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SUMMARY

The two-dimensional linearized shallow water equations are considered in unbounded domains with
density strati�cation. Wave dispersion and advection e�ects are also taken into account. The in�nite
domain is truncated via a rectangular arti�cial boundary B, and a high-order open boundary condition
(OBC) is imposed on B. Then the problem is solved numerically in the �nite domain bounded by B.
A recently developed boundary scheme is employed, which is based on a reformulation of the sequence
of OBCs originally proposed by Higdon. The OBCs can easily be used up to any desired order.
They are incorporated here in a �nite di�erence scheme. Numerical examples are used to demonstrate
the performance and advantages of the computational method, with an emphasis is on the e�ect of
strati�cation. Published in 2004 by John Wiley & Sons, Ltd.
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1. INTRODUCTION

Phenomena involving the propagation of waves in very large (or unbounded) domains are
applicable to many �elds including acoustics, electromagnetics, meteorology, and geophysics.
However, it is infeasible to compute numerical solutions for regions of this scope. Therefore,
it is necessary to de�ne arti�cial boundaries that reduce the size of the domain. To accurately
model the wave action in the truncated region, one must impose arti�cial boundary conditions
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that allow waves propagating inside the region to pass freely without spurious re�ections,
which would otherwise pollute the computational domain. Such a boundary condition is known
in various names (see, e.g. Reference [1]) and in the context of meteorology mainly as an
open boundary condition (OBC).
A strictly mathematical treatment of absorbing boundary conditions for hyperbolic equa-

tions was presented by Engquist and Majda [2, 3] based on pseudo-di�erential operators sub-
sequently expanded to non-local operators to get local well-posed conditions. These meth-
ods can be viewed as a generalization of the Sommer�eld radiation condition and the char-
acteristic approach. A second alternative approach is the use of sponge or damping lay-
ers to damp out disturbances prior to their reaching the arti�cial boundary. A variation
of this process is to construct a layer where the outgoing waves will slow down rather
than decay. Hence, the waves will not re�ect back into the limited-area forecast domain
of interest except at very late times (see References [4–6]). The coupled ocean/atmosphere
mesoscale prediction system (COAMPS) involves an atmosphere and an ocean model (see
Reference [7]). The equations governing each of these models are solved in a �nite computa-
tional domain. Thus, there is a need to apply appropriate boundary conditions on the remote
boundaries. Lateral boundary conditions implemented in COAMPS today are, in order of
complexity,

1. �xed conditions,
2. periodic conditions,
3. zero-order radiation conditions, and
4. the Davies Lateral Sponge Layers [5].

While this remote-boundary treatment of Davies [5] is e�cient and may be su�ciently
accurate in some cases of interest, it is not so robust in that it is not directly associated with
the notion of convergence.
A more recent development, which is not in COAMPS, is the use of perfectly matched

layers (PML) method introduced by Berenger [8]. This approach can be viewed as an im-
provement on the original idea of sponge layers since the PML approach allows the solution
in the layer to decay for all angles and frequencies. To be more precise, one surrounds the
computational domain with a �nite-thickness layer of specially designed model medium which
attenuates all the waves that propagate from inside the domain. The parameters of the layer
are chosen such that the wave either never reaches the external boundary, or, if it reaches it,
it does re�ect back and by the time it reaches the interface between the absorbing (sponge)
layer and interior computational domain its amplitude is so small that it will not contaminate
the solution. The interface between computational domain and the layer should cause minimal
or zero re�ection, the latter case being called the PML (see also References [9–17]).
In meteorology, one distinguishes between a global model (GM), in which the atmospheric

equations are solved over the entire spherical surface of the globe, and a limited-area model
(LAM), in which the solution is sought in a relatively small region � bounded by arti�cial
boundaries. One very important question in computational meteorology concerns the way in
which the information obtained from the GM is incorporated in the LAM. One can use a
‘relaxation layer’ for gradual transition from the LAM solution to the GM solution. One
such scheme has been proposed in 1976 by Davies [5], and is still used today in the Navy
code COAMPS [7] when using real data simulations. The global information is taken from
the code NOGAPS, Navy Operational Global Atmospheric Prediction System. One can also
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use Perkey–Kreitzberg [4] boundary conditions. Our paper is concerned only with the non-
re�ecting (absorbing) part of the boundary condition, and the blending of global data should
be done on top of this using some ‘blending scheme.’
In general, it is not possible to construct a boundary condition that will be perfect in all

respects, but during the last 25 years research has been conducted to develop OBCs that after
discretization lead to stable, accurate, e�cient and easily implemented schemes [1, 18–20].
Investigations in the late 1970s to early 1980s produced a number of low-order local OBCs,
e.g. the Engquist–Majda [3] and Bayliss–Turkel [21] boundary conditions. The exact non-local
Dirichlet-to-Neumann (DtN) OBC [22, 23] and the perfectly matched layer (special damping
regions) [8] boundary conditions were developed in the late 1980s and early 1990s.
High-order OBCs were theoretically available since the 1980s but were regarded as imprac-

tical beyond 2nd or 3rd order. Only since the mid 1990s have practical higher-order schemes
been developed. Collino [24] proposed such a scheme for two-dimensional time-dependent
wave in a rectangular domain. Grote and Keller [25] extended the domain to three dimen-
sions in a scheme based on spherical harmonic transformations. They extended their work to
include elastic waves [26]. These �nding were independently published by Sofronov [27] in
Russian literature. Hagstrom and Hariharan [28] constructed high-order OBCs for two- and
three-dimensional domains based on the analytic series representation for the outgoing solu-
tions of these equations. Guddati and Tassoulas [29] devised a high-order OBC scheme for
time-dependent waves in a 2-dimensional wave guide using rational approximation and re-
cursive continued fractions. Givoli [30] derived high-order OBCs for a general class of wave
problems leading to a symmetric �nite element formulation. These early investigations uti-
lized either time-harmonic waves or non-dispersive time-dependent waves in a homogeneous
medium.
Wave dispersion, however, is an ever present phenomenon in meteorology. In the late

1980s and early1990s, Higdon developed OBCs for non-dispersive waves [31–34], but later
showed that his schemes could be applied to the dispersive (Klein–Gordon) wave equation
[35]. Higdon’s work involves low-order formulation of his scheme. Givoli and Neta [36–38]
presented an algorithm for implementing the Higdon OBC to any order using high-order FD
discretization. They further developed methods to rewrite the Higdon OBC without using
high order derivatives and to generate Higdon parameters that maximize the non-re�ection
property of the OBC in a dispersive wave environment. Only homogeneous media and wave-
guide geometries were considered in these papers.
In the present work, we develop high-order Higdon OBC schemes for use with linearized

shallow water equations (SWEs) in Cartesian co-ordinates with wave dispersion. We further
enhance the SWE model to include the e�ects of strati�cation and advection. We apply
the Higdon OBCs to all sides of a rectangular domain to restrict an in�nite plane. We use
�nite-di�erence schemes to numerically solve the problems. We then employ discrete forms
of the Higdon OBC, based on the work of Givoli and Neta [37], on the arti�cial boundary.
We report the results of several numerical examples to validate the use of the Higdon OBC
as an e�ective means of restricting a very large domain.
In the next section, we describe the strati�ed linear model. In Section 3, we describe the

high order Higdon OBC. The discretization of the advective and strati�ed model is discussed
in Section 4. Section 5 presents some of the numerical experiments performed with the linear
SWEs with and without strati�cation. These experiments demonstrate the e�ectiveness of the
method.
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2. AN N -LAYER STRATIFIED DISPERSIVE WAVE MODEL

The SWEs, see e.g. Reference [39], are
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Here t is time, u(x; y; t) and v(x; y; t) are the unknown velocities in the x and y directions,
�(x; y; t) is the unknown water elevation, f is the Coriolis parameter, and g is the gravity
acceleration. To linearize we assume that the u; v, and � are dominated by constant terms
U;V , and H0, such that

u=U + u∗; v=V + v∗; �=H0 + �∗ (3)

The linearized shallow water model is then
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van Joolen [39] has shown that system (4) can be written as

D2�
Dt2
− C20∇2�+ f2�=0 (5)
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Equation (5) is the Klein–Gordon form of the linearized SWEs with non-zero advection. It
can also be written as
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This is an expanded Klein–Gordon equivalent for the linearized SWEs with non-zero advection
terms U and V . It applies to a single-layer model, but will be extended to the N -layer strati�ed
model. In case the mean �ow U =V =0, we have
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These equations can be combined into one equation for � called the Klein–Gordon equation
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The non-linear SWEs were derived in part from the continuity equation for homogeneous,
incompressible �uids
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where w is the velocity in the z direction. This critical step in the derivation is no longer
possible when we assume that the density � is dependent on z.
We now develop a layered shallow water approximation where � is constant in each layer

(Figure 1). Here it is assumed that the �uid is still incompressible and that the density �i
is constant in each layer Li, but varies in the di�erent layers. In order for this strati�cation
scheme to be stable, �i �rst be monotonically increasing downward [41]. Additionally we
assume that there is no �uid mixing between layers.
Referring to the N -layer shallow water model, the pressure pi, at any point in Li is deter-

mined from hydrostatic principles
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where P0 is a constant ambient pressure at the surface, hi is the water elevation in Li, and N
is the total number of layers in the model. In (10), the �rst summation term is the contribution
to pi from the layers above Li. The second summation term is the contribution to pi from
the liquid column in Li. Thus the horizontal momentum equations in Li
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where ui, and vi are the x-, and y-components of velocity in Li. It can he shown that

@
@t
hi +

@
@x
(uihi) +

@
@y
(vihi)=0 (12)

Published in 2004 by John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 46:361–381



366 V. J. VAN JOOLEN, B. NETA AND D. GIVOLI

Figure 1. N -Layer shallow water model.

Equation (12) is the vertical momentum equation for Li. Together with (11) this completes
the description of the �uid motion inside of the ith-layer Li.
To linearize the equations we assume that the ui; vi, and hi are dominated by constant terms

Ui; Vi and �i. Superimposed on these are small variations u∗
i ; v

∗
i , and �i, i.e.

ui=Ui + u∗
i ; vi=Vi + v∗i and hi=�i + �i (13)

Substituting these in (11) and (12) and neglecting non-linear terms yields
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The system of Klein–Gordon equations in this case is
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In case U =V =0, the above system is reduced to
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3. HIGDON-LIKE OBCS

The Higdon condition HJ is given by
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and is a product of J operators of the form (@=@t)+Cj@=@�. Higdon showed that the re�ection
coe�cient is given by
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Since the terms in the product are all less than unity, the re�ection coe�cient becomes smaller
with increasing J no matter what choice of Cj is used. To �x ideas, in this section we consider
the east boundary �E where @=@�= @=@x. The ideas are easily carried over to the three other
boundaries as well. We consider the following FD approximations:
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In (19), �t and �x are, respectively, the time-step size and grid spacing in the x direction, I
is the identity operator, and S−

t and S−
x are shift operators de�ned by
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Note that on the west boundary we will use forward di�erence operators, so that, only interior
points are involved. Here and elsewhere, �npq is the FD approximation of �(x; y; t) at grid point
(xp; yq) and at time tn. We use (19) in (17) to obtain[

J∏
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Here, the index E correspond to a grid point on the boundary �E . Higdon has solved this
di�erence equation (and also a slightly more involved equation that is based on time- and
space-averaging approximations for @=@x and @=@t for J63 to obtain an explicit formula
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for �nEq. This formula is used to �nd the current values on the boundary �E after the solution
in the interior points and on the other boundaries has been updated. The formula for J =2
is found in Reference [42], and the one for J =3 appears in the appendix of Higdon [34].
The algebraic complexity of these formulas increases rapidly with the order J . Now, we show
how to implement the Higdon OBCs to any order using a simple algorithm. To this end, we
�rst multiply (21) by �t and rearrange to obtain

Z ≡
[
J∏
j=1
(ajI + djS−

t + ejS
−
x )

]
�nEq=0 (22)

where

aj =1− ej (23)

dj =−1 (24)

ej =− Cj�t�x
(25)

The coe�cient dj actually does not depend on j, but we keep this notation to allow easy
extensions to the scheme. The coe�cient ej have opposite sign on the west boundary, since
we have to have forward shift operator in x, i.e. S+x . Now, Z in (22) can be written as a sum
of 3J terms, each one is an operator acting on �nEq, namely

Z ≡
3J−1∑
m=0

AmPm�nEq=0 (26)

Here Am is a coe�cient depending on the aj, dj and ej, and Pm is an operator involving
products of I , S−

t and S−
x . If the interior scheme is explicit (otherwise, see later), all the

terms in the sum in (26) are computable at the current time step n, except the one which
involves only the identity operator and no shift operators. If we let this term correspond to
m=0, then P0 = I and

A0 =
J∏
j=1
aj (27)

Thus we get from (26)

Z ≡A0�nEq + Z∗=0 (28)

where

Z∗=
3J−1∑
m=1

AmPm�nEq (29)

From (28) we get

�nEq= − Z∗=A0 (30)

which is the desired value of � on the boundary �E .
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The problem now reduces to calculating Z∗ given by (29). We do this using the algorithm
proposed by Givoli and Neta [37]. For completeness, we summarize this algorithm in Box 1.
The basic idea is to calculate the coe�cients Am and the operator actions Pm�nEq term by term.
This is done systematically by transforming the integer counter m to a number in base 3
with J digits. The Am and Pm are not simple functions of the decimal representation of the
number m, but they are simple functions of the digits of the base-3
representation of m.
Note that we need to store �n̂

îq
values for î=E, E− 1; : : : ; E− J and n̂= n, n− 1; : : : ; n− J .

In other words, we have to store the history of the values of � for a layer of thickness J +1
points near the boundary �E and for J + 1 time levels (including the current one). If there
are Ny grid points in the y direction, then the amount of storage needed in a simple storage
scheme is (J + 1)2Ny. However, one can save in storage by exploiting the fact that not all
values �n̂

îq
are needed, but only those for which (E − î) + (n− n̂)6J . This is clear from (17)

• Start with Z∗=0. Calculate A0 =
∏J
j=1 aj.

• Loop over the integers m=1; : : : ; 3J − 1.
◦ For a given m, transform m into a number r in base 3, consisting of the
digits 0,1 and 2 only. The length of r will be at most J digits. Store the
J digits of r in the vector Dr( j), j=1; : : : ; J .
Example
Suppose that J =6 and m=227. Since 227 in base 3 is r=22102, we
will get Dr = {0 2 2 1 0 2}.

◦ Use Dr to calculate the coe�cient Am. To this end, start with Am=1,
loop over j=1; : : : ; J , and for each j multiply Am by the factor aj (if
Dr( j)=0) or dj (if Dr( j)=1) or ej (if Dr( j)=2).
Example
For J =6 and m=227, we have received the vector Dr above. Then
A227 = a1e2e3d4a5e6.

◦ Use Dr to calculate the operator action Pm�nEq. To this end, start with
n̂= n and î=E, loop over j=1; : : : ; J , and for each j subtract 1 from
n̂ (if Dr( j)=1) or subtract 1 from î (if Dr( j)=2) or do nothing (if
Dr( j)=0). After the loop ends we have Pm�nEq= �

n̂
îq
.

Example
For the case J =6 and m=227 considered above, we get n̂= n− 1 (be-
cause the digit ‘1’ appears only once in Dr), and î=E − 3 (because the
digit ‘2’ appears three times in Dr). Hence P227�nEq= �

n−1
E−3;q.

◦ Update: Z∗←Z∗ + Am�n̂îq.
• Next m.
• �nEq= − Z∗=A0.

Box 1. Algorithm for implementing the Higdon OBC of order J on the
discrete level (�rst formulation).
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Table I. CPU time (s) as a function of J .

J Time

1 0.01
2 0.01
1 0.01
4 0.05
5 0.15
6 0.51
7 1.74
8 8.14
9 62.68

and also from (22). For example, the solution at time tn−J should be stored only for points
on the boundary �E itself.
This formulation of the Higdon OBCs requires penetration into the domain (because of

the high normal derivative) and also requires time-history. Thus the storage requirement can
be high. Also, in order to work properly the method requires a ‘bu�er zone’ of zero initial
conditions, of width J . In addition it is not easy to extend the algorithm to FE formulations
and to unstructured meshes. On the other hand, by construction it is stable at the corners.
If the interior scheme is implicit, as is the case when advection is present, we have to

exclude from Z∗ all terms containing only powers of S−
x . There are

J∑
k=1

(
J

k

)

terms. These terms have index m whose base-3 representation contains only the digits 0
and 2, see Box 1. Now Z∗ can be computed based on the previous algorithm. We compute
Am for the terms excluded from Z∗ (i.e. for m whose base-3 representation contains only the
digits 0 and 2) and create an equation relating boundary values to interior values at time n.
This equation will be part of the system in the next section.
An alternative formulation, which eliminates all derivatives in the Higdon condition be-

yond the second-order ones via the use of auxiliary variables, is given in the appendix. This
alternative formulation does not require penetration into the domain and the keeping of time-
history. It also does not require a ‘bu�er zone’ of zero initial conditions. On the other hand
it is potentially less stable (not every combination of Cj in every order gives stability) and
it may require special attention at the corners. However, we remark that all (but one) the
numerical results presented in Section 5 were obtained by the high-derivative discrete for-
mulation described above. One numerical result using auxiliary variable formulation but no
advection is presented in order to demonstrate very high order (J =20) OBCs.
In Table I, we give the overhead CPU time in seconds (using PC/AT with 130Mb RAM)

required as a function of the order J of the boundary conditions. It can be seen that up to
J =5, the overhead is negligible.
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4. DISCRETIZING THE LINEARIZED SWE N -LAYER STRATIFIED MODEL
WITH CONSTANT NON-ZERO ADVECTION TERMS

We have used the central-di�erence approximations
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n−1
i; p−1; q−1)

+Gi

[
i−1∑
m=1

�m
�i
(�n−1m;p+1; q − 2�n−1m;pq + �

n−1
m;p−1; q) +

N∑
m=i
(�n−1m;p+1; q − 2�n−1m;pq + �

n−1
m;p−1; q)

]

+Hi

[
i−1∑
m=1

�m
�i
(�n−1m;p; q−1 − 2�n−1m;pq + �

n−1
m;p; q−1) +

N∑
m=i
(�n−1m;p; q+1 − 2�n−1m;pq + �

n−1
m;p; q−1)

]
(31)

where

A=
1
�t2

; Bi=
(
Ui
�x

)2
; Ci=

(
Vi
�y

)2
; Di=

Ui
2�x�t

Ei=
Vi

2�y�t
; Fi=

UiVi
2�x�y

; Gi=
(
C0i
�x

)2
; Hi=

(
C0i
�y

)2 (32)

As in the single-layer advection case, (31) must be solved implicitly for each layer Li. The
system of equations is complemented on the boundaries using the discretized Higdon boundary
equations as discussed before.

4.1. The Higdon matrix

An image of the coe�cient matrix resulting from (31) along with the boundary conditions is
presented in Figure 2 where zero elements are black and non-zero elements are white. Here
the truncated domain � is approximated using 21× 21 grid and Higdon OBCs of order J =9
are applied to all four sides. On the top and the bottom of the image we see 10 light diagonal
lines. These lines represent the discretization for the y-boundaries �N (top) and �S (bottom).
The heavier line along the diagonal is three points thick and is �anked to the left and right
by two thinner lines. These result from the discretization of the interior points. Finally, the
periodic ‘short-spikes’ pointing to the left and right were generated by the Higdon OBCs
on �E and �W , respectively. Note that there are only 19 each of these short horizontal lines.
This indicates that the corner points were included in the y-boundaries, otherwise 21 (Nx) of
such pairs would be visible.
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Figure 2. Higdon matrix image for � (20 × 20) with Higdon
NRBCs with order J =9 applied to four sides.

It is evident from the image, that the Higdon matrix required for non-zero advection problem
is sparse. The number of non-zero points generated by the domain interior is

5(Nx − 2)(Ny − 2) (33)

and the number of non-zero points generated by the four Higdon OBCs is

(2Nx + 2Ny − 4)(J + 1) (34)

Therefore the fraction of non-zero elements in the matrix is

5(Nx − 2)(Ny − 2) + (2Nx + 2Ny − 4)(J + 1)
N 2x N 2y

(35)

In our case where Nx=Ny=21 and J =9, only 1.34% of the matrix elements are non-
zeros. lncreasing domain size or number of layers as well as re�ning the grid would further
exacerbate the problem. Clearly sparse matrix procedures are in order.

5. NUMERICAL EXAMPLES

5.1. Two-dimensional single-layer scheme with Higdon OBCs on four sides with non-zero
advection

In this example, the truncated domain � with Higdon OBCs on four sides is used. The
extended domain D is an in�nite plane represented by a 15× 15 square with a 60× 60
mesh. � is located in the centre of D at 56x; y610. Higdon boundaries are also imposed on D
for computational purposes. Spurious re�ection from these boundaries should not signi�cantly
pollute �. On both domains �x=�y=0:25 and �t=0:0125. A gravitation parameter of
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g=10, dispersion parameter of f=0:5, and a single layer of thickness �=0:1 with density
�=1 is used. Advection constants of U =0:5 and V = − 0:25 are utilized.
Physical disturbances in � are initiated via two separate events. Event 1 is given by

St=0:025 =

{
0:0001× rand(−0:5; 0:5) if 1:56x; y63:5

0 otherwise
(36)

where St=0:025(x; y) represents a disturbance initiated at t=0:025 and rand(−0:5; 0:5) is a
random number on the interval [−0:5; 0:5]. Event 2 is given by

St=5 =

{
0:000015× rand(−0:25; 0:75) if 1:56x62:25 & 1:56y63:5

0 otherwise
(37)

where St=5(x; y) represents a disturbance initiated at t=5 and rand(−0:25; 0:75) is a random
number on the interval [−0:25; 0:75]. A bu�er of at least 5 zero-valued grid points was
maintained between the OBC and each event for stability purposes. The events are shifted 5
units in the positive x- and y-directions on D in order to properly place them in the domain’s
centre.
Before running an example, consideration was given to the selection of Cj’s. Several

experiments were conducted with results reported in Plate 1. Initially, a Higdon OBC with
order J =5 and Cj= {C0; C0; C0; C0; C0} where C0 =

√
g�=1 was considered. This was com-

pared to a case where the Cj’s are corrected for advection. The predominate speed of the
gravity wave is C0. This is a�ected somewhat the dispersion and wave height. However, with
the inclusion of advection, the predominate wave speed with respect to each boundary is af-
fected more signi�cantly. Therefore the Cj’s on each boundary are adjusted. These adjustments
were made as follows:

Ceastj =Cj +U; Cwestj =Cj −U
Cnorthj =Cj + V; Csouthj =Cj − V

(38)

For this example, the adjusted Cj’s are

Ceastj = {1:5; 1:5; 1:5; 1:5; 1:5}; Cnorthj = {0:75; 0:75; 0:75; 0:75; 0:75}
Cwestj = {0:5; 0:5; 0:5; 0:5; 0:5}; Csouthj = {1:25; 1:25; 1:25; 1:25; 1:25}

We de�ne the error norm ‖e(t)‖� by the square root of the some of the squares of the
pointwise di�erence between the solution on the truncated domain � and the solution on the
extended domain. The results of both runs show a signi�cant decrease in ‖e(t)‖� to about
10−3 at t=10. This error, however, can be reduced further.
A bu�er of J zero-valued grid points was necessary to achieve stability for a J th-order

Higdon OBC. When advection is incorporated into the problem, this bu�er zone moves hori-
zontally toward at least one of the boundaries. Therefore the bu�er is compressed with respect
to the boundary toward which it is moving. In order to maintain stability we must either in-
crease the size of the bu�er zone, or reduce the order J . In plot B (top right) of Plate 1
a 5th-order Higdon OBC is compared to a 3rd-order Higdon OBC. In both cases the Cj’s
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are adjusted for advection. In this example, ‖e(t)‖� is reduced by an order of magnitude to
about 10−4.
One further adjustment is possible to reduce ‖e(t)‖�. Geometric dispersion is another factor

in the boundaries response to an impinging wave. A wave striking normal to the boundary
will generally have a wave speed that is approximately C0. In all other cases, the wave speed
is less than C0. An example was set up for J =3 in which Cj= {0:8; 0:9; 1} with the reduced
values taking into account the geometric dispersion. Adjusted for advection, the Cj’s used for
the problem are

Ceastj = {1:3; 1:4; 1:5}; Cnorthj = {0:55; 0:65; 0:75}
Cwestj = {0:3; 0:4; 0:5}; Csouthj = {1:05; 1:15; 1:25}

(39)

In Plot C (bottom left) of Plate 1 an additional reduction in ‖e(t)‖� is evident. Further analysis
is necessary to determine how to best adjust Cj values for geometric dispersion.
The question of the corner points of � is again salient in the advection case, because

the values for Cj on each boundary are now di�erent. Recall that there are two ways to
approximate the boundary values when numerically solving the problem. Both approaches are
tested here. In the �rst run the x-boundaries were computed �rst (including the corner points)
and the y-boundaries computed next (excluding the corner points). In a second experiment the
procedure was reversed and corner points were included in the y-boundaries. Plot D (bottom
right) of Plate 1 reveals that the solutions are identical. Hence, as concluded earlier, no special
handling at the corner points is necessary.
With these results in mind, Higdon OBCs of order J =3 with Cj= {0:8; 0:9; 1} are used.

With U =0:5 and V = − 0:25, the adjusted Cj’s are those listed in (39). A trial is run for 10
time units. At t=1 (Plate 2), event 1 has been propagating outward in � for approximately 1
time unit. The e�ect of advection is apparent as the propagation of the gravity wave is tending
toward the southeast (i.e. in the ¡ 0:5;−0:25 ¿ direction). The leading edge of the wave
has passed through the �E , but the error measurement is still very small. At t=2 (Plate 3),
event 1 has crossed �S and �E . Later, at t=3 (Plate 4), event 1 has crossed �N and �W . At
t=5 (Plate 5), most of event 1 has left �. We note some spurious activity on the western
boundary.
At t=6 (Plate 6), the waves generated by event 2 are approaching �E and �W . Event 1

has passed through all four boundaries relatively unperturbed. The plot of D reveals that the
wave front continues to tend toward the southern and eastern portion of the extended domain.
At t=10 (Plate 7), the second event has passed through the boundary. The wave propaga-

tion pattern continues to ‘drift’ in the direction of advection as revealed by the upper-right plot
of D. Close inspection of the contours reveal spreading where the gravity wave is travelling
in the direction of advection and compression where the gravity wave is travelling against the
direction of advection. In the latter case, this indicates a steeper wave front. Since the gravity
wave is omni-directional, this e�ect varies throughout the plot. In � the noise of spurious
re�ection is now visible.
This experiment was repeated for two other sets of values for U and V . In the �rst variation

(Plate 8) the magnitude of the advection constants were lowered to U =0:4 and V = − 0:15.
As expected, there is a decreased tendency toward the southeast. Also notable is a reduction
in the error measurement.
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Plate 1. Plot A (top left): J =5 with Cj = {1; 1; 1; 1; 1} adjusted for advection compared to J =5
with Cj = {1; 1; 1; 1; 1} unadjusted for advection. Plot B (top right): J =3 with Cj = {1; 1; 1} compared
to J =5 with Cj = {1; 1; 1; 1; 1}, both cases adjusted for advection. Plot C (bottom left): J =3 with
Cj = {0:8; 0:9; 1} compared to J =3 with Cj = {1; 1; 1}, both cases adjusted for advection. Plot D

(bottom right): Corner check for J =3 with Cj = {0:8; 0:9; 1} adjusted for advection.
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Plate 2. Single layer problem, the solution at t=1 after the �rst event has been initiated.

Plate 3. Single layer problem, the solution at t=2 after the �rst event crosses �S and �E .
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Plate 4. Single layer problem, the solution at t=3 after the �rst event crosses �N and �W .

Plate 5. Single layer problem, the solution at t=5 after the �rst event leaves �
with visible spurious re�ection at �W .
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Plate 6. Single layer problem, the solution at t=6 after the second event has been initiated.

Plate 7. Single layer problem, the solution at t=10. The spurious
re�ection is evident at the bottom left plot.
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Plate 8. Single layer problem, the solution at t=10, with advection parameters U =0:4, V = − 0:15.

Plate 9. Single layer problem, the solution at t=10, with advection parameters U =0:6, V = − 0:35.
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Plate 10. Solution at t=6 using auxiliary variable formulation with J =20 and no advection.

Plate 11. The two-layer problem, the solution at t=1 after the initiation of disturbance.
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Plate 12. The two-layer problem, the solution at t=5. Some noise
at boundaries of bottom left plot is evident.
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In the second variation (Plate 9), the magnitude of the advection constants was increased
to U =0:6 and V = − 0:35. The tendency to the southeast, as well as the error measurement,
has increased.
These results indicate that the model is behaving as expected with regards to the rate and

direction of advection. However, as the magnitude of the advection constants is increased,
the measured error will also increase. In the current example, the magnitude of the advection
is 4 to 7 times greater than the magnitude of the depth. In a real world problem, where the
open ocean is the medium of propagation, advection constants are expected to be signi�cantly
smaller.
The next example involves a persistent point source which is turned on at t=0 in the center

of the computational domain. The computational parameters are �x=�y=0:25, and �t=0:1.
The parameters C0 = 1 and U =V =f=0 are used. The auxiliary variable formulation of the
Higdon boundary conditions are applied along all four sides of the domain, with Cj=1 for
all the j’s. Notice that since there is no advection, the auxiliary variable formulation is much
simpler, see e.g. Reference [38]. The reference domain D∗ is taken here to be large enough
that during the computation time 06t66 the wave front does not reach the extended outer
boundaries at all (although it does, of course, pass the truncated boundary B). We de�ne the
relative error measure

E(t)=

√√√√∑Nx
i=1

∑Ny
j=1 [�ref (xi; yj; t)− �(xi; yj; t)]2∑Nx
i=1

∑Ny
j=1 �

2
ref (xi; yj; t)

(40)

Figure 3 shows the maximum relative error during 06t66 as a function of the Higdon
order J , for 16J620. The error reduces sharply when passing from J =1 (the Sommerfeld-
like condition) to J =2, then oscillates slightly when J is further increased, and levels o�
at about 2.5%. The error cannot be reduced further without also re�ning the grid and choos-
ing a smaller time-step size. With both Higdon formulations, no instability has been ob-
served in this case. For additional examples where the error is measured for increasing J ,
see References [37, 40].
Plate 10 shows the comparison of the computed solution with the reference solution with

J =20 at t=6. Very good agreement between the two solutions is observed.

5.2. A two-layer scheme incorporating advection

In this example the domains � and D as described before with identical positioning of the
Higdon OBCs are utilized. The following problem parameters are used:

�x=�y=0:25; �t=0:1

g=10; f=0:5

�i = {0:03; 0:07}; �i= {1; 1:05}

Ui = {0:025; 0:025}; Vi= {−0:025;−0:025}

J =5; Cj= {0:6; 0:7; 0:8; 0:9; 1}
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Figure 3. Maximum relative error for 16J620.

Correcting the Cj’s for advection yields

Ceastj = {0:625; 0:725; 0:825; 0:925; 1:025}; Cnorthj = {0:575; 0:675; 0:775; 0:875; 0:975}

Cwestj = {0:575; 0:675; 0:775; 0:875; 0:975}; Csouthj = {0:625; 0:725; 0:825; 0:925; 1:025}

A single physical disturbance is initiated in � and is given by

St=0:1L1 =

{
0:000001× rand(−0:5; 0:5) if 26x; y63

0 otherwise
(41)

where St=0:1L1 (x; y) represents a disturbance initiated in L1 at t=0:1 and rand(−0:5; 0:5) is a
random number on the interval [−0:5; 0:5]. The example is run for �ve time steps.
At t=1 (Plate 11), the disturbance has been underway for approximately 1s. Minimal spu-

rious re�ection occurs at the boundaries. In the lower-right plot two additional measurements
are noted. The �rst, ‘Max Ref Surf’ is |�|max measured over the entire run. The next, ‘Max
‖e‖ Ratio’ is given by

Max ‖e‖Ratio= ‖e‖max|�|max (42)
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Since both are maxima extracted from the data generated over the entire run, they will not
change with time.
At t=5 (Plate 12), most of the wave action has left �. The residual action in the truncated

domains are, for the most part, similar. There is, however, some visible di�erence near the
boundaries resultant from spurious re�ection. The lower-right plot reports

Max ‖e‖Ratio=1:08%
That is to say, the maximum error norm ‖e‖ at t=5 was 1.08% of the |�|max.

APPENDIX A. FORMULATION USING AUXILIARY VARIABLES

In this section, we develop the auxiliary variable formulation for the advective case. We �rst
replace the Higdon condition

HJ :


 J∏
j=1

(
@
@t
+ C+j

@
@�

) �=0 on B (A1)

where

C+j =Cj +U; j=0; : : : ; J

C−
j =Cj −U; j=0; : : : ; J

(A2)

with the equivalent condition

HJ :


 J∏
j=1

(
@
@�
+

1
C+j

@
@t

)
 �=0 on B (A3)

Again, to �x ideas we consider �E where @=@� = @=@x. Now, we introduce the auxiliary
functions �1; : : : ; �J−1, which are de�ned on B as well as in the exterior domain D. Eventually,
we shall use these functions only on B, but the derivation requires that they be de�ned in D
as well, or at least in a non-vanishing region adjacent to B. The functions �j are de�ned via
the relations (

@
@x
+

1
C+1

@
@t

)
�=�1 (A4)

(
@
@x
+

1
C+2

@
@t

)
�1 =�2 (A5)

...(
@
@x
+

1
C+J

@
@t

)
�J−1 = 0 (A6)
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By de�nition, these relations hold in D, and also on B. It is easy to see that (A4)–(A6),
when imposed as boundary conditions on B, are equivalent to the single boundary condition
(A3). If we also de�ne

�0 ≡ �; �J ≡ 0 (A7)

then we can write (A4)–(A6) concisely as(
@
@x
+

1
C+j

@
@t

)
�j−1 =�j; j=1; : : : ; J (A8)

This set of conditions involves only �rst-order derivatives. However, due to the appearance
of the x-derivative in (A8), one cannot discretize the �j on the boundary alone. Therefore
we shall manipulate (A8) in order to get rid of the x-derivative.
The function � satis�es the wave equation (5) in D. The function �1 is obtained by applying

a linear constant coe�cient operator to �, as in (A4); hence it is clear that �1 also satis�es
the same equation in D. Similarly, we deduce that each of the functions �j satis�es a wave
equation like (5), namely,

C20
@2�j−1
@x2

+ C20
@2�j−1
@y2

− D
2�j−1
Dt2

− f2�j−1 = 0 (A9)

Here, we need the assumption that C0 and f do not depend on x or on t. Let us factor
C20 (@

2�j−1=@x2)− D2�j−1=Dt2 and use the de�nition of the operator D=Dt

C20
@2

@x2
�j−1 − D

2�j−1
Dt2

=
(
C0

@
@x
− D
Dt

)(
C0

@
@x
+
D
Dt

)
�j−1

=
(
C−
0
@
@x
− @
@t
− V @

@y

)(
C+0

@
@x
+
@
@t
+ V

@
@y

)
�j−1

(A10)

Using the auxiliary variables we have(
C+0

@
@x
+
@
@t
+ V

@
@y

)
�j−1 =C+0

(
@
@x
+

1
C+0

@
@t
+
V
C+0

@
@y

)
�j−1

=C+0

(
�j − 1

C+j

@
@t
�j−1 +

1
C+0

@
@t
�j−1 +

V
C+0

@
@y
�j−1

)

=C+0

(
�j +

((
1
C+0
− 1
C+j

)
@
@t
+
V
C+0

@
@y

)
�j−1

)
(A11)

Now we have to operate on this with C−
0 (@=@x)− (@=@t)− V@=@y and add the remaining 2

terms of (A9)

C+0 C
−
0

(
@
@x
− 1
C−
0

@
@t
− V
C−
0

@
@y

)(
�j +

((
1
C+0
− 1
C+j

)
@
@t
+
V
C+0

@
@y

)
�j−1

)
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+C20
@2

@y2
�j−1 − f2�j−1

= C+0 C
−
0

{
�j+1 − 1

C+j+1

@
@t
�j − 1

C−
0

@
@t
�j − V

C−
0

@
@y
�j

+

(
1
C+0
− 1
C+j

)
@
@t

(
�j − 1

C+j

@
@t
�j−1

)

− 1
C−
0

(
1
C+0
− 1
C+j

)
@2

@t2
�j−1 − V

C−
0

(
1
C+0
− 1
C+j

)
@2

@y@t
�j−1

+
V
C+0

@
@y

(
�j − 1

C+j

@
@t
�j−1

)
− V
C−
0 C

+
0

@2

@y@t
�j−1 − V 2

C−
0 C

+
0

@2

@y2
�j−1

+
C20

C−
0 C

+
0

@2

@y2
�j−1 − f2

C−
0 C

−
0

�j−1

}
=0 (A12)

Now we collect terms

�j−1 +

(
1
C+0
− 1
C+j
− 1
C+j+1

− 1
C−
0

)
@
@t
�j + V

(
1
C+0
− 1
C−
0

)
@
@y
�j

−
(
1
C+0
− 1
C+j

)(
1
C+j

+
1
C−
0

)
@2

@t2
�j−1 −

[
V
C−
0

(
2
C+0
− 1
C+j

)
+

V
C+0 C

+
j

]
@2

@y@t
�j−1

+
C20 − V 2
C+0 C

−
0

@2

@y2
�j−1 − f2

C+0 C
−
0

�j−1 = 0 (A13)

Add to this

�0 = � (A14)(
@x +

1
C+1

@t

)
�=�1 (A15)

Eqs. (A13)–(A15) constitute a high-order boundary condition which involves only �rst and
second time derivatives and tangential derivatives along the boundary. It can be discretized
and combined with the interior �nite di�erence scheme in a way similar to that used in
Reference [38] for the simpler case of zero mean �ow.
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