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Abstract

A new non-reflecting boundary scheme is proposed for time-dependent wave problems in unbounded domains. The

linear time-dependent wave equation, with or without a dispersive term, is considered in a semi-infinite wave guide. The

infinite domain is truncated via an artificial boundary B, and a high-order non-reflecting boundary condition (NRBC)

is imposed onB. Then the problem is solved numerically in the finite domain bounded byB. The new boundary scheme

is based on a reformulation of the sequence of NRBCs proposed by Higdon. In contrast to the original formulation of

the Higdon conditions, the scheme constructed here does not involve any high derivatives beyond second order. This is

made possible by introducing special auxiliary variables on B. As a result, the new NRBCs can easily be used up to any

desired order. They can be incorporated in a finite element or a finite difference scheme; in the present paper the latter is

used. The parameters appearing in the NRBC are chosen automatically via a special procedure. Numerical examples

concerning a semi-infinite wave guide are used to demonstrate the performance of the new method.
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1. Introduction

Methods for the numerical solution of wave problems in unbounded domains have been developed since

the 1970s [1]. They have been considered in various fields of application involving wave propagation, such

as acoustics, electromagnetics, meteorology and solid geophysics. The main four types of methods that

have emerged are: boundary integral methods, infinite element methods, absorbing layer methods and non-

reflecting boundary condition (NRBC) methods. The present paper concentrates on the latter.
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In the method of NRBCs, the infinite domain is truncated via an artificial boundary B, thus dividing the

original domain into a finite computational domain X and a residual infinite domain D. A special boundary

condition is imposed on B, in order to complete the statement of the problem in X (i.e., make the solution

in X unique) and, most importantly, to ensure that no (or little) spurious wave reflection occurs from B.

This boundary condition is called a NRBC, although a few other names are often used too [2]. The problem

is then solved numerically in X. The setup is illustrated in Fig. 1. Fig. 1(a) pertains to an exterior problem

outside of a scatterer or an obstacle. The artificial boundary B has a rectangular shape in the figure, al-

though sometimes a smooth shape (like a circle in two dimensions or a sphere in three dimensions) is
preferred. Fig. 1(b) describes a semi-infinite wave-guide problem. In the example shown, B ¼ CE is a cross-

section of the wave-guide which constitutes the east side of X.

Naturally, the quality of the numerical solution strongly depends on the properties of the NRBC em-

ployed. In the last 25 years or so, much research has been done to develop NRBCs that after discretization

lead to a scheme which is stable, accurate, efficient and easy to implement. See [3–5] for recent reviews on

the subject. Of course, it is difficult to find a single NRBC which is ideal in all respects and all cases; this is

why the quest for better NRBCs and their associated discretization schemes continues.

The late 1970s and early 1980s produced some low-order local NRBCs that become well-known, e.g., the
Engquist–Majda NRBCs [6] and the Bayliss–Turkel NRBCs [7]. The late 1980s and early and mid 1990s

have been characterized by the emerging of exact non-local NRBCs like those based on the Dirichlet-to-

Neumann (DtN) map [8,9] and on the difference potential method (DPM) [10,11], and by the invention of

the perfectly matched layer (PML) [12]. More recently, high-order local NRBCs have been introduced.

Sequences of increasing-order NRBCs have been available before (e.g., the Bayliss-Turkel conditions [7]

constitute such a sequence), but they had been regarded as impractical beyond 2nd or third order from the

implementation point of view. Only since the mid 1990s, practical high-order NRBCs have been devised.

The first such high-order NRBC has apparently been proposed by Collino [13], for two-dimensional
time-dependent waves in rectangular domains. Its onstruction requires the solution of the one-dimensional

wave equation on B. Grote and Keller [14,15] developed a high-order converging NRBC for the three-

dimensional time-dependent wave equation, based on spherical harmonic transformations. They extended

this NRBC for the case of elastic waves in [16]. Sofronov [17] has independently published a similar scheme

in the Russian literature. Hagstrom and Hariharan [18,19] constructed high-order NRBCs for the two- and

three-dimensional time-dependent wave equations based on the analytic series representation for the

outgoing solutions of these equations. It looks simpler than the previous two NRBCs. For time-dependent

waves in a two-dimensional wave guide, Guddati and Tassoulas [20] devised a high-order NRBC by using
rational approximations and recursive continued fractions. Givoli [21] has shown how to derive high-order

NRBCs for a general class of wave problems, leading to a symmetric finite element formulation, In [22], this

methodology was applied to the particular case of time-harmonic waves, using optimally localized DtN

NRBCs.

In the context of artificial boundary treatment, wave problems can roughly be divided into four cate-

gories. These are, in order of difficulty:

Fig. 1. Setup for the NRBC method: (a) an exterior scattering problem; (b) a semi-infinite wave-guide problem.
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(a) Linear time-harmonic wave problems.

(b) Linear time-dependent wave problems in non-dispersive homogeneous media.

(c) Linear time-dependent wave problems in dispersive and/or stratified media.

(d) Nonlinear time-dependent wave problems.
Linear time-harmonic waves have been treated extensively by NRBCs and absorbing layers, including

exact NRBCs of the DtN type [4], various PML formulations (see, e.g. [23,24]), and converging high-order

NRBCs (see, e.g. [22]). Time-dependent waves are considerably more difficult to handle from the artificial-

boundary perspective. However, some exact and high-order schemes have been devised in this case as well.

These include the schemes proposed in [13–21] mentioned above, as well as a scheme based on the Kir-

chhoff formula for three-dimensional waves [25,26], an iterative converging local NRBC [27], semi-discrete

DtN [28], time-dependent DtN [29], transform-based methods [30–32], and some variations of the above

[33–35].
The presence of wave dispersion and/or medium stratification makes the time-dependent problem still

more difficult as far as NRBC treatment is concerned. None of the high-order and exact NRBCs mentioned

above has been designed to deal with these effects. Exact boundary conditions for the dispersive wave

equation were developed by Hagstrom [5, p. 60], which was followed by limited experiments based on Pad�ee
approximations in [36]. Very recently, Navon et al. [37] developed a PML scheme for the dispersive shallow

water equations. Nonlinear waves (with the nonlinearity extending to infinity) are, of course, the most

difficult to handle. Some highly-accurate NRBCs have been proposed for specific classes of nonlinear wave

problems (see references in the review papers [3,5,38]).
In the present paper we develop a high-order NRBC scheme for both dispersive and non-dispersive

linear time-dependent waves. Wave dispersion appears in various applications. One important example is

that of meteorological models which take into account the earth rotation [39]. Other examples include

quantum-mechanics waves, the vibration of structures with rotational rigidity such as beams, plates and

shells, the vibration of strings and membranes on an elastic foundation, acoustic wave propagation in a

bubbly medium, and some nonlinear wave problems after linearization.

Higdon [40] proposed a sequence of NRBCs for the dispersive wave equation. In fact, these NRBCs were

developed originally for non-dispersive waves [41–45], but Higdon [40] showed that they can be applied in
the dispersive case too. The original implementation of the Higdon NRBCs is limited to low orders. Re-

cently, we have proposed a new implementation method that allows the use of high-order discretized

Higdon NRBCs [46]. However, this method differs from the original Higdon formulation only on the

discrete level, not on the continuous level; thus, like the original Higdon scheme, it involves high normal and

temporal derivatives, of increasing order. This has several disadvantages which we allude to in the next

section. In addition, the computational effort required by the scheme devised in [46] grows exponentially

with the order of the NRBC.

In the present paper, we reformulate the Higdon NRBCs on the continuous level in a completely new
way. This formulation does not involve any high derivatives. This is made possible by introducing special

auxiliary variables on B. The new construction allows the easy use of a Higdon-type NRBC of any desired

order, and can be incorporated in a finite element or a finite difference (FD) scheme. In the present paper we

use FDs to discretize both the partial differential equation in X and the NRBC on B. The computational

effort required by the scheme grows only linearly with the order.

The approach used here is reminiscent of that of Hagstrom and Hariharan [18,19]. In both cases new

high-order NRBCs are obtained from existing ones by eliminating all the high derivatives via the use of

auxiliary variables. However, there are some significant differences between the two formulations:
• the Hagstrom–Hariharan conditions are constructed in cylindrical and spherical coordinates whereas the

present conditions are constructed in Cartesian coordinates,

• the Hagstrom–Hariharan NRBCs are developed from the Bayliss–Turkel conditions,
whereas here the starting point for the new NRBCs is the sequence of Higdon conditions.
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• The Hagstrom–Hariharan conditions are convergent in three dimensions and asymptotic in two dimen-

sions whereas the present NRBCs are always convergent, albeit in the weaker sense discussed in Section

5.3.

• The definition of the auxiliary variables in the Hagstrom–Hariharan formulation is rather complicated,
whereas here they are defined via simple recursive relations.

• The NRBCs proposed here can be used equally well in the non-dispersive and dispersive cases, whereas

the Hagstrom–Hariharan NRBCs were designed in [18,19] only for the non-dispersive case.

Although the proposed NRBCs are quite general, we restrict ourselves in this paper to the case of a semi-

infinite wave guide (Fig. 1(b)), and do not treat the exterior scattering case (Fig. 1(a)) at all. The reason is

that our formulation relies on Cartesian coordinates, and thus in the exterior case we have to deal with

special conditions at the corners of B (see [47] for a discussion of this question for a certain family of

NRBCs) and to verify that no instabilities develop there. While we firmly believe that the proposed
scheme can be extended to this case, the investigation of the corner issue is not trivial and is left for future

work.

Following is the outline of the rest of this paper. In Section 2 we state the problem under investigation.

We also present the Higdon NRBCs and recall their properties. In Section 3 we reformulate the Higdon

NRBCs, through the use of auxiliary variables, in a high-order way which does not involve high derivatives.

The FD discretization scheme for this formulation is presented in Section 4. In Section 5 we discuss some

computational issues, including the automatic choice of the NRBC parameters and the ‘‘exactness’’ of the

NRBC scheme. In Section 7 we demonstrate the performance of the new method via some numerical
examples concerning a semi-infinite wave guide. We conclude with some remarks in Section 7.

2. Statement of the problem and the Higdon NRBCs

We consider wave propagation in a two-dimensional channel or wave guide, as described in Fig. 1(b). A

Cartesian coordinate system ðx; yÞ is introduced such that the wave-guide is parallel to the x direction. The

width of the wave-guide is denoted by b. In the wave guide we consider the linear inhomogeneous Klein–
Gordon equation,

o2t u� C2
0r2uþ f 2u ¼ S: ð1Þ

Here and elsewhere we use the following shorthand for partial derivatives:

oia ¼
oi

oai
: ð2Þ

In (1), u is the unknown wave field, C0 is the given reference wave speed, f is the given dispersion parameter,

and S is the given wave source function. The C0 and f are allowed to be functions of location; however, it is

assumed that outside a finite region (typically located near the west boundary CW) they do not depend on x

but only possibly on y. (Such y-dependence corresponds to a stratified medium.) The wave source S is a

function of location and time, but it is assumed to have a local support.
Eq. (1) describes, for example, the lateral vibration of a membrane strip on an elastic foundation, or the

acoustic pressure in a dispersive medium (say, a linearized bubbly medium). Also, it can be shown that the

linearized shallow water equations, with a flat bottom and zero initial conditions, reduce to (1), where u is

the water elevation above the reference level [39]. In the geophysical context, f is called the Coriolis pa-

rameter and is related to the angular velocity of the earth.

On the south and north boundaries CS and CN we specify either the Dirichlet condition

u ¼ 0 on CS and CN; ð3Þ
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or the Neumann condition

oyu ¼ 0 on CS and CN: ð4Þ

In acoustics these correspond to ‘‘soft wall’’ and ‘‘hard wall’’ conditions, respectively. On the west

boundary CW we prescribe u using a Dirichlet condition, i.e.,

uð0; y; tÞ ¼ uWðy; tÞ on CW; ð5Þ

where uWðy; tÞ is a given function (incoming wave). At x ! 1 the solution is known to be bounded and not

to include any incoming waves. To complete the statement of the problem, the initial conditions

uðx; y; 0Þ ¼ u0; otuðx; y; 0Þ ¼ v0; ð6Þ

are given at time t ¼ 0 in the entire domain. We assume that the functions u0 and v0 have a local support.

We now truncate the semi-infinite domain by introducing an artificial east boundary B 	 CE, located at
x ¼ xE; see Fig. 1(b). This boundary divides the original semi-infinite domain into two subdomains: an

exterior domain D, and a finite computational domain X which is bounded by CW, CN, CS and CE We

choose the location of CE such that the entire support of S, u0 and v0 and the region of x-dependence of C0

and f are all contained inside X. Thus, on CE and in D, the homogeneous counterpart of (1) holds, i.e.,

o2t u� C2
0r2uþ f 2u ¼ 0; ð7Þ

with y-dependent (or, as a special case, constant) coefficients C2
0 and f 2, and the medium is initially at rest.

To obtain a well-posed problem in the finite domain X we need to impose a boundary condition on CE.

This must be a NRBC so as to prevent spurious reflection of waves. We shall use a NRBC which is a

reformulation of the Higdon NRBC [40]. The Higdon conditions were presented and analyzed in a sequence

of papers [41–45] for non-dispersive acoustic and elastic waves, and were extended in [40] for the dispersive

case. The Higdon NRBC of order J is

HJ :
YJ
j¼1

ðot

"
þ CjoxÞ

#
u ¼ 0 on CE: ð8Þ

Here, the Cj are parameters which have to be chosen and which signify phase speeds in the x-direction. The

main advantages of the Higdon conditions are as follows:

• The Higdon NRBCs are very general, namely they apply to a variety of wave problems, in one, two and

three dimensions and in various configurations. Moreover, they can be used, without any difficulty, for

wave problems in dispersive and stratified media. Most other available NRBCs are either designed for

non-dispersive homogeneous media (as in acoustics and electromagnetics) or are inherently of low order

(as in meteorology and oceanography).

• The Higdon NRBCs constitute a sequence of conditions of increasing order. This, and the fact that no
asymptotic approximation is involved in their construction, enables one in principle (leaving implemen-

tational issues aside for the moment) to obtain solutions with unlimited accuracy. See the discussion in

Section 5.3.

• The boundary condition (8) is exact for all waves that propagate with an x-direction phase speed equal

to either of C1; . . . ;CJ . To see this, consider a wave which satisfies the wave equation (7). Such a wave

has the form

u ¼ AYnðyÞ cos kðx� Cxt þ wÞ; ð9Þ
where

Cx ¼
x
k
; ð10Þ
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which is the x-direction phase velocity. In (9) and (10), A is the wave amplitude, w is its phase, k is the x-

component wave number, and x is the wave frequency. The function YnðyÞ in (9) is determined from the

dependency of C0 and f on y and from the boundary conditions given on CS and CN. For example, if C0

and f are constant then

YnðyÞ ¼
sin npy

b ; n ¼ 1; 2; . . . ; if Dirichlet B:C: ð3Þ
cos npy

b ; n ¼ 0; 1; 2; . . . ; if Neumann B:C: ð4Þ

�
ð11Þ

It is common to refer to n as the ‘‘mode number’’. The wave number k, the frequency x and the mode

number n depend on each other through the dispersion relation. For example, for C0 and f constant the
dispersion relation is

x2 ¼ C2
0 k2
�

þ n2p2

b2

�
þ f 2; n ¼ 0; 1; 2; . . . ; ð12Þ

where the mode n ¼ 0 appears only in the case of Neumann conditions on CS and CN In general, so-

lutions of (7) consist of an infinite number of waves of the form (9). There are also solutions that decay

exponentially in the x direction; however, they are usually not of great concern, since the decaying modes

are expected to be insignificant at the time they reach CE. Now, it is easy to verify that if one of the Cj�s in
(8) is equal to Cx, then the wave (9) satisfies the boundary condition (8) exactly.

• Each wave of the form (9) is essentially characterized by two independent parameters, say the wave num-

ber k and the mode number n. Other parameters, like the frequency x or the phase velocity Cx are de-

termined from these two parameters through the dispersion relation (see (10) and (12)). Despite this fact,

the accuracy of the Higdon NRBC is determined by only one parameter per wave, namely Cx. This sig-

nificantly facilitates accuracy control.

• For certain choices of the parameters, the Higdon NRBCs are equivalent to NRBCs that are derived

from rational approximation of the dispersion relation (the Engquist–Majda conditions [6] being the

most well-known example). This has been proved by Higdon [40,41]. More precisely, Higdon�s theorem
states that if a NRBC is based on a symmetric rational approximation to the dispersion relation corre-

sponding to outgoing waves, then it is either (a) equivalent to (8) for a suitable choice of J and the pa-

rameters Cj, or (b) unstable, or (c) not optimal. Lack of optimality means here that the coefficients in the

NRBC can be modified so as to reduce the amount of the spurious reflection. Thus, the Higdon NRBCs

can be viewed as generalization of rational-approximation NRBCs.

• It is easy to show (see [40] for a similar setting) that when a wave of the form (9) impinges on the bound-

ary CE where the NRBC HJ is imposed, the resulting reflection coefficient is

R ¼
YJ
j¼1

Cj � Cx

Cj þ Cx

����
����: ð13Þ

Again we see that ifCj ¼ Cx for any one of the j�s then R ¼ 0, namely there is no reflection and theNRBC is
exact. Moreover, we see that the reflection coefficient is a product of J factors, each of which is smaller than

1. This implies that the reflection coefficient becomes smaller as the order J increases regardless of the

choice made for the parameters Cj. Of course, a good choice for the Cj would lead to better accuracy with

a lower order J, but even if we miss the correct Cj�s considerably (say, if we make the simplest choice

Cj ¼ C0 for j ¼ 1; . . . ; J ), we are still guaranteed to reduce the spurious reflection as we increase the order

J. This is an important property of Higdon�s NRBCs and is the reason for their robustness.

We note that the first-order condition H1 is a Sommerfeld-like boundary condition. If we set C1 ¼ C0 we

get the classical Sommerfeld-like NRBC. A lot of work in the meteorological literature is based on using H1

with a specially chosen C1. Pearson [48] used a special but constant value of C1, while in the scheme devised
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by Orlanski [49] and in later improved schemes [50–53] the C1 changes dynamically and locally in each time-

step based on the solution from the previous time-step. Some of the limited-area weather prediction codes

used today are based on such schemes, e.g., COAMPS [54]. See also the recent papers [55–57] where several

such adaptive H1 schemes are compared.

Difficulties associated with the original formulation of the Higdon NRBCs (see [40]) are as follows:

• The discrete Higdon conditions were developed in the literature up to third order only, because of their

algebraic complexity which increases rapidly with the order.

• The original Jth-order Higdon NRBC involves high normal and temporal derivatives, up to order J. In
fact, it has the form

XJ
j¼0

cjo
j
xo

J�j
t u ¼ 0; ð14Þ

which is obtained by expanding (8). The high derivatives pose obvious disadvantages. High normal de-

rivatives are problematic; when finite elements are used only the J ¼ 1 condition is compatible with stan-

dard (low-order C0) elements, whereas when finite differences are used, the discrete stencil must be a non-
standard high-order one, penetrating deeply into the computational domain away from the artificial

boundary. High time derivatives are also disadvantageous in that they require the use of high-order time

discretization and the storage of the solution history.

• The Higdon NRBCs involve the parameters Cj which must be chosen. Higdon [40] discusses some gen-

eral guidelines for their manual a-priori choice by the user. No procedure has been provided in the lit-

erature for the automatic choice of the Cj�s.
The new scheme proposed in this paper overcomes all these difficulties. In the next sections we shall re-

formulate the Higdon NRBCs such that they can easily be used up to an arbitrarily high order. The scheme
is coded once and for all for any order; the order of the scheme is simply an input parameter. Moreover, it

does not involve any high derivatives. Later we shall also discuss the automatic choice of the parameters Cj.

3. High-order non-reflecting boundary conditions

We first replace the Higdon condition (8) by the equivalent condition

HJ :
YJ
j¼1

ox

�"
þ 1

Cj
ot

�#
u ¼ 0 on CE: ð15Þ

Now we introduce the auxiliary functions /; . . . ;/J1 , which are defined on CE as well as in the exterior

domain D (see Fig. 1(b)). Eventually we shall use these functions only on CE, but the derivation requires

that they be defined in D as well, or at least in a non-vanishing region adjacent to CE. The functions /j are

defined via the relations

ox

�
þ 1

C1

ot

�
u ¼ /1; ð16Þ

ox

�
þ 1

C2

ot

�
/1 ¼ /2; ð17Þ

..

.

ox

�
þ 1

CJ
ot

�
/J�1 ¼ 0: ð18Þ
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By definition, these relations hold in D, and also on CE. It is easy to see that (16)–(18), when imposed as

boundary conditions on CE, are equivalent to the single boundary condition (15). If we also define

/0 	 u; /J 	 0; ð19Þ

then we can write (16)–(18) concisely as

ox

�
þ 1

Cj
ot

�
/j�1 ¼ /j; j ¼ 1; . . . ; J : ð20Þ

This set of conditions involves only first-order derivatives. However, due to the appearance of the x-de-

rivative in (20), one cannot discretize the /j on the boundary CE alone. Therefore we shall manipulate (20)

in order to get rid of the x-derivative.

The function u satisfies the wave equation (7) in D. The function /1 is obtained by applying a linear

operator to u, as in (16); hence it is clear that /1 also satisfies the same equation in D. Similarly, we deduce

that each of the functions /j satisfies a wave equation like (7), namely,

o2x/j þ o2y/j �
1

C2
0

o2t /j �
f 2

C2
0

/j ¼ 0: ð21Þ

Here we needed the assumption that C0 and f do not depend on x or on t. Now, we make use of the

following identity:

o2x/j ¼ ox

�
� 1

Cjþ1

ot

�
ox

�
þ 1

Cjþ1

ot

�
/j þ

1

C2
jþ1

o2t /j: ð22Þ

Substituting (22) in (21) and replacing j with j� 1 everywhere yields, for j ¼ 1; . . . ; J ,

ox

�
� 1

Cj
ot

�
ox

�
þ 1

Cj
ot

�
/j�1 þ

1

C2
j

 
� 1

C2
0

!
o2t /j�1 þ o2y/j�1 �

f 2

C2
0

/j�1 ¼ 0: ð23Þ

From this and (20) we get, for j ¼ 1; . . . ; J ,

ox

�
� 1

Cj
ot

�
/j þ

1

C2
j

 
� 1

C2
0

!
o2t /j�1 þ o2y/j�1 �

f 2

C2
0

/j�1 ¼ 0: ð24Þ

On the other hand, (20) can also be written as

ox

�
þ 1

Cjþ1

ot

�
/j ¼ /jþ1; j ¼ 0; . . . ; J � 1: ð25Þ

We subtract (24) from (25) to finally obtain, for j ¼ 1; . . . ; J � 1,

1

Cj

�
þ 1

Cjþ1

�
ot/j ¼ /jþ1 þ

1

C2
j

 
� 1

C2
0

!
o2t /j�1 þ o2y/j�1 �

f 2

c20
/j�1: ð26Þ

As desired, the new boundary condition (26) does not involve x-derivatives. In addition, there are no high

y- and t-derivatives in (26) beyond second order.

Rewriting (16), (19) and (26), we can summarize the new formulation of the Jth-order NRBC on CE as

follows:

b0otuþ oxu ¼ /1; ð27Þ

D. Givoli, B. Neta / Journal of Computational Physics 186 (2003) 24–46 31



bjot/j � ajo
2
t /j�1 � o2y/j�1 þ k/j�1 ¼ /jþ1; j ¼ 1; . . . ; J � 1; ð28Þ

aj ¼
1

C2
j
� 1

C2
0

; b0 ¼
1

C1

; bj ¼
1

Cj
þ 1

Cjþ1

; k ¼ f 2

C2
0

; ð29Þ

/0 	 u; /J 	 0: ð30Þ

4. Finite difference discretization

Now we consider the FD discretization of the NRBC (27)–(30). First we consider the boundary con-

dition for u (27). We discretize oxu on CE by using the one-sided second-order approximation [58]

ðoxuÞnEq ’ �
�3unEq þ 4unE�1;q � unE�2;q

2Dx
: ð31Þ

Here and elsewhere, unpq (and also unp;q) is the FD approximation of uðx; y; tÞ at grid point ðxp; yqÞ and at time

tn, and the index E correspond to a grid point on the boundary CE. From (27) we obtain a discrete formula

for otu, i.e.,

ðotuÞnEq ’
1

b0

ð/1Þ
n
Eq

�
� ðoxuÞnEq

�
: ð32Þ

Then we calculate the new u by a forward-in-time difference formula. We can either use the two-level first-

order formula

unþ1
Eq ¼ unEq þ DtðotuÞnEq ð33Þ

or the three-level second-order formula [58]

unþ1
Eq ¼ 1

3
4unEq
�

� un�1
Eq þ 2DtðotuÞnEq

�
: ð34Þ

In obtaining the numerical examples presented in Section 7 we have chosen to work with the first-order

formula (33). It should be noted that when one uses a high-order NRBC (namely HJ with a large J), the

discrete operator involved effectively for u on the boundary is of high-order even when a first-order formula

like (33) is used. Thus the importance of using boundary discretization schemes with improved accuracy

diminishes when J increases.

Next we consider the boundary condition for /j (28). We use the following second-order central dif-

ference approximations for the second temporal and tangential derivatives [58]:

ðo2t /j�1Þ
n
Eq ’

ð/j�1Þ
nþ1

Eq � 2ð/j�1Þ
n
Eq þ ð/j�1Þ

n�1

Eq

ðDtÞ2
; ð35Þ

ðo2y/j�1Þ
nþ1

Eq ’
ð/j�1Þ

nþ1

E;qþ1 � 2ð/j�1Þ
nþ1

Eq þ ð/j�1Þ
nþ1

E;q�1

ðDyÞ2
: ð36Þ

Note that (36) cannot be used at the two east corners (the two end points of CE). At these corners, we do

one of the following things. If the Dirichlet boundary conditions (3) are applied on CS and CN, then it is
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easy to show from (16)–(18) that on these boundaries not only u ¼ 0 but also /j ¼ 0 for j ¼ 1; . . . ; J .
Thus, in the two east corners we simply take u ¼ 0 and /j ¼ 0 for all the j�s. If the Neumann boundary

conditions (4) are given on CS and CN, we use at the two east corners a one-sided second-order ap-

proximation instead of the central-difference formula (36). For example, at the south-east corner we use

[58]

ðo2y/j�1Þ
nþ1

Eq ’
2ð/j�1Þ

nþ1

Eq � 5ð/j�1Þ
nþ1

E;qþ1 þ 4ð/j�1Þ
nþ1

E;qþ2 � ð/j�1Þ
nþ1

E;qþ3

ðDyÞ2
: ð37Þ

From (28) we obtain a discrete formula for ot/j, i.e.,

ðot/jÞ
n
Eq ’

1

bj
ð/jþ1Þ

n
E;qþ1

�
þ ajðo2t /j�1Þ

n
Eq þ ðo2y/j�1Þ

nþ1

Eq � kð/j�1Þ
nþ1

Eq

�
: ð38Þ

Then we calculate the new /j by a forward-in-time formula, which again can be either the two-level first-

order formula

ð/jÞ
nþ1

Eq ¼ ð/jÞ
n
Eq þ Dtðot/jÞ

n
Eq ð39Þ

(which we actually use in Section 7) or the three-level second-order formula

ð/jÞ
nþ1

Eq ¼ 1

3
4ð/jÞ

n
Eq

�
� ð/jÞ

n�1

Eq þ 2Dtðot/jÞ
n
Eq

�
: ð40Þ

The simplest solution procedure is the one based on the sequential solution of the equations for the /j�s.
Namely, we first solve for u, then we solve for /1, then for /2, and so on. At the stage when we update the

values of /j, the quantities ð/j�1Þ
nþ1

E... appearing in (35) and (36) are already known, having been derived in

the previous stage for /j�1. On the other hand, the quantity ð/jþ1Þ
nþ1

Eq is not yet available; that is why we use

ð/jþ1Þ
n
Eq in (32) and (38) rather than ð/jþ1Þ

nþ1

Eq . The latter fact may potentially lead to an unstable solution.

Indeed, when we have implemented the scheme based on the formulas (31)–(39) with J P 2, an instability

developed in time. One remedy for this instability is to perform a second iteration and update u and the /j�s
again based on values obtained in the first iteration. This two-cycle algorithm turns out to be stable. It is
summarized in Box 1.

Note that the only algorithmic difference between the first and second iterations is in the use of ð/1Þ
n
Eq vs.

ð/1Þ
nþ1

Eq in (32). All the other formulas remain unchanged in the two iterations. We have tried to use also

ð/jþ1Þ
nþ1

Eq in (38) instead of ð/jþ1Þ
n
Eq in the second iteration, but this led to instability.

As an alternative scheme, Eqs. (31)–(39) may be solved simultaneously for all the j�s and all the y-lo-

cations q, as one coupled system of linear equations on CE. The dimension of this system is JNy , where Ny is

the number of grid-points on CE However, in the numerical examples presented in Section 7 we have used

the decoupled discretization scheme described in Box 1.
In the interior domain X, we use the standard second-order centered difference scheme

unþ1
pq ¼ 2unpq � un�1

pq þ C0Dt
Dx

� �2

unpþ1;q

�
� 2unpq þ unp�1;q

�
þ C0Dt

Dy

� �2

unp;qþ1

�
� 2unpq þ unp;q�1

�
� ðfDtÞ2unpq:

ð41Þ

Higdon [40] has proved that the discrete NRBCs (8) (in their original form) are stable if (41) is used as the

interior scheme. Since both (41) and the discretized NRBC are explicit, the whole scheme is explicit.
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5. Computational issues

5.1. Complexity

From Eqs. (31)–(39) and Box 1, it is easy to see that the number of operations related to the Jth-order

NRBC on CE is OðJNyÞ per time-step, where Ny is the number of grid-points on CE. The associated

computational effort is typically marginal with respect to the total effort required by the entire solution

process. In comparison, the scheme proposed in [46] which directly uses the original Higdon NRBCs (but

with a special high-order discretization scheme) requires Oð3JNyÞ operations per time-step, namely its
complexity grows exponentially with J.

Box 1. Algorithm for the FD implementation of the Jth-order NRBC.

5.2. Choosing the parameters Cj

Now we discuss how to choose the J parameters Cj, appearing in the NRBC (27)–(30).

First, we note that some physical limitations may apply to the chosen values of the Cj�s. For example, if

C0 and f are constant then from (10) and (12) we get

Cx ¼ C0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ n2p2=b2 þ f 2

k2

r
; n ¼ 0; 1; 2; . . . ; ð42Þ

and thus Cx PC0. Hence in this case one should take Cj PC0 for all the j�s.
Second, we recall that even the simple choice Cj ¼ C0 for j ¼ 1; . . . ; J , is guaranteed to reduce the

spurious reflection as J increases (see Section 2). Thus, this choice may be successful in many cases provided

that J is sufficiently large. What one gains from making a specialized choice for the Cj is the ability to obtain

• First iteration:

• Compute the ðoxuÞn values on CE from (31).

• Compute the ðotuÞn values on CE from (32).

• Compute the unþ1 values on CE from (33).

• If J ¼ 1, stop.

• For j ¼ 1; . . . ; J � 1:

� Compute the o2t ð/j�1Þ
n
values from (35).

� Compute the o2yð/j�1Þ
nþ1

values from (36) and (in the two corners) from (37).

� Compute the otð/jÞ
n
values from (38).

� Compute the ð/jÞ
nþ1

values from (39).

• Next j

• Second iteration:

• Recompute the ðotuÞn values on CE from (32), but use ð/1Þ
nþ1

instead of ð/1Þ
n
.

• Recompute the unþ1 values on CE from (33).

• For j ¼ 1; . . . ; J � 1:
� Recompute the o2t ð/j�1Þ

n
values from (35).

� Recompute the o2yð/j�1Þ
nþ1

values from (36) and (in the two corners) from (37).

� Recompute the otð/jÞ
n
values from (38).

� Recompute the ð/jÞ
nþ1

values from (39).

• Next j
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the desired level of accuracy with a smaller order J. However, one must bear in mind that since the NRBC-

associated cost increases only linearly with J, taking a large J may sometimes be preferable to spending a

considerable amount of computational effort on a sophisticated procedure to choose the Cj.

Three approaches for choosing the parameters Cj suggest themselves:

(a) The user chooses the Cj a priori in a manual manner based on an ‘‘educated guess.’’

(b) The Cj are chosen automatically by the computer code as a preprocess.

(c) The Cj are not constant, but are determined dynamically by the computer code.

Approach (a) is the one recommended in Higdon�s papers [40–45]. It is based on the assumption that the
user has some a priori knowledge on the character of the exact solution. While this may be a good as-

sumption in some applications, it is definitely desirable to have at hand an automatic procedure that will

not require the user�s intervention.
Approach (b) is attractive since it is automatic yet very inexpensive computationally. We have

adopted this approach in [46] as well as here, using an algorithm which is based on the maximum re-

solvable wave numbers in the x and y directions, and on the minimax formula [59] for choosing the x-

component wave numbers. The algorithm consists of the following steps (see [46] for further details): (1)

Estimate the maximum resolvable wave number k in the x direction. Assuming a maximum of 10 grid
points per wavelength, a reasonable estimate is kmax ¼ p=ð5DxÞ, where Dx is the grid spacing in the x

direction. (2) Similarly, estimate the maximum resolvable wave number k in the y direction. (3) Choose J

values of k from the interval ð0; kmax�. The simplest choice is the uniform division, namely kj ¼ kmaxj=J .
However, a better choice is to take the roots of the Chebyshev polynomial as the kj. This choice is based

on the symmetric minimax formula, proposed by Sommeijer et al. [59]. In this case more of the kj are
concentrated near the ends of the interval ð0; kmax�. (4) For each kj, calculate the corresponding (and

maximal in the y direction) frequency xj from the dispersion relation (cf. (12)). (5) Calculate Cj ¼ xj=kj
(see (10)).

Approach (c) is the most sophisticated, and also the most expensive computationally. In this approach,

the values Cj are estimated for every grid point on the boundary at each time-step, from the solution in the

previous time-steps. For the Sommerfeld-like NRBC (J ¼ 1), a procedure of this type is used a lot in

meteorological applications [49–53]. Analogous procedures may be employed with higher orders, although

Higdon [40] reports bad results with the Orlanski scheme [49] with J ¼ 2 and J ¼ 3. An adaptive scheme of

a different type, perhaps more suitable to high orders, is based on the fast Fourier transform (FFT); see

[60].

5.3. Exactness of the scheme

The proposed high-order NRBC scheme is converging, in the following sense. Consider the exact so-

lution of two problems: the first is the original problem in the infinite domain, and the second is the
problem in the truncated domain X, with the NRBC applied on B. Then the distance d, in some reasonable

norm, between the two solutions in X may serve as an error measure. Now, if a sequence of NRBCs satisfies

the following two properties:

(1) for any given problem of the class under consideration the error measure d of the NRBC approaches

zero as the order of the NRBC J goes to infinity while B is held fixed;

(2) the NRBC can be implemented once and for all for any order J, without limit;

then it is justified to call the sequence of NRBCs exact, or converging. In this sense the Grote–Keller NRBC

[15], the three-dimensional Hagstrom–Hariharan NRBC [19] and the localized DtN condition [22] are all
converging.

The NRBC scheme proposed in the present paper is also converging. The reason is that by increasing J

and choosing the parameters CJ in an appropriate way, one is assured to reduce the spurious reflection down

to any desired level. To demonstrate this we give two arguments: a theoretical one and a practical one.
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The theoretical argument is as follows. Consider the case of constant C0 and f. Any solution of (7) may

be written as a combination of plane waves, each one associated with a certain phase velocity in the x

direction, Cx PC0 (see (9)–(12)). Each wave generates the reflection coefficient R given by (13), which is a

product of numbers smaller than one. Thus, as J increases, the R generated by each wave must decrease.

However, this does not necessarily mean that R approaches zero as J ! 1. A sufficient condition for this to

be guaranteed is that the set of Cj�s is dense in the interval ½C0;1Þ as J ! 1, so that whatever Cx is, it will

be arbitrarily close to one of the Cj. This is indeed possible to achieve: the sequence of Cj�s may be taken to

be the sequence of all the rational numbers greater than or equal to C0. The rational numbers form a
countable set and thus can be ordered in a sequence; moreover they are dense in the set of real positive

numbers (a non-countable set). This argument is ‘‘theoretical’’ because in practice the Cj will never be

chosen in this fashion.

The practical argument is as follows. It is true that the phase velocity Cx of the waves participating in the

solution is not necessarily bounded, namely that for any number M there may be waves for which Cx > M .

However, those waves that have very high Cx are not of practical interest, since they cannot be resolved by

the discrete scheme anyway. Moreover, such waves are expected to have small amplitudes and not to in-

fluence the solution significantly compared to the resolved waves (otherwise the discretization is not sat-
isfactory). Thus, we can estimate a ‘‘practical bound’’ ðCxÞmax for the Cx (say, a multiple of Dx=Dt). Then we

only have to consider the finite interval Cj 2 ½C0; ðCxÞmax�. The Cj may be chosen by a uniform division of

this interval into J values, or by using the algorithm outlined in Section 5.2. Either way, as J ! 1, the set

of the Cj�s is dense in this interval.

5.4. Stability

Since the proposed method is explicit in time, one has to be concerned about numerical stability. For

stability of the interior scheme (41), we must satisfy the well-known CFL condition C0Dt=Dx6 1. Since

typically one would choose Dt=Dx to be slightly below the stability limit, we assume that Dt and Dx are

chosen such that C0Dt=Dx ¼ 1� �. Now, it is expected that the NRBC will also be associated with a sta-

bility condition. Indeed, the condition (27) and its discrete counterpart (31)–(33) point to the CFL con-
dition ð1=b0ÞDt=Dx6 1. We thus conclude that for stability,

b0 	
1

C1

P
Dt
Dx

¼ 1� �

C0

: ð43Þ

A similar argument, as well as numerical experiments, lead also to the sufficient condition for stability

bj 	
1

Cj
þ 1

Cjþ1

P
1

C0

ð44Þ

for j ¼ 1; . . . ; J � 1. Satisfying (43) and (44) is usually easy if one arranges the parameters Cj in an appro-

priate way. For example, for J ¼ 4, the arrangement Cj=C0 ¼ 1; 4; 4; 1 is unstable (since

b2 ¼ 1=ð2C0Þ < 1=C0) but Cj=C0 ¼ 1; 4; 1; 4 is stable. If a general automatic procedure is used to choose the

Cj, then this procedure should take into account the stability limitations. This can be done, for example, by

sorting the Cj appropriately and by replacing some of them by the reference phase speed C0. Of course, the

issue of the NRBC stability does not arise at all if Eqs. (27)–(30) on CE are solved in an implicit manner.

6. Numerical examples

We apply the new scheme to a number of test problems in a wave guide, as described in Section 2 and

illustrated in Fig. 1(b). We set b ¼ 5 and C0 ¼ 1. The initial conditions are zero throughout the domain.
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On the walls CS and CN we use the Dirichlet boundary condition (3). We consider two cases: the non-

dispersive case, namely f ¼ 0, and the dispersive case, with f ¼ 0:5. On the boundary CW we take the

Dirichlet boundary condition (5), with

uWðy; tÞ ¼ sin
py
b

� �
cos kCxt; t > 0: ð45Þ

This has the form of a mode-1 wave (see (9)). In (45) we take k ¼ 0:1, and compute from the dispersion

relation (12) the phase velocity Cx ¼ 6:3623 for the case f ¼ 0 and Cx ¼ 8:0966 for the case f ¼ 0:5. Note

that the sine-wave ‘‘loading’’ (45) is activated at t ¼ 0 in a step-like fashion, since for t < 0 the solution is

zero.

We introduce the artificial boundary CE (see Fig. 1(b)) at xE ¼ 5. Thus, the computational domain X is a
5� 5 square. In X we use a uniform grid with 21� 21 points. We discretize the Klein–Gordon equation in

X using the explicit central-difference FD interior scheme (41). The time-step size is Dt ¼ 0:025, which is

smaller than the CFL stability limit. On CE we impose the new NRBC, while varying the order J. Initially

we use Cj ¼ 1 for all the j�s.
A reference solution which is regarded as the ‘‘exact solution’’ uex is obtained by solving the problem in a

longer domain, with a refined grid and with a very high-order NRBC on the artificial boundary. Fig. 2

shows the ‘‘exact solution’’ obtained for the case f ¼ 0:5 by performing 4000 time-steps. The solution is

shown at the point P(5, 2.75) (corresponding to the grid point p ¼ 21, q ¼ 12) which is located on the
artificial boundary CE, slightly above the center of the waveguide. As the graph shows, the solution is

initially zero, until the first noticeable wave packet reaches this point. Then there is a strong dynamic re-

sponse which after a short time decays rapidly.

To demonstrate the difficulties involved in this basic example, we consider the angle of incidence h of the

incoming wave at the point P(5, 2.75) on CE. This is defined as the angle between the wave direction c and

the normal to CE at P, namely h ¼ j90�� cj. The wave direction c is computed via

cos c ¼ $u
j$uj � ey ¼

oyuffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðoxuÞ2 þ ðoxuÞ2

q ; ð46Þ

where c is measured clockwise from the �y axis and ey is the unit vector pointing in the y direction. The

partial derivatives appearing in (46) can be calculated via the expressions

oxu ¼ �k sin
py
b

� �
sin kðx� CxtÞ; oyu ¼ ðp=bÞ cos py

b

� �
cos kðx� CxtÞ; ð47Þ

which correspond to the mode-1 wave

u ¼ sin
py
b

� �
cos kðx� CxtÞ; ð48Þ

Fig. 2. Exact solution for the wave-guide test problem, in the dispersive case (f ¼ 0:5). The solution is shown at the point P(5,2.75).
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where transient effects due to the step-in-time character of the wave are neglected. Fig. 3 shows the angle of

incidence h at P as a function of time for the non-dispersive and dispersive cases. In both cases, h varies

between 0� and 90� in an oscillatory manner. A different example in which the angle of incidence is

changing (in fact, increasing) in time was given by Hagstrom [5]. Such cases where there are waves with a

wide range of incidence angles are known to be relatively difficult for NRBC treatment.

We define two error measures. The first one is the Eulerian norm of the error over CE, i.e.,

EðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Ny

XNy

m¼1

ðuðxE; ym; tÞ � uexðxE; ym; tÞÞ2
vuut : ð49Þ

The second measure is the pointwise error at a single point ðxE; y0Þ CE, i.e.,

eðtÞ ¼ uðxE; y0; tÞ � uexðxE; y0; tÞ: ð50Þ

Fig. 4 shows the errors generated by the new scheme with J ¼ 3. In Fig. 4(a) the global error E defined by

(49) is plotted, while Fig. 4(b) corresponds to the pointwise error e defined by (50), at the point Pmentioned

above. It is apparent that the errors are oscillatory. Their amplitudes grow initially, reach a maximum, and
then decay in time, albeit more slowly than the solution itself. Note that the frequency of the error os-

cillation is similar to that of the angle of incidence of the waves at the point P on CE as seen in Fig. 3. This is

not surprising since the accuracy of the Higdon conditions is known to be strongly affected by the angle of

incidence (see [41,42]).

In Figs. 5 and 6 we compare the numerical errors for different orders J, calculated in the first 600 time-

steps. The figures show the global errors (Fig. 5) and pointwise errors (Fig. 6) as a function of time for the

non-dispersive (f ¼ 0) and dispersive (f ¼ 0:5) cases. In each case we show the error generated by the new

NRBC of order J ¼ 1; 3; 5, and 7. It is apparent that the errors decrease as the order J increases. We also
see that for J P 2 the error generated in the dispersive case is larger than that in the non-dispersive case.

Note that auxiliary variables appear in the formulation only for J P 2, so the case J ¼ 1 is special.

Now we consider the same wave guide as in the previous example, but with a different loading. On the

west boundary we replace (45) by the prescribed function

uWðy; tÞ ¼ cos p
2rs
ðy � ysÞ

h i
if jy � ysj6 rs and 0 < t6 ts;

0 otherwise:

(
ð51Þ

Fig. 3. Angle of incidence at the point P(5, 2.75) on the artificial boundary as a function of time: (a) in the non-dispersive case (f ¼ 0),

and (b) in the dispersive case (f ¼ 0:5).
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Thus, the wave source on the west boundary is a cosine function in y with three parameters: its center

location ys, its width rs, and its time duration ts. We set ys ¼ 1, rs ¼ 1, and ts ¼ 0:5. We take f ¼ 0:5 (the

dispersive case). The computational parameters xE, Dt and the grid are the same as in the previous example.

However, here we use the NRBC of order J ¼ 4 on CE, with the four Cj�s obtained automatically by

Fig. 5. Errors calculated by the global measure E defined by (49), as a function of time, for the non-dispersive (f ¼ 0) and dispersive

(f ¼ 0:5) cases. The new NRBC of order J is used on CE: (a) J ¼ 1, (b) J ¼ 3, (c) J ¼ 5, and (d) J ¼ 7.

Fig. 4. Errors as a function of time, for the dispersive case (f ¼ 0:5), generated by the new NRBC of order J ¼ 3: (a) the global error E

defined by (49); (b) the pointwise error e defined by (50), at the point P(5, 2.75).
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employing the procedure outlined in Section 5.2. These turn out to be Cj=C0 ¼ 1; 1:45; 1:75; 4:06. For
stability reasons (see Section 5.4) we replace these values with Cj=C0 ¼ 1; 1:45; 1; 4:06.

We compare the solution obtained by the new scheme with two other solutions:

• A solution obtained in the same domain, but with the Higdon NRBC H1 on CE using C1 ¼ 5. (Results
obtained for H1 with a smaller C1 had a similar character, although less dramatic quantitatively.)

• A solution obtained in a domain twice as long, namely the domain 06 x6 10, 06 y6 5, using a 42� 21

grid with the same resolution. During the simulation time the wave generated on CW does not reach the

remote (east) boundary of this large domain, and thus the issue of spurious reflection is avoided alto-

gether, regardless of the boundary condition used on the remote boundary. Hence this will serve as a

reference solution.

Fig. 7(a) shows the three solutions at time t ¼ 0:5, which occurs exactly when the wave source is ‘‘turned

off.’’ In this and the next figures, the top plot is that of the reference solution, the middle plot corresponds
to the solution obtained by the new scheme with the fourth-order NRBC, and the lower plot describes the

H1 solution. Both the colors and the contour lines represent values of u. At time t ¼ 0:5 all three solutions

are identical, as expected. The largest contour line shown represents a fast wave with a small amplitude

which is present due to the dispersion.

Fig. 7(b) corresponds to time t ¼ 6. At this time the main bulk of the wave packet generated on CW has

just reached the boundary CE. The three plots are still similar, although a slight spurious reflection near the

boundary can be observed in the H1 solution.

Fig. 7(c) shows the three solutions at time t ¼ 7:5. The main wave packet has already passed the
boundary CE. The fourth-order solution is almost indistinguishable from the reference solution, whereas in

Fig. 6. Errors calculated by the pointwise measure e defined by (50), as a function of time, for the non-dispersive (f ¼ 0) and dispersive

(f ¼ 0:5) cases. The new NRBC of order J is used on CE: (a) J ¼ 1, (b) J ¼ 3, (c) J ¼ 5, and (d) J ¼ 7.
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the H1 solution spurious reflection is evident. Figs. 7(d) and (e) correspond to times t ¼ 9:5 and t ¼ 11,

respectively. The reflected waves move backwards in the H1 solution and pollute the entire computational

domain. On the other hand, the fourth-order solution exhibits, with a reasonable accuracy, the wave traces

which are also present in the reference solution.

In order to examine the errors generated in this example quantitatively, we introduce the new global
error measure EXðtÞ, defined by

EXðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

NxNy

XNx

p¼1

XNy

q¼1

ðuðxp; yq; tÞ � uexðxp; yq; tÞÞ2
vuut : ð52Þ

Here Nx and Ny are, respectively, the number of grid points in the x and y directions in the computational

domain X. In traveling-pulse type problems like the present example, the error measure EXðtÞ is preferred
over E defined in (49) or e defined in (50). The reason is that the latter measures indicate the error only over
the boundary CE, while, as Figs. 7(a)–(e) demonstrate, the major errors are not necessarily found on this

boundary but they penetrate the interior and constantly change their locations.

Fig. 7. Solution of the cosine-source problem, dispersion parameter f ¼ 0:5. Top plot—reference solution in a long domain. Middle

plot—solution obtained with the new scheme, fourth-order NRBC. Lower plot—solution obtained with the Sommerfeld-like NRBC

H1. Solutions are shown at times: (a) t ¼ 0:5, (b) t ¼ 6, (c) t ¼ 7:5, (d) t ¼ 9:5, and (e) t ¼ 11.
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Fig. 8 shows the global error EX as a function of time for the J ¼ 4 solution and for the J ¼ 1 solution.

Up until t ¼ 10, before the wave reaches the artificial boundary, both errors are extremely small. Once the

wave reaches the boundary both global errors increase but the J ¼ 1 error is about three times larger than
the J ¼ 4 error.

7. Concluding remarks

In this paper we have presented a new high-order sequence of NRBCs based on a reformulation of the

Higdon NRBCs, for time-dependent wave problems. The new NRBCs involve no high derivatives, and are

thus amenable for standard finite difference or finite element discretization. In this paper we considered the
former; work on the latter is currently underway and will be reported elsewhere.

The new NRBCs involve auxiliary variables defined on the artificial boundary B. On the other hand,

they do not involve high derivatives. This allows the easy use of a NRBC of an arbitrarily high order. The

scheme is coded once and for all for any order; the order of the scheme is simply an input parameter.

Moreover, we have shown that the sequence of NRBCs is ‘‘converging’’ for a fixed B, namely that by

Fig. 7. (continued)
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Fig. 7. (continued)

Fig. 8. The cosine-source problem: global error E as a function of time, generated by the J ¼ 4 solution and by the J ¼ 1 solution.
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increasing the order one can achieve any desired level of accuracy. In addition, the computational effort

associated with the new boundary treatment increases only linearly with the order, as opposed to the ex-

ponential growth in a previous scheme based on the original form of the Higdon NRBCs [46].

Due to the generality of the proposed NRBCs it is possible to use them for problems in dispersive and

stratified media. We have demonstrated the good performance of the scheme for both non-dispersive and

dispersive problems.

Related future work will include the adaptation of the proposed approach to more complicated con-

figurations, such as exterior problems with a rectangular artificial boundary B, and three-dimensional
problems, all in the presence of wave dispersion. Exterior problems need to be investigated with special

care, since in this case one has to deal with jump conditions and stability at the corner points, as men-

tioned in the Introduction. The new NRBCs will also be adapted to the case of curved artificial boundaries

by using variable transformation; see, e.g. [60]. In addition, they will be applied to the shallow water

equations (SWEs). These serve as an important testbed for more complicated dispersive models in me-

teorology [61].
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