
5 Conclusions
This paper introduces the velocity-dependent friction with the

Stribeck effect into the moving load model for the vibration of a
car disc brake. By solving its corresponding eigenvalue problem,
a bounded region of instability is obtained for the rotating speed
of the disc versus the friction coefficient at the disc/pads interface,
which is compatible with observed squeal phenomenon of a car
disc brake.
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The transient analysis of large structural systems with localized
nonlinearities is a computationally demanding process, inhibiting
dynamic redesign and optimization. A previously developed inte-
gral equation formulation for transient structural synthesis has
demonstrated the ability to solve large locally nonlinear transient
problems in a fraction of the time required by traditional direct
integration methods, with equivalent or better accuracy. A recur-
sive block-by-block convolution algorithm is developed for the
solution of the governing integral equation that further reduces
the solution time required. A computing time comparison of
single-block versus multiple-block solutions is provided.
@DOI: 10.1115/1.1389083#

1 Introduction
A general formulation for the transient analysis of locally non-

linear structures was presented in Gordis and Radwick@1#, re-
ferred to as transient structural synthesis. The synthesis provides
for the direct calculation of transient response resulting from
structural modifications~linear or nonlinear!, substructure cou-
pling, and the application of base excitation through linear or
nonlinear elements. The formulation is independent of model size,
in that only those physical coordinates directly subjected to forces
of synthesis~e.g., reactions due to modification! need be retained.
This physical coordinate formulation is governed by the following
nonlinear Volterra integral equation,

x* ~ t !5x~ t !2E
0

t

H~ t2t!f* ~ t,t,x* ~t!,ẋ* ~t!!dt, (1)

wherex* (t) is the vector of synthesized transient responses, the
x(t) vector contains both the initial displacement and response
due to externally applied excitations,H(t) is an impulse response
function ~IRF! matrix assembled from individual impulse re-
sponse functionsh(t), and f* (t) is a vector of synthesized reac-
tions acting on all retained physical DOF.

2 Solution of Governing Equation „1…
As was shown in Gordis and Radwick@1#, the solution of Eq.

~1! is found by replacing the integral with a suitable quadrature,

x* ~ iDt !5x~ iDt !2~Dt !a(
j 50

i 2b

wjH~~ i 2 j !Dt !f* ~ j Dt !, (2)

where we have abbreviated the general nonlinear force asf* , a
andb are real scalar constants depending on the quadrature rule
chosen, and thewj are the quadrature weights. A simple iteration
was shown in Gordis and Neta@2# to converge rapidly to the
solution, due to the contractive nature of the integral operator.

For the purpose at hand, consider the simplest of quadrature
rules, the rectangular rule,a51, b51, andwj51. For i 50,1,2,
Eq. ~2! becomes

x* ~0Dt !5x~0Dt ! (3)

x* ~1Dt !5x~1Dt !2Dt@H~1Dt !f* ~0Dt !1H~0Dt !f* ~1Dt !#
(4)

x* ~2Dt !5x~2Dt !2 . . . . . .Dt@H~2Dt !f* ~0Dt !

1H~1Dt !f* ~1Dt !1H~0Dt !f* ~2Dt !# (5)

and we note thatH(t50)50, yielding the correct series for the
rectangular rule. It is important to recognize that the bracketed
terms in Eqs.~3!, ~4!, and~5! are equivalent to those produced by
the discrete convolution. To state this generally, a discrete convo-
lution produces a result identical to that produced by the rectan-
gular rule applied to a convolution-type integral.

3 Recursive Block-by-Block Convolution Algorithm
While the iterative solution defined by Eq.~2! was shown to be

very fast in comparison with a standard direct transient analysis
@2#, further significant reduction in solution time can be obtained
by use of the following recursive, block-by-block convolution al-
gorithm. This algorithm reduces compute times by dividing the
total time interval into sub-intervals~‘‘blocks’’ !. To facilitate this,
a block-by-block convolution algorithm is developed, which does
not require data overlap or zero-padding. Thej th iteration for the
response of thekth block is

xk
j 5xk2 (

m51

k21

~Hkm•fm!2Hkk•fk
j 21, (6)
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whereHkm is the kth-block IRF filter matrix~to be defined be-
low!, and the converged forces of prior blocks 1,2,3 . . . ,k21 are
used.

In order to make use of Eq.~6!, the block IRF filter matrixHkm
needs to be developed, which is central to the algorithm. We first
recognize that the convolution of two vectorsh and f can be
written as a matrix-vector product,

x5h* f5F~h!•f53
h1 0 ¯ ¯ 0

h2 h1 0 ¯ ¯ ]

] h2 h1 0 ¯

] ] � � ]

hn21 hn22 ¯ � h1 0

hn hn21 hn22 ¯ h2 h1

4
35

f 1

f 2

]

]

f n21

f n

6 , (7)

whereF(h) is a filter matrix@3# constructed from the elements of
the vector,h. We define a delay matrixD where the dimension of
D is consistent with the length of the vector on which it operates.
The matrixD produces a delay in time by one sample. For ex-
ample, consider the 3 by 1 vectorh,

D•h5F 0 0 0

1 0 0

0 1 0
G H h1

h2

h3

J 5H 0
h1

h2

J , (8)

where the productDh is equivalent to the vectorh shifted forward
in time ~delayed! by one sample. We can introduce delays of
arbitrary samples asD j . The productD jh produces a vector
equivalent to the vectorh but delayed byj samples.

The filter matrixF is equal to the summation of powers of the
delay matrix multiplied by the filter weights,hi . Alternatively, the
columns of the filter matrixF are each products of powers of the
delay matrixD and the vectorh, i.e., thej th column ofh is given
by D jh. The filter matrix of a vectorh of lengthn is therefore,

F~h!5(
j 50

n21

hj3Dk5@D0h D1h ¯ Dn22h Dn21h# (9)

We now construct the block-by-block~BBB! convolution of two
vectors,h and f, i.e., h* f. We subdivide the entire time record of
durationT seconds, consisting ofN sample points (Dt5T/N) into
a number of equally sized blocks, or subintervals, i.e., each sub-
interval contains the same number of sample points. We will sub-
divide the entire record into ‘‘K’’ blocks, where each block con-
sists ofJ5N/K samples, and the duration of each block isJDt
seconds. It is important to emphasize that there is a delay ofJ
samples between blocks. For the purpose of developing the BBB
algorithm, we will need to extract those rows of a vector corre-
sponding to a particular block. To this end, we define the row
extraction matrixr :

r5F 0 ¯ 0 1 0 ¯

] 0 1 0

0 1 0

] 0 1 0

0 ¯ ¯ 0 1

G (10)

The product of the matrixr with a vectorx is the subvector ofx
consisting of the rows~samples! of the Kth block, i.e.,r•x5xk

wherexK5@xJ(K21)11¯xn21xn#T. Using the delay matrixD, we
can define a matrix which extracts the rows of thekth block,
wherek51,2, . . . ,K.

r k5r•Dk5F 0 ¯ 0 1 0 ¯ ¯ 0

] 0 1 0 ]

0 1 0

] 0 1 0 ]

0 ¯ ¯ 0 1 0 ¯ 0

G
(11)

The matrix equation, Eq.~7!, can be written in a block-partitioned
form as follows. We can write thekth subvector ofx, i.e., xk , as

xk5 (
m51

k

rN2kJF~h!rN2mJ
T rN2mJf (12)

Therefore, the IRF block filter matrix of Eq.~6! is

Hkm5rN2kJF~h!rN2mJ
T (13)

It is important to note that the block filter matricesHkm need
never be formed, as the appropriate subvectors ofh and f ~as
defined by Eq.~13!! can be convolved directly.

4 Performance Comparison—Standard and Block-by-
Block Convolution

A traditional ~single-block! convolution, for sufficiently long
records of lengthn, is most efficiently computed using the FFT,
yielding a total number of floating point operations~FLOPS! pro-
portional ton* log2(n). The computing language MATLAB pro-
vides a built-in function for convolution that uses FIR filters for
the calculation, and yields total FLOPS proportional ton2. As we
are here interested in comparing the performance of the BBB
algorithm with the traditional single-block convolution, the use of
the MATLAB function will provide much convenience with no
loss in the ability to compare algorithms. The number of FLOPS
for the BBB algorithm is given by:

FLOPS}K~2J22J!1
1

2
~K22K !~4J224J11!

which yields an optimum number of blocks greater than the total
number of samplesN, and is a noninteger number of blocks. What
is useful about this solution is that is indicates that the FLOPS

Fig. 1 FLOPS „Ã1018
… vs record length
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required by a BBB convolution decreases monotonically with in-
creasing block number. This is shown in Fig. 1, which compares
the FLOPS required by a standard convolution to the BBB con-
volution for varying total number of samples,N, and for different
numbers of blocks. However, if we compare actual compute time
~using MATLAB!, we see that there is a point at which increasing
the number of blocks results in increased compute times, as the
computing ‘‘overhead’’ associated with increased block number
outweighs the decrease in computing time due to the reduction in
FLOPS required. This is shown in Fig. 2, and eight blocks yields
the minimum time for this particular calculation.

To evaluate the BBB algorithm in the context of a transient
analysis, the structural system of Gordis and Radwick@1#, will be
used. This is a simplified isolated square deck structure of ap-
proximately 51,500 DOF, with four nonlinear isolators at each
corner, subjected to an impulsive base motion excitation. As re-
ported in Gordis and Radwick@1#, the total time for the direct
transient analysis was 30 minutes 15 seconds, and the synthesis
took 7 seconds. Here we compare multiple-block solution times
with that for a single block. This is summarized in Table 1. The
single-block solution is equivalent to a standard convolution. It is
clear that a multiple-block solution provides a significant reduc-
tion in compute time.

5 Conclusions
A new recursive block-by-block convolution algorithm has

been developed for the solution of the governing nonlinear Volt-
erra integral equation for locally nonlinear structural synthesis.
The new algorithm is extremely fast, as compared with direct
integration, and is also much faster than the previously reported
algorithm@1#. The algorithm lends itself for use in nonlinear struc-
tural dynamic optimization. The algorithm can be used whenever
the convolution of long time records is required.
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Nomenclature

D 5 delay matrix
f 5 excitations
h 5 impulse response function
H 5 impulse response function matrix
F 5 filter matrix
r 5 row extraction matrix

t, t 5 time
w 5 quadrature weights
x 5 displacement response
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Fig. 2 Compute time „sec … vs record length

Table 1 Solution times vs. number of blocks
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