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Abstract
P. Jarratt has developed a family of fourth-order optimal methods. He suggested two members
of the family. The dynamics of one of those was discussed previously. Here we show that the
family can be written using a weight function and analyze all members of the family to find
the best performer.
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1. INTRODUCTION

There is a vast literature on the solution of non-
linear equations and nonlinear systems, see for

example Ostrowski,1 Traub,2 Neta3 and the recent
book by Petković et al.4 and references therein.
Most of the algorithms are for finding a simple root

§Corresponding author.
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of a nonlinear equation f(x) = 0, i.e., for a root α we
have f(α) = 0 and f ′(α) != 0. Methods are generally
compared by their efficiency index, defined by

I = p1/d, (1)

where p is the order of convergence and d is the
number of function- (and derivative-) evaluation
per step. For example, the well-known Newton’s
method given by

xn+1 = xn − un, (2)

where

un =
f(xn)
f ′(xn)

, (3)

is of second order and requires the computation of
f and f ′ and, thus, its efficiency index is I =

√
2 =

1.4142.
One way to improve the order of convergence is

by including higher order derivatives. Unfortunately
this will not increase the efficiency much unless
we go to multistep methods. For example, Halley’s
method5 is of third order requiring the computa-
tion of f and its first two derivatives. Therefore
I = 31/3 = 1.442 which is only slightly higher than
that of Newton’s method. On the other hand the
two step method developed by Chun et al.6 and
given by:

yn = xn − 2
3
un,

xn+1 = xn − q(tn)un,
(4)

where tn = 3
2

f ′(xn)−f ′(yn)
f ′(xn) does not require second

derivatives.
There is flexibility in choosing the weight func-

tion q(t), in fact, one can find several choices in the
literature. It is of order 4 if

q(0) = 1, q′(0) = 1/2, q′′(0) = 1. (5)

Therefore its efficiency is I = 41/3 = 1.587 slightly
higher than Halley’s method. The error relation is
given by

en+1 =
[(

5 − 4
3
q′′′(0)

)
c3
2 − c2c3 +

1
9
c4

]
e4
n

+ O(e5
n),

where

ci =
f (i)(α)
i!f ′(α)

. (6)

Jarratt7 has developed a family of optimal fourth-
order methods given by

xn+1 = xn − a1un − a2
f(xn)

f ′(xn − 2
3un)

− f(xn)
b1f ′(xn) + b2f ′(xn − 2

3un)
, (7)

where the parameters a1, a2, b1 and b2 satisfy the
following

a1 =
1
4

(
1 +

3
2θ

)

a2 =
3
4

(
1 − 1

2(θ − 1)

)

b1 =
b2

θ
− b2

b2 =
8θ2

3
(θ − 1).

For θ = 0 and θ = 1 the family is only third
order.

It is easy to show that this family can be written
as (4) with the weight function q(t) given by

q(tn) =
1 + dtn + et2n
1 + btn + ct2n

, (8)

where tn = 3
2

f ′(xn)−f ′(yn)
f ′(xn) and yn is given by the first

step of (4). For example, for the case that d = 0,
b = −0.5, c = −0.25 and e = 0 we have the method
(24) in.6 For Jarratt’s optimal fourth-order family
(θ != 0, θ != 1) we have

d = −2
3
θ − 1

6

e =
1
9
θ +

1
6

b = −2
3
(θ + 1)

c =
4
9
θ.

In this paper, we would like to look at a more gen-
eral family (8) satisfying (5), i.e.

q(t) =
1 + (2e − 2c − 1

2)t + et2

1 + (2e − 2c − 1)t + ct2
. (9)

Clearly, for Jarratt’s family the parameters c and e
are interdependent and

c = 4e − 2
3
.
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In the next two sections, we analyze the basin
of attraction of our fourth order family of meth-
ods to find out what is the best choice for c and e.
The idea of using basins of attraction was initiated
by Stewart8 and followed by the works of Amat
et al.,9–12 Scott et al.,13 Chun et al.,6 Chicharro
et al.,14 Cordero et al.15 and Neta et al.16 The only
papers comparing basins of attraction for methods
to obtain multiple roots is due to Neta et al.,17 and
Neta and Chun.18

We will choose the weight function to restrict
the extraneous fixed points to the imaginary axis.
This is a result of analyzing King’s family of
methods.16

2. CORRESPONDING CONJUGACY
MAPS FOR QUADRATIC
POLYNOMIALS

Given two maps f and g from the Riemann sphere
into itself, an analytic conjugacy between the two
maps is a diffeomorphism h from the Riemann
sphere onto itself such that h ◦ f = g ◦ h. Here
we consider only quadratic polynomials.

Theorem 1. For a rational map Rp(z) arising
from method (4) with q given by (9) applied to
p(z) = (z − a)(z − b), a != b, Rp(z) is conjugate via
the Möbius transformation given by M(z) = z−a

z−b to

S(z) =
−z2 + (4c − 4e − 2)z − 1 − 8e + 4c

(−1 − 8e + 4c)z2 + (4c − 4e − 2)z − 1
z4.

(10)

Proof. Let p(z) = (z − a)(z − b), a != b and let
M be the Möbius transformation given by M(z) =
z−a
z−b with its inverse M−1(u) = ub−a

u−1 , which may be
considered as a map from C ∪ {∞}. We then have

S(u) = M ◦ Rp ◦ M−1(u) = M ◦ Rp

(
ub − a

u − 1

)

=
−u2 + (4c − 4e − 2)u − 1 − 8e + 4c

(−1 − 8e + 4c)u2 + (4c − 4e − 2)u − 1
u4.

(11)

The question now is: Can we find parameters
such that the conjugacy map is a monomial? As
a special case of Theorem 1 we see that

(1) S(u) = u6 when c = 0.75, e = 0.25;
(2) S(u) = u5 when c = 0.25, e = 0;
(3) S(u) = −u5 when c = 1.25, e = 0.5;

(4) S(u) = u4 when c = 2e, e = e; and
(5) S(u) = −u4 when c = 0.5, e = 0.

The case for which c = 2e leads to S(u) = u4.
If c = 2e, e = 1/3 we have Jarratt’s method with
θ = 3/2. The case for which c = e = 2/9 leads to
the well-known Jarratt’s fourth-order method (with
θ = 1/2)7

yn = xn − 2
3
un,

xn+1 = xn −
[
1 − 3

2
f ′(yn) − f ′(xn)
3f ′(yn) − f ′(xn)

]
un.

(12)

In this case S(u) is not a polynomial. The case for
which c = −0.25 and e = 0 gives the method (24)
proposed in Ref. 6.

3. EXTRANEOUS FIXED POINTS

As mentioned earlier, in solving a nonlinear equa-
tion iteratively we are looking for fixed points which
are zeros of the given nonlinear function. Many mul-
tipoint iterative methods have fixed points that are
not zeros of the function of interest. Thus, it is
imperative to investigate the number of extraneous
fixed points, their location and their properties. In
the method described in this paper, the parameters
c and e can be chosen to position the extraneous
fixed points on the imaginary axis.

The fourth order methods discussed here can be
written as

xn+1 = xn − f(xn)
f ′(xn)

Hf (xn), (13)

where

Hf (xn) = q(tn) = q(t(xn)). (14)

Clearly the root α of f(x) is a fixed point of the
method. The points ξ != α at which Hf (ξ) = 0 are
also fixed points of the family.

We have tried several possibilities for the func-
tion q and have computed the extraneous fixed
points. One would like to have the extraneous fixed
points on the imaginary axis which is the boundary
between the two roots of the quadratic polynomial.

When q given by (9), Hf is given by

Hf (z) =
(4c − 5e − 3)z4 + (−4c + 6e − 1)z2 − e

(3c − 2 − 4e)z4 + (−2c − 2 + 4e)z2 − c
.

(15)

The extraneous fixed points are functions of c and
e. We have searched values of the parameters so
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Table 1 The Four Extraneous Fixed Points for
Selected Values of c and e.

Index c e Roots 1, 2 Roots 3, 4

1 –0.25 0 0, 0 0, 0 (24)
2 0 0 ±0.5773503i u4

3 0.25 0 ±i 0, 0 u5

4 0.5 0 ±1.7320508i 0, 0 −u4

5 2/3 1/3 ±0.5773503i u4

6 0.75 0.25 ±1.3763819i ±0.3249197i u6

7 0.76 0.01 ±19.9498744i ±0.0501256i Largest
8 0.76 0.38 ±0.7828814i ±0.5773503i c = 2e, u4

9 1.25 0.5 ±2.4142136i ±0.4142136i −u5

10 1.26 0.41 ±18.9178603i ±0.3384698i Largest
11 1.82 0.91 ±0.5773503i c = 2e, u4

12 2/9 2/9 (12)

that the extraneous fixed points are on the imag-
inary axis. We found that −0.25 ! c ! 5.75 and
0 ! e ! 4. In Table 1 we give a list of the extrane-
ous fixed points for selected values of the parame-
ters c and e. All these points lie on the imaginary
axis except the last case where c = e = 2/9 corre-
sponding to (12). The first one corresponds to (24)
of Ref. 6. The second, third, fourth, fifth, sixth and
ninth are those that give a monomial map. The sev-
enth is a case where the extraneous fixed points
are farthest from the origin. The tenth case is for
which the sum of the magnitudes of the extraneous
fixed points is the largest. We took two other cases
(eighth and eleventh) with c = 2e, for which also
have a monomial map.

All these fixed points are repulsive.
In the next section we plot the basins of attrac-

tion for these cases to find the best performer.

4. NUMERICAL EXPERIMENTS

We have used the 12 members of the family of meth-
ods for six different polynomials.

Example 1. In our first example, we have taken
the polynomial to be

p1(z) = z2 − 1, (16)

whose roots z = ±1 are both real. The results are
presented in Figs. 1–12. Figure 1 has large black
regions indicating the method does not converge in
40 iterations starting at those points. Two other
schemes have black regions but not as large. These
are the methods with c = 0.76 and e = 0.01
(Fig. 7) and the one with c = 1.26 and e = 0.41
(Fig. 10). The best scheme is the one with c =

Fig. 1 Our method with c = −0.25 and e = 0 for the roots
of the polynomial z2 − 1.

Fig. 2 Our method with c = 0 and e = 0 for the roots of
the polynomial z2 − 1.

Fig. 3 Our method with c = 0.25 and e = 0 for the roots
of the polynomial z2 − 1.
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Fig. 4 Our method with c = 0.5 and e = 0 for the roots of
the polynomial z2 − 1.

Fig. 5 Jarratt’s method with c = 2/3 and e = 1/3 for the
roots of the polynomial z2 − 1.

Fig. 6 Our method with c = 0.75 and e = 0.25 for the roots
of the polynomial z2 − 1.

Fig. 7 Our method with c = 0.76 and e = 0.01 for the roots
of the polynomial z2 − 1.

Fig. 8 Our method with c = 0.76 and e = 0.38 for the roots
of the polynomial z2 − 1.

Fig. 9 Our method with c = 1.25 and e = 0.5 for the roots
of the polynomial z2 − 1.
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Fig. 10 Our method with c = 1.26 and e = 0.41 for the
roots of the polynomial z2 − 1.

Fig. 11 Our method with c = 1.82 and e = 0.91 for the
roots of the polynomial z2 − 1.

Fig. 12 Jarratt’s method with c = 2/9 and e = 2/9 for the
roots of the polynomial z2 − 1.

0.75, e = 0.25 (Fig. 6) which has a monomial conju-
gacy map u6. The next group includes the scheme
with c = 0.25, e = 0 (Fig. 3) and c = 1.25, e = 0.5
(Fig. 9) having a conjugacy map ±u5. The third
group of schemes includes the method with c =
e = 0 (Fig. 2), with c = 0.5, e = 0 (Fig. 4), with
c = 2/3, e = 1/3 (Fig. 5), with c = 0.76, e = 0.38
(Fig. 8) and with c = 1.82, e = 0.91 (Fig. 11). These
are methods which have a monomial conjugacy map
±u4.

Figure 12 is for Jarratt’s method for which the
extraneous fixed points are not on the imaginary
axis. It can be seen that there are starting points
on the right half that converge to the left and vice
versa. There are no black regions in this example,
but also the results are not as good as say in the
other Jarratt’s method (Fig. 5).

Example 2. In the second example we have taken
a cubic polynomial with the three roots of unity, i.e.

p2(z) = z3 − 1. (17)

The results are presented in Figs. 13–24. The worst
methods are the fourth (Fig. 16) and the ninth
(Fig. 21). The first method (Fig. 13) and the sev-
enth (Fig. 19) are only slightly better. The best
are the second (Fig. 14), the fifth (Fig. 17), the
eighth (Fig. 20) and the eleventh (Fig. 23), satisfy-
ing c = 2e. The next best are the sixth (Fig. 18) and
the twelfth (Fig. 24) followed by the tenth (Fig. 22)
and the third (Fig. 15).

Example 3. In the third example we have taken a
polynomial of degree 4 with 4 real roots at ±1,±i,

Fig. 13 Our method with c = −0.25 and e = 0 for the
roots of the polynomial z3 − 1.
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Fig. 14 Our method with c = 0 and e = 0 for the roots of
the polynomial z3 − 1.

Fig. 15 Our method with c = 0.25 and e = 0 for the roots
of the polynomial z3 − 1.

Fig. 16 Our method with c = 0.5 and e = 0 for the roots
of the polynomial z3 − 1.

Fig. 17 Jarratt’s method with c = 2/3 and e = 1/3 for the
roots of the polynomial z3 − 1.

Fig. 18 Our method with c = 0.75 and e = 0.25 for the
roots of the polynomial z3 − 1.

Fig. 19 Our method with c = 0.76 and e = 0.01 for the
roots of the polynomial z3 − 1.
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Fig. 20 Our method with c = 0.76 and e = 0.38 for the
roots of the polynomial z3 − 1.

Fig. 21 Our method with c = 1.25 and e = 0.5 for the
roots of the polynomial z3 − 1.

Fig. 22 Our method with c = 1.26 and e = 0.41 for the
roots of the polynomial z3 − 1.

Fig. 23 Our method with c = 1.82 and e = 0.91 for the
roots of the polynomial z3 − 1.

Fig. 24 Jarratt’s method with c = 2/9 and e = 2/9 for the
roots of the polynomial z2 − 1.

i.e.

p3(z) = z4 − 1. (18)

The results are presented in Figs. 25–36. The worst
methods are the first (Fig. 25), the fourth (Fig. 28)
and the ninth (Fig. 33). The third method (Fig. 27)
is only slightly better. The best ones are the second
(Fig. 26), the fifth (Fig. 29), the eighth (Fig. 32)
and the eleventh (Fig. 35). The next best are the
tenth (Fig. 34) and the twelfth (Fig. 36), followed
by the seventh (Fig. 31) and the sixth (Fig. 30).

At this point we will remove the four worst
schemes and continue with the others. We remove
the method with c = −0.25, e = 0 since it was the
worst or second worst in all three examples. We
remove the one with c = 1.25, e = 0.5 because it
was the worst in two examples and only mediocre
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Fig. 25 Our method with c = −0.25 and e = 0 for the
roots of the polynomial z4 − 1.

Fig. 26 Our method with c = 0 and e = 0 for the roots of
the polynomial z4 − 1.

Fig. 27 Our method with c = 0.25 and e = 0 for the roots
of the polynomial z4 − 1.

Fig. 28 Our method with c = 0.5 and e = 0 for the roots
of the polynomial z4 − 1.

Fig. 29 Jarratt’s method with c = 2/3 and e = 1/3 for the
roots of the polynomial z4 − 1.

Fig. 30 Our method with c = 0.75 and e = 0.25 for the
roots of the polynomial z4 − 1.
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Fig. 31 Our method with c = 0.76 and e = 0.01 for the
roots of the polynomial z4 − 1.

Fig. 32 Our method with c = 0.76 and e = 0.38 for the
roots of the polynomial z4 − 1.

Fig. 33 Our method with c = 1.25 and e = 0.5 for the
roots of the polynomial z4 − 1.

Fig. 34 Our method with c = 1.26 and e = 0.41 for the
roots of the polynomial z4 − 1.

Fig. 35 Our method with c = 1.82 and e = 0.91 for the
roots of the polynomial z4 − 1.

Fig. 36 Jarratt’s method with c = 2/9 and e = 2/9 for the
roots of the polynomial z4 − 1.
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in one example. We also remove the one with c =
0.5, e = 0, since it was the worst in the second
two examples. Lastly, we remove the scheme with
c = 0.76, e = 0.01, since it ranked fifth in two exam-
ples and mediocre on the third example.

Example 4. In the next example we have taken a
polynomial of degree 5 with the 5 roots of unity, i.e.

p4(z) = z5 − 1. (19)

The results are presented in Figs. 37–44. Now the
worst is the method with c = 0.75, e = 0.25
(Fig. 40). The scheme with c = 0.25, e = 0
shows large black regions along the basin bound-
aries (Fig. 38). The best are the three schemes with
c = 2e (Figs. 37, 41 and 43). The method with

Fig. 37 Our method with c = 0 and e = 0 for the roots of
the polynomial z5 − 1.

Fig. 38 Our method with c = 0.25 and e = 0 for the roots
of the polynomial z5 − 1.

Fig. 39 Jarratt’s method with c = 2/3 and e = 1/3 for the
roots of the polynomial z5 − 1.

Fig. 40 Our method with c = 0.75 and e = 0.25 for the
roots of the polynomial z5 − 1.

Fig. 41 Our method with c = 0.76 and e = 0.38 for the
roots of the polynomial z5 − 1.
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Fig. 42 Our method with c = 1.26 and e = 0.41 for the
roots of the polynomial z5 − 1.

Fig. 43 Our method with c = 1.82 and e = 0.91 for the
roots of the polynomial z5 − 1.

Fig. 44 Jarratt’s method with c = 2/9 and e = 2/9 for the
roots of the polynomial z5 − 1.

c = 1.26, e = 0.41 has black dots inside the basins
(Fig. 42).

Example 5. In the next example we took

p5(z) = z6 − 1. (20)

The results are presented in Figs. 45–52. Now the
worst is the method with c = 0.75, e = 0.25
(Fig. 48). The scheme with c = 0.25, e = 0 (Fig. 46)
shows large black regions along the basin bound-
aries. The best are the three schemes with c = 2e
(Figs. 47, 49 and 51) followed by the one with
c = e = 0 (Fig. 45). The methods with c = 1.26, e =
0.41 and c = 2/9, e = 2/9 have black dots inside the
basins and along the basin boundaries (Figs. 50 and
52).

Fig. 45 Our method with c = 0 and e = 0 for the roots of
the polynomial z6 − 1.

Fig. 46 Our method with c = 0.25 and e = 0 for the roots
of the polynomial z6 − 1.
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Fig. 47 Jarratt’s method with c = 2/3 and e = 1/3 for the
roots of the polynomial z6 − 1.

Fig. 48 Our method with c = 0.75 and e = 0.25 for the
roots of the polynomial z6 − 1.

Fig. 49 Our method with c = 0.76 and e = 0.38 for the
roots of the polynomial z6 − 1.

Fig. 50 Our method with c = 1.26 and e = 0.41 for the
roots of the polynomial z6 − 1.

Fig. 51 Our method with c = 1.82 and e = 0.91 for the
roots of the polynomial z6 − 1.

Fig. 52 Jarratt’s method with c = 2/9 and e = 2/9 for the
roots of the polynomial z6 − 1.
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Example 6. In the last example we took a poly-
nomial of degree 7 having the 7 roots of unity, i.e.

p6(z) = z7 − 1. (21)

The results are presented in Figs. 53–60. The con-
clusions are the same as in Example 4. Now the
worst is the method with c = 0.75, e = 0.25
(Fig. 56). The scheme with c = 0.25, e = 0
shows large black regions along the basin bound-
aries (Fig. 54). The best are the 3 schemes with
c = 2e (Figs. 53, 57 and 59). The methods with
c = 1.26, e = 0.41 and c = 2/9, e = 2/9 have black
dots inside the basins (Figs. 58 and 60).

We have tabulated the results in Table 2. We
assigned a value between 1 and 6, where 1 is the
best and 6 is the worst. Only the six methods that

Fig. 53 Our method with c = 0 and e = 0 for the roots of
the polynomial z7 − 1.

Fig. 54 Our method with c = 0.25 and e = 0 for the roots
of the polynomial z7 − 1.

Fig. 55 Jarratt’s method with c = 2/3 and e = 1/3 for the
roots of the polynomial z6 − 1.

Fig. 56 Our method with c = 0.75 and e = 0.25 for the
roots of the polynomial z7 − 1.

Fig. 57 Our method with c = 0.76 and e = 0.38 for the
roots of the polynomial z7 − 1.

1450013-14

Fr
ac

ta
ls 

D
ow

nl
oa

de
d 

fro
m

 w
w

w
.w

or
ld

sc
ie

nt
ifi

c.
co

m
by

 P
ro

f. 
Ch

an
gb

um
 C

hu
n 

on
 0

8/
06

/1
4.

 F
or

 p
er

so
na

l u
se

 o
nl

y.



2nd Reading

July 25, 2014 13:5 0218-348X 1450013

Jarratt’s Family of Optimal Fourth-Order Iterative Methods

Fig. 58 Our method with c = 1.26 and e = 0.41 for the
roots of the polynomial z7 − 1.

Fig. 59 Our method with c = 1.82 and e = 0.91 for the
roots of the polynomial z7 − 1.

Fig. 60 Jarratt’s method with c = 2/9 and e = 2/9 for the
roots of the polynomial z7 − 1.

Table 2 Ordering the Quality of the Basins for Each
Example (1–6) and Each Value of c and e.

c e Ex1 Ex2 Ex3 Ex4 Ex5 Ex6 Total

–0.25 0 6 5 6 — — — —
0 0 1 1 1 1 2 1 7
0.25 0 2 4 5 5 5 5 26
0.5 0 1 6 6 — — — —
2/3 1/3 1 1 1 1 2 1 7
0.75 0.25 1 2 4 6 6 6 25
0.76 0.01 5 5 3 — — — —
0.76 0.38 1 1 1 1 1 1 6
1.25 0.5 3 6 6 — — — —
1.26 0.41 4 3 2 4 4 4 21
1.82 0.91 1 1 1 1 1 1 6
2/9 2/9 3 2 2 3 3 2 15

we have ran through all examples will have a total
number. The smallest the total the better the over-
all performance. Based on the results in the table
we can conclude that the best methods are those
with c = e = 0, c = 2/3, e = 1/3, c = 0.76, e = 0.38
and c = 1.82, e = 0.91. The other methods are far
behind. All four satisfy c = 2e and S(u) = u4. One
of these is Jarratt’s method with θ = 3/2. The worst
is the one with c = 0.75, e = 0.25.

Since these results are subjective, we have
decided to use another measure of quality. We have
computed the average number of iterations per
point. We have taken 360,000 points in the 6 by
6 square centered at the origin. In Table 3 we have
listed the average number of iterations. Clearly this
number is bounded by 40, which is the maximum
number of iterations allowed. The black points are
those requiring that number of iterations and there-
fore any case having black points will have a high

Table 3 Average Number of Iterations Per Point
for Each Example (1–6) and Each Value of c and e.

c e Ex1 Ex2 Ex3 Ex4 Ex5 Ex6 Total

–0.25 0 4.4 7.3 10.0 — — — —
0 0 3.2 3.7 4.6 4.8 5.5 6.0 27.8
0.25 0 2.8 4.8 6.4 7.4 8.9 10.0 40.3
0.5 0 3.2 23.7 31.6 — — — —
2/3 1/3 3.2 3.7 4.6 4.8 5.5 6.0 28.8
0.75 0.25 2.6 3.4 5.1 20.8 33.6 35.3 100.8
0.76 0.01 4.0 6.7 7.3 — — — —
0.76 0.38 3.2 3.7 5.6 4.8 5.5 6.0 28.8
1.25 0.5 2.8 13.6 10.8 — — — —
1.26 0.41 3.5 4.9 6.1 6.8 7.9 8.9 38.1
1.82 0.91 3.2 3.7 4.6 4.8 5.5 6.0 27.8
2/9 2/9 3.5 4.5 6.0 6.4 7.4 8.5 36.3
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average. For the eight cases we ran on all six exam-
ples we totaled this average number. It is clear that
the worst case is that with c = 0.75, e = 0.25. This
has a monomial map S(u) = u6 with the degree
higher than the order of the method. Therefore we
conclude that having a monomial map with degree
higher than the order is not a good idea. The two
cases with a map S(u) = ±u5 did not fare any
better. In fact, we have abandoned one after three
examples. The one that did best are those with a
map S(u) = u4 and not −u4. Choosing a method
with extraneous fixed point farthest from the origin
(c = 0.76, e = 0.01 and c = 1.26, e = 0.41) did not
give the best results.

5. CONCLUSION

In this paper we have generalized a family of Jar-
ratt’s methods and analyzed it. We have shown that
it is not enought to choose the extraneous fixed
points on the imaginary axis, but we also have to
have a conjugacy map which is a monomial of degree
p, the order of the method.
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mal fourth-order iterative methods free from second
derivative and their dynamics, Appl. Math. Comput.
218 (2012) 6427–6438.

7. P. Jarratt, Some fourth order multipoint methods
for solving equations, Math. Comp. 20 (1966) 434–
437.

8. B. D. Stewart, Attractor basins of various root-
finding methods, M.S. thesis, Naval Postgraduate
School, Department of Applied Mathematics, Mon-
terey, CA, June 2001.

9. S. Amat, S. Busquier and S. Plaza, Iterative root-
finding methods, unpublished report, 2004.

10. S. Amat, S. Busquier and S. Plaza, Review of some
iterative root-finding methods from a dynamical
point of view, Scientia 10 (2004) 3–35.

11. S. Amat, S. Busquier and S. Plaza, Dynamics of a
family of third-order iterative methods that do not
require using second derivatives, Appl. Math. Com-
put. 154 (2004) 735–746.

12. S. Amat, S. Busquier and S. Plaza, Dynamics of the
King and Jarratt iterations, Aeq. Math. 69 (2005)
212–2236.

13. M. Scott, B. Neta and C. Chun, Basin attractors for
various methods, Appl. Math. Comput. 218 (2011)
2584–2599.

14. F. Chircharro, A. Cordero, J. M. Gutiérrez and
J. R. Torregrosa, Complex dynamics of derivative-
free methods for nonlinear equations, Appl. Math.
Comput. 219 (2013) 7023–7035.
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