Higdon conditions are as follows:

e The Higdon NRBCs are vergeneral namely they apply to a variety of wave problems, in one, two and three
dimensions and in various configurations. Moreover, they can be used, without any difficultysiersive
wave problems and for problems with layers. Most other available NRBCs are either designed for non-dispersive
homogeneous media (as in acoustics and electromagnetics) or are inherently of low order (as in meteorology anc
oceanography).

e The Higdon NRBCs constitutesequencef conditions of increasing order. This, and the fact that no asymptotic
approximation is involved in their construction, enables one in principle (leaving implementational issues aside
for the moment) to obtain solutions with unlimited accuracy.

e For certain choices of the parameters, the Higdon NRBCs are equivalent to NRBCs that are derived from rational
approximation of the dispersion relation (the Engquist—Majda conditidfeing the most well-known example).

This has been proved by Higdon[i20,21]. More precisely, Higdon’s theorem states that if a NRBC is based on

a symmetric rational approximation to the dispersion relation corresponding to outgoing waves, then it is either
(a) equivalent td6) for a suitable choice of and the parametels;, or (b) unstable, or (c) not optimal. Lack

of optimality means here that the coefficients in the NRBC can be modified so as to reduce the amount of the
spurious reflection. Thus, the Higdon NRBCs can be viewed as generalization of rational approximation NRBCs.

The scheme developed here is different than the original Higdon scf2®@hie the following ways:

(a) Thediscrete Higdon conditions were developed in the literature up to third order only, because of their algebraic
complexity which increases rapidly with the order. Here we show how to easily implement these conditions
to anarbitrarily high-order. The scheme is coded once and for all for any order; the order of the scheme is
simply an input parameter.

(b) The Higdon NRBCs involve some parameters which must be chosen. Higdpdiscusses some general
guidelines for their manual a priori choice by the user. We shall show how these parameters can be chosen
automatically

(c) We shall show how to improve the discretization of the basic operators involved in the Higdon NRBCs, by
using more accurate FD stencils, and how to incorporate these improved discretizations in the new scheme.

We now make a few remarks recalling the properties of the Higdon NRBCs:

1. The boundary conditiof6) is exact for all waves that propagate with.adirection phase speed equal to either

of C1, ..., Cy. To see this, consider a wave which satisfies the veaeation (5)and boundary condition (2)
with constantCp and f. Such a wave has the form
u=A cosnnTy cos(kx — ot + V), (7
where
2 2(;2 n’n? 2
w®=Cq |k + 2 +f4 n=012.... (8)
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Also, let

w
o
which is thex-direction phase velocity. I(7)—(9), A is the wave amplitudey is its phasek is thex-component
wavenumber, ana is the wave frequencitg. (8)is the dispersion relation. In general, solutiongx)fconsist of

an infinite number of waves of the for(#). There are also solutions that decay exponentially inctd@ection;

however, they are usually not of great concern, since the decaying modes are expected to be insignificant at the
time they reaclie. Now, itis easy to verify that if one of th€;’s in (6) is equal taC,,, then the wav¢7) satisfies

the boundary conditio(6) exactly.
. From(8) and (9)we have

C2 27.[2 b2+ 2
cxz\/cng%, n=012.... (10)

Cy = )

Thus, alway<C, > Cy, hence one should take; > Co.

. The first-order conditiot/; is a Sommerfeld- Ilke boundary condition. If we €&t = Co we get the classical
Sommerfeld-like NRBC. A lot of work in the meteorological literature is based on uginwgith a specially
chosenC;. Pearsori26] used a special but constant valuedf while in the scheme devised by Orlangkv]

and in later improved schemg8-31]the C; changes dynamically and locally in each time-step based on the
solution from the previous time-step. Some of the limited-area weather prediction codes used today are based on
such schemes, e.g., COAMIPR]. See also the recent papg38—35]where several such adapti¥h schemes

are compared.

. The conditionH; involves normal and temporal derivatives up/tih order. In fact, it has the form

J
Z w;df 8tj_]u =0, (11)

which is obtained by expandin@). Finding the general formula for the coefficients in (11)is difficult, but
fortunately we shall not need it in our new scheme.

. It is easy to show (see Higdd80] for a similar setting) that when a wave of the fo(if) impinges on the
boundaryFE where the NRBH is imposed, the resultingflection coefficiens

(12)

i C i+ Cx
Again we see that i€; = C, for any one of thej’s thenR = 0, namely there is no reflection and the NRBC

is exact. Moreover, we see that the reflection coefficient is a produktfadtors,each of which is smaller than

1. This implies that the reflection coefficient becomes smaller as the drihereases regardless of the choice
made for the parametets;. Of course, a good choice for th@; would lead to better accuracy with a lower
order J, but even if we miss the correct;’s considerably (say, if we make the simplest chaite= Cg for

Jj =1,...,J), we are still guaranteed to reduce the spurious reflection as we increase thé .orties is an
important property of the Higdon’s NRBCs and is the reason for their robustness.

. In[23], Higdon points to the possibility of a long-time instability that might occur when one uses a NRBC
with high-order derivatives. If the interior governing equations and the NRBC both admit solutions at zero
wavenumber and frequency, and if the data in the problem include such “zero modes”, then a slowly growing
smooth instability is possible. Whether this shows up in practice depends on the order of the derivatives in the
NRBC and on the number of spatial dimensions. However, these difficulties do not arise in the presence of
dispersion, or if the data are confined to non-trivial modes.
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4. Discretization of Higdon’s NRBCs

The Higdon conditiorf; given by(6) is a product ot/ operators of the formy, 4- C;9,. Consider the following
FD approximations:
=8 _1—=57

3 =~ N . 13
b= N 13

In (13), At andAx are, respectively, the time-step size and grid spacing in-tlieection,/ is the identity operator,
andsS; andS; are shift operators defined by

—n _ .n—1 - n _ .n
S; Upg = Upq > S, Upg =Up_14- (14)

Here and elsewherep, (and alsa/’, ) is the FD approximation af(x, y, #) at grid point(x,, y,) and at time,,.
We use(13)into (6) to obtain

J _

-5 I1-587
H( a TG Axx> “Ea=0 (15)
j=1

Here, the indext correspond to a grid point on the bounddry. Higdon has solved this difference equation (and
also a slightly more involved equation that is based on time- and space-averaging approximatiQrenfibd, ;
see next section) faf < 3 to obtain an explicit formula fom’éq. This formula is used to find the current values on
the boundary e afterthe solution in the interior points and on the other boundaries has been updated; thus itis an
explicit formula. The formula fov = 2 is found in[25], and the one for = 3 appears in the appendix [#4].
The algebraic complexity of these formulas increases rapidly with the drdeis thus not surprising that we have
not found in the literature any report on the implementation of the Higdon NRBCs beyend.

Now we show how to implement the Higdon NRB@sany orderusing a simple algorithm. To this end, we first
multiply (15) by At and rearrange to obtain

J

Z=|[]@iI+d;S; +ejS;) |utq=0, (16)

j=1
where
CiAt

aj = 1+ ix , (17)

dj =1, (18)
CiAt

€j = — ix . (19)

The coefficientd; actually does not depend gnbut we keep this notation to allow easy extensions to the scheme
(see next section). Nov, in (16) can be written as a sum of 3erms, each one is an operator acting;@@, namely
3/-1
Z=) AnPuuty=0. (20)

m=0

HereA,, is a coefficient depending on the, 4; ande;, and P, is an operator involving products &f S, andS;.
All the terms in the sum ii20) are computable at the current time-stegxcept the one which involves only the
identity operator and no shift operators. If we let this term correspond+00, thenPy = I and

J
Ag = Haj. (21)
j=1



D. Givoli, B. Neta/Wave Motion 37 (2003) 257-271 263

Thus we get fron{20)
Z = Aougq+ 2" =0, (22)
where
3/-1
Z* =) ApPuuty (23)
m=1
From(22) we get
Z*
Eo=——) 24
UEq Ao (24)

which is the desired value afon the boundaryE.

Box 1. Algorithm for implementing the Higdon NRBC of order J.

o Startwithz* = 0. Calculatedo = []/_; a;.
e Loop overtheintegerm = 1,...,3/ — 1.

o For a giverm, transformm into a number in base 3, consisting of the digits 0, 1 and 2 only. The length of
r will be at mostJ digits. Store the/ digits ofr in the vectorD,(j), j =1,..., J.
Example Suppose tha = 6 andm = 227. Since 227 in base 3 is= 22102, we will getD, =
{02 21 0 2.
o UseD, to calculate the coefficiemt,,. To this end, start witi,, = 1, loop overj = 1, ..., J, and for each
Jj multiply A,, by the factorw; (if D.(j) = 0) ord; (if D-(j) = 1) ore; (if D,(j) = 2).
Example For J = 6 andm = 227, we have received the vectby above. Them 227 = ajezesdaases.
o Use D, to calculate the operator actioﬂnu’,’zq. To this end, start withi = n andi = E, loop over

j=1,...,J,and for eachy subtract 1 from: (if D,(j) = 1) or subtract 1 from (if D,(j) = 2) ordo
nothing (if D, (j) = 0). After the loop ends we ha\@nu’éq = u?q.
Example For the case/ = 6 andm = 227 considered above, we get= n — 1 (because the dig
“1" appears only once iD,), andi = E — 3 (because the digit “2” appears three timesliy). Hence
P227u'éq = u'};_lSq
o Update:Z* « Z* + Am”?q'

—

o Nextm.
° M"Eq = —7Z%/Ao.

The problem now reduces to calculati#g given by(23). We do this using the algorithm described in Box 1.
The basic idea is to calculate the coefficiedts and the operator actionsmu’éq term by term. This is done
systematically by transforming the integer counieto a number in base 3 witlh digits. TheA,, and P,, are not
simple functions of the decimal representation of the numbdsut theyare simple functions of the digits of the
base-3 representation af.

Note that we need to storé valuesfori = E,E—1,...,E—Jandi=n,n—1,...,n— J.n other words,

iq
we have to store the history of the valuesudbr a layer of thicknesg + 1 points near the boundai: and for
J + 1 time levels (including the current one). If there &g grid points in they-direction, then the amount of
storage needed in a simple storage schemé is 1)2Ny. However, one can save in storage by exploiting the fact

that not all valuealf’q are needed, but only those for which — )+ (n—A) < J.This s clear from(11)and also
from (16). For example, the solution at timg_; should be stored only for points on the boundagyitself.
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Higdon[20] has proved, in the context of the scalar Klein—Gordgnation (5)that the discrete NRBO4.5)
are stable if the interior scheme is the standacdond-order centeretifference scheme

n+1 n n—1 CoAr 2 n n n
Upq = 2ipg ~ Upg Ax ) Wpiig —2pg Uy 1g)
2
CoAt n n n 2.n
+ ( Ay ) (W g1 — 2pq+ 1y 1) — (fAD Upq. (25)

We use this interior scheme in the numerical experiments presersetiion 7 Since botl{25)and the discretized
Higdon NRBC are explicit, the whole scheme is explicit.

An alternative formulation of the Higdon NRBC, where all the high-order derivatives are eliminated by the use
of auxiliary variables, is currently under development and will be reported in a future publication.

5. Improved discrete Higdon NRBCs

The discretization scheme described in the previous section is based on the basic FD approximations given by
(13). These approximations can be improved in several ways. For example

(@) We can take

LIS g IS g
b (A=) D). 8= — (L= b +bS), (26)

where 0< b < 1. Thus, the temporal difference is calculated with a weighted average in space while the spatial
difference is calculated with a weighted averaged in time. The form@@scorrespond td = 0. In [20],
Higdon has used this approximation with= 0.5, and reported a slight improvement in the results compared
to the use of13).
(b) We can take one-sided approximations forthandz-derivativeq36], i.e.

&Nm—apﬂxﬁ 3NN—“PH$V
- 2At ' T 2Ax ’
These approximations are second-order accurate, as opposed to tfidanhich are first-order accurate.
(c) We can combine the two types of approximations given above, namely
31 — 48] + (5,)? 31 — 487 + (S7)?
2At 2Ax

(27)

0y ~ (=BT +DbS), 8=~ (1—b)I +bS). (28)

The procedure described in the previous section forimplementing the Higdon NRBCs can easily be modified to admit
each of these improved approximations. The main feature that has to be changed in the algorithm outlined in Box 1 is

thebaseto which the counting decimal integeris transformed. For example, consider the weighted approximation
(26) replacing(13). In this cas€16), which involves three basic operatods §;” andS;’) is replaced by

J
]’[(aj1+dj5; +e;S; +8;S7S) | ugq=0. (29)
j=1

z

which involvesfour basic operatorsi( S, , S, andS; S;). Therefore, the counter in the main loop in Box 1

will range from 1 to 4 — 1, and all the calculation will be performed in base 4 rather than in base 3. Similarly, the
approximationg27) and (28will require calculations in base 5 and base 8, respectively. The alternations needed in
the coding are minor, but naturally the computational time associated with these improved approximations would
increase dramatically.
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We note that when one uses a high-order Higdon NRBC, the discrete operator involved is of high-order even
when the simplest formula@ 3) are used to approximate the and¢-derivatives. Thus, the importance of the
improvements discussed above diminishes whamcreases. In fact, it is probably worthwhile to incorporate such
improvements in the scheme only if a low-order condition (Jay; 3) is employed.

6. Controlling the parameters

The Higdon NRBCs involve the parametérswhich must be chosen. There are three approaches in this context:

(a) The user chooses t@ a priori in a manual manner based on an “educated guess”. This is the procedure
recommended in Higdon’s papd—-25]

(b) TheC; are chosen automatically by the computer code as a preprocess.

(c) TheC; are not constant, but are determined dynamically by the computer code. Namely, a vaiyeigor
estimated for every grid point on the boundary at each time-step, from the solution in the previous time-steps.

We have adopted approach (b), which is automatic yet very inexpensive computationally. The algorithm we
propose is described in Box 2. It is based onrtieximum resolvable@avenumbers in the- andy-directions, and
on the minimax formul&37] for choosing ther-component wavenumbers.

Box 2. Algorithm, used as a preprocess, for determining the parameters C; in the Higdon NRBC.

e Given the grid parametexx, estimate the maximum resolvable wavenumbir the x-direction. Assuming
a maximum of 10 grid points per wavelength, a reasonable estimate is
b
5Ax’
e ChooseJ — 1 values ofk from the interval(0, kmax). This is done using the symmetric minimax formu
(based on the Chebyshev polynomial) proposed by Sommeijer[87&l.

2 2j—1 b2
kj = [%‘ (1+ cos(hn))} , j=1...,J-1

Given the grid parameteiy, estimate the maximum resolvable wavenumbein the y-direction. Again
assuming a maximum of 10 grid points per wavelength, a reasonable estimate is

kmax =

a

b/
(ky)max = =—

5Ay"

e For eachk;, calculate the corresponding (and maximal in thdirection) frequency»; from the dispersion
relation(8)

0 = \JCRIR + (k) + 2.

Calculate

C,':ﬂ for j=1,...,J -1
e Add the valueCy (the minimum possible phase speed) tofhe 1 values calculated above. These constitute
the desired/ valuesC;.
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7. Numerical examples

We first apply the new scheme to a simple test problem whose exact solution is synthesized a priori. We consider
the waveguide problem describedS$ection 2and illustrated inFig. 1(a). We seth = 5, Co = 1 andf = 0.5.
The boundary functionw (v, t) on Iy and the initial conditions are those that correspond to a solutieny, )
which is a linear combination of three waves of the fdif) i.e.

3
U= Z Ay €057 oStk x — wt). (30)
m=1 b

The parameters chosen(@B0)areA,, = 1,1,1;n,, =1, 2, 2;w,, = 0.81, 1.37, 1.68. This corresponds to the three
phase velocities (obtained fro(f0)): C,/Co = 7.61, 6.27, 1.69. Thek,, in (30)is obtained from the»,, and the
n,, via the dispersion relatiof8).

We introduce the artificial boundaije (seeFig. 1(b)) atxg = 5. Thus, the computational domafhis a 5x 5
square. In2 we use a uniform grid with 2k 21 points. We discretize the Klein—Gordon equatiorfarusing
the explicit central-difference FD interior scherf@5). On I't we impose the Higdon NRBC implemented in its
high-order form. The time-step sizeds = 0.025, which is smaller than the CFL limit and thus guarantees stability.

In Figs. 4a)—(d), we plot the solution at the pointx = 5, y = 2.75 (located on'g) as a function of time. In
each of the four figures the exact solution is compared to a number of numerical solutions obtained with different

1.5 T : T — 2 : , , :
1 15 W
0.5 1 .
0.5 _
0 -
> g S50 i
-0.5
Exact sol. — -0.5 ,
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Fig. 2. Solution of the three-wave test problemat the pointx = 5, y = 2.75 (onlg) as a function of time. (a) Exact solution and tHe, H>
and H3 solutions withC; = 1. (b) Exact solution and this and H7 solutions withC; = 1. (c) Exact solution and thd3, H4 and Hs solutions
with automatically chosed';. (d) Exact solution and th&3z and H solutions with the exadf ;.



D. Givoli, B. Neta/Wave Motion 37 (2003) 257-271 267

NRBC schemes, namely with different choices of the otland the paramete(s;. First we choos€; = 1 for
all j. Fig. 2(a) shows theH;, H> and H3 solutions. Their accuracy is poor, although #igsolution is significantly
better than the other twéig. 2(b) shows theHs and H7 solutions. TheH7 solution is quite accurate in the entire
time interval shown. Thus, if th€;’s are not specially chosen, we need the order of the Higdon NRBC to be as
high as 7 for high accuracy.

Now we employ the procedure given by Box 2 to automatically choos€ft Fig. 2(c) shows the resulting
Hs, Hy and Hs solutions. We see that in this case the approach of the numerical solutions to the exact solution
is monotone. Moreover, faf = 5 we get about the same level of accuracy as we did wit 7 when all the
C; had the value ongg. 2(b)). For additional reference, we showkig. 2(d) the H3 solution obtained with the
C; corresponding to the three phase velocitigsof the exact solution. It is about as accurate asHBesolution
in Fig. 2(c). We also show théZ, solution obtained with the exa€¢;, C2, C3 and withC4 = 1. The numerical
solution is indistinguishable from the exact solution. In this case not only the NRBC is exact, but we gain additional
accuracy on the boundary due to the increased order of the FD scheme.

This example demonstrates, albeit in a simplified setting, that the same level of accuracy obtained with parameter
valuesC; that are well-estimated can be achieved with ill-chosen parameter values but with an increaséd order
Of course, increasing the order to ensure high accuracy is computationally expensive, and therefore it is usually
beneficial to use the algorithm given in Box 2.

We now consider another problem in the same waveguide, agairbwiils, Co = 1 and f = 0.5. The initial
conditions are all zero, and the boundary functignon I'yy is given by

COS[i(y - yo)] if |y—yol<r andt <1,
uw(y, 1) = 2r T - (31)
0 otherwise

Thus, the wave source on the west boundary is a cosine functipwith three parameters: its center locatigy
its width, and its time duratiom. We setyg = 2.5,r = 1.5, andfg = 0.5. In contrast to the previous test problem,
the solution of this problem involves an infinite number of modes and frequencies.

The computational parameterg, At and the grid are the same as in the previous example. However, here we
use the Higdon NRB@i,4 on I'e, with the fourC;’s obtained automatically by using the procedure given in Box 2.
These turn out to b€;/Co = 1, 1.45, 1.75 and 4.06.

We compare the solution obtained by the new scheme with two other solutions:

e A solution obtained in the same domain, but with the Higdon NRIBMnN I'g, usingC1 = 5. (Results obtained
for H1 with a smallerCy had a similar character, although less dramatic quantitatively.)

e A solution obtained in a domain twice as long, namely the domain0< 10, 0< y < 5, using a 42« 21 grid
with the same resolution. During the simulation time the wave generaté&y,atoes not reach the remote (east)
boundary of this large domain, and thus the issue of spurious reflection is avoided altogether, regardless of the
boundary condition used on the remote boundary. Hence this will serve as a “reference solution” which is exact
as far as the boundary condition treatment is concerned.

Fig. 3(@) shows the three solutions at time- 4. In this and the next figures, the top plot is that of the reference
solution, the middle plot corresponds to the solution obtained by the new scheme withiRBC, and the lower
plot describes théf; solution. Both the colors and the contour lines represent valugsAiftime ¢ = 4 the main
bulk of the wave packet generated By has not reached the bounddry yet, and hence all three plots are similar.

Fig. 3(b) shows the three solutions at time- 6. The wave packet has already passed the bourdaryhe Hy
solution is indistinguishable from the reference solution, whereas iffttslution spurious reflection is evident.
Figs. 3c) and (d) correspond to times= 8 and 10, respectively. The reflected wave moves backward iflthe
solution and pollutes the entire computational domain. On the other han, thalution exhibits the wave traces
which are also present in the reference solution.

Finally, we repeat this experiment while increasing the dispersion parameter by a factor of 20, i.e., fve-tdke
The group velocity decreases with increasing dispersion; hence the wave packet will move much more slowly now.
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Fig. 3. Solution of the west-source problem, dispersion parameter 0.5. Top plot—reference solution, middle plot#s solution, lower
plot—Hj; solution. Times: (a) = 4, (b)r = 6, (c)r = 8, (d)r = 10.
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(b)

(© (d)

Fig. 4. Solution of the west-source problem, dispersion parameter 10. Top plot—reference solution, middle plots solution, lower
plot—H; solution. Times: (a) = 12.5, (b)¢r = 15, (c)r = 19, (d)r = 225.
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Also, the solution is expected to be much “richer”, being composed of many waves with different frequencies and
phase speeds. Indeed, this is seeRim 4(a), which illustrates the solution at time= 12.5. The wave has just
reached the boundaty:, and the beginning of spurious reflection in tHe solution is apparenkigs. 4b), (¢) and

(d) show the solutions at times= 15, 19 and 22.5, respectively. Again tHe solution exhibits spurious reflection,

while the H4 solution performs very well in this high-dispersion case too.

8. Concluding remarks

In this paper we have presented a new numerical procedure based on FDs, which allows the use of the Higdor
NRBCs up to ararbitrarily high-order. The scheme is coded once and for all for any order; the order of the scheme
is simply an input parameter. This adds an important computational tool for use in the solution of infinite domain
time-dependent wave problems. Moreover, due to the generality of the Higdon NRBCs it is possible to use this tool
for problems with dispersive and layered media. We have focused on dispersive waves in this paper, although the
scheme is effective in the non-dispersive case as well. We have demonstrated that the high-order scheme, with thi
automatically chosen parameters, performs very well in both the low and high dispersion regimes.

Related future work will include the adaptation of the proposed approach to more complicated configurations,
such as exterior problems with a rectangular artificial bound&amgnd three-dimensional problems. It should be
remarked that no difficulties are expected in the case whanascorners The Higdon NRBCs do not involve
mixed spatial derivatives, and thus the corner grid point can arbitrarily be associated with one of the two straight
edges that meet at this corner, and can be treated just as any other grid point on this chosen edge.

In addition, the high-order Higdon NRBCs will be applied to the SWEs. The shallow water model serves as an
important test-bed for more complicated models in meteoro]88} It would be interesting, among other things,
to test the performance of the high-order Higdon NRBCs whendimelinearSWESs are used in the computational
domains2.

An alternative formulation of the Higdon NRBCs is currently under development. In this formulation some
auxiliary variables are introduced on the artificial boundary, in order to eliminate all the high-order derivatives. This
form of the NRBC has the advantages that after discretization it involves only degrees of freedom on the boundary
B itself, that no high-order discrete schemes are needed, and that the history of the solution does not have to be
stored. As a result, it is more amenable, compared to the formulation presented in this paper, for incorporation in a
Finite Element scheme. This alternative formulation will be reported in a future publication.
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