Fast Transient Analysis for Locally Nonlinear Structures

by Recursive Block Convolution

Joshua H. Gordis
Department of Mechanical Engineering
jgordis@nps.navy.mil

Beny Neta
Department of Mathematics
bneta@nps.navy.mil

Naval Postgraduate School
Monterey, CA 93943-5146

ABSTRACT

The transient analysis of large structural systems with
localized nonlinearities is a computationally demanding
process, inhibiting dynamic redesign and optimization. A
previously developed integral equation formulation for
transient structural synthesis has demonstrated the ability
to solve large locally nonlinear transient problems in a
fraction of the time required by traditional direct
integration methods, with equivalent or better accuracy. A
recursive block-by-block convolution algorithm is
developed for the solution of the governing integral
equations which further reduces the solution times
required. Examples using realistically-sized finite element
models are presented, demonstrating the performance of
the formulation.

NOMENCLATURE

D delay matrix

f excitations

h filter matrix

H impulse response function matrix
L Lipschitz constant

R boolean coupling matrix
r FOW extraction matrix
1,1 time

W quadrature weights

X displacement response

Subscripts/Superscripts:
b,c,1,m coordinate sets
e external

1. Introduction

The transient analysis of large and complex structural
systems is a computationally demanding task exacerbated
by the presence of structural and mechanical
nonlinearities. The computational demand of these
problems prohibits the repeated analyses required in a

747

design effort, such as in structural optimization where
various responses are required for the calculation of the
objective function, constraints, sensitivities, and for the
generation of approximations to be used within the
optimizer.

A class of nonlinear structural dynamics problems with
numerous applications is characterized by the presence of
localized nonlinearities. For the purposes of this work,
this class of problems is defined as follows:

Definition of a Locally Nonlinear Model: A model
where the nonlinear load paths do not contain any internal
degrees-of-freedom (DOF), i.e. each nonlinear load path
(nonlinear element) is associated solely with DOF shared
by linear load paths (clements).

This class of problems can be further informally restricted
by recognizing that the formulations to be developed in
what follows provide a greater reduction in computing
time {as compared with direct integration) for models
where there are relatively few nonlinear load paths, or in
other words, where the number of DOF associated with
nonlinear load paths is small relative to the total number
of DOF in the model. The problem of nonlinear
carthquake isolation of a linear structure falls into this
category, wherein the isolator provides a nonlinear load
path between the building model DOF and “ground.”

The approach in this work, originally reported in [1,2], is
to treat the problem as a physical coordinate (non-modal)
structural modification problem, wherein the nonlinear
elements are “installed” into the linear model as structural
modifications. The structural modification formulation
belongs to a broader category of physical coordinate
structural synthesis methods [1-5], which includes
substructure coupling, base excitation through generalized
elements, and constraint imposition as well. Such an
approach not only provides a substantial reduction in
solution times, but provides for a generality in the

definition of the problem and a flexibility in its
application which is unique.

While structural synthesis treats the nonlinear element
responses as applied loads, in a manner similar to other
methods for local nonlinear transient analysis, what
distinguishes structural synthesis from other numerical
approaches are the following characteristics:

* The governing equations for structural synthesis are

exact,

» an implicit exact model reduction is available, in that, as
a minimum, only those DOF directly associated with
nonlinear elements and applied loading need be retained.
Any additional physical DOF of interest to the analyst
can be retained as well. In other words, the transient
synthesis solution time is independent of model size,

» general nonlinearities can be treated,

* the linear portion of the model is solved once,

= very fast solution times are obtained, an intrinsic
property of the formulation.

‘The governing equation for transient structural synthesis
is a nonlinear Volterra integral equation, involving a
convolution-type kernel [1,2]. The convolution-type
kernel suggests a recursive transition-matrix approach to
the solution of first-order ordinary differential equations
(e.g. [6]) as a potential improvement over the (non-
recursive) iteration solution presented by Gordis and
Radwick [2], in which an order-of-magnitude reduction in
computing time required was demonstrated, relative to
direct integration. However, in [6], the recursion was
based on the transition matrix for the system model, and
hence requires the calculation of a large matrix
exponential, with no provision for model reduction.
Furthermore, as is shown in [7], recursive modal
transition matrix approaches, while providing a model
reduction, are inherently unstable in explicit forms, and
are not easily stabilized in implicit forms. We must
therefore consider such an approach to be of limited value
for large structural models.

The current recursive algorithm developed differs from
previously developed recursive algorithms in that no
transition matrix is employed. The current algorithm
preserves the physical coordinate formulation originally
developed by Gordis [1] and Gordis and Radwick [2], and
hence preserves the implicit and unrestricted exact model
reduction, concomitant with the formulation. The
algorithm is exponentially convergent, for a general class
of nonlinearities [7].

2, Coordinate Sets and Impulse Response
Functions

We provide highlights in the relevant theory. The reader is
referred to [1,2,7] for the complete development.

748

The total solution for (linear) transient response can be
written in terms of the convolution integral,

x(1) = x, () + gn(t—fr)f(r)dr, W

where x is the total forced response, x, is the
homogeneous solution, f is the excitation vector, and
these vectors are partitioned according to the following
sets of DOF, e.g.

X0=[x0" %0 0" 507 @

T

(=60 L0 £.07 L07] ©)

Note that the above coordinate sets are each comprised for
coordinates from any number of substructures, as shown

in Figure 1.

NL

NL

{ty =Prescribed

N jgasc motion

Figure 1. System for synthesis comprised of two
substructures

"NL" arbitrary nonli near
structural element;

In the context of the physical coordinate synthesis
formulation to be developed, a structural system is defined
to consist of one or more uncoupled substructures. A
single governing equation for nonlinear transient synthesis
will be derived and this equation will address each of the
following three general analysis categories:

(1) Structural modification - the addition and/or removal of
linear and/or nonlinear structural elements,

(2) Prescribed base motion - application of base motion to
structure through linear and/or nonlinear elements

(3) Substructure coupling - the joining of substructures (a
linear analysis)

Each of the above analysis categories defines a set of
DOF. The DOF sets are:

m-set: Modification
b-set: Base excitation
c-set: Coupling

i-set: Additional DOF

The synthesis provides a transient analysis that is
independent of model size, in that only those structural
DOF of interest need be included. These DOF must
include, as a minimum, those associated with the
nonlinear elements, which are treated independently of the

{linear) model. Additionally, other DOF for which
synthesized response information is desired can be included
as needed. Therefore, it is possible to synthesize the
transient response for an arbitrarily large model using a
minimal number of DOF, the minimum number defined
only by the number of nonlinear eiements in the model.
Functioning as a re-analysis procedure, the formulation
directly caiculates the new transient response for a systemn
resulting from structural changes and/or coupling with
other structures, without a reassembly or full reanalysis.

Each substructure is described by impulse response
functions (IRF) calculated at the coordinates subjected to
forces of synthesis (m-set, b-set, c-set), at other DOF for
which synthesized nonlinear transient response is required
(i-set), and where external loads are applied. For each
linear substructure, the IRF are most efficiently calculated
using modal superposition. However, the use of modal
superposition for IRF calculation does not render
structural synthesis a “modal method,” for the following
reason. The IRF are calculated using a sufficient number
of modes to ensure convergence. Once these converged
[RF are calculated, they are indistinguishable (to a given
level of precision) from the “exact” IRF, which are indeed
physical quantities.

The matrix H is the impulse response function (IRF)
matrix, any element of which can be written as,

n oFoP
(0= S etefie $ 0

p=r+l (de

th sin(mdp[) (4)

where ¢F is the i element of the p" mass-normalized
eigenvector of the substructure prior to synthesis, @, and
®,, are the p* undamped and damped natural frequenc:les
respectively, , is the p" * modal damping ratio, r is the
number of rigid body modes, and n€N is the number of
modes required for convergence. The number of elastic
modes is n-r. Note that the IRF matrix H contains
elements from all substructures involved in the synthesis,
and is partitioned as described above.

Nonlinear

3. Governing Equation of

Transient Synthesis

The governing equation for structural synthesis is
1
(O =x()- JH(t-DF* (L, T,x*(1),x*(7))dT (5)
0

where x(1) contains both the initial displacement and
response due to externally applied excitations,
1
x(t)=xq + [H(t - T)f*(t)dt (6)
0

and £*%(t) are the synthesized reactions acting on all DOF
sets,

749

SPIRY B vt 1
f*(t)=[0T (RE () £.0) fb(t)T])
where R 1s a boolean matrix reflecting the equilibrium
which exists between the coupled DOF

Equation (5) is a nonlinear Volterra integral equation of
the second kind, and is the central equation of this work.
Direct solution is possible for linear problems; for
nonlinear problems iterative solutions are required, and
these exploit the coniractive nature of the integral
operators yielding exponential convergence properties {7].

4. Iterative Solution:
Convergence

Uniqueness and

Results

The following results are excerpted from [7]. The recursive
block-by-block convolution algorithm is iterative, and
hence we are concerned with the boundedness of a sequence

of solutions,
X (0%, {0, x4 (1)
We require that the forces of synthesis satisfy a Lipschitz

condition,
< L n(T Xp- I(T “

where L is a positive constant.
argument the following is established

SMORES t)]l- ©)

where x, and x, are upper and lower bounds on the system
response, which establishes the uniform exponential
convergence of the series,

(8)

Using an inductive

e

xn1 () —xn (1) (10)
with no restriction on L, t, or IH{tII.
5. Numerical Quadrature for Nonlinear

Volterra Integral Equations

The numerical solution of Eq. (5) typically starts with a
discretization of the equation using some quadrature rule,
For the response at some time t = iAt =t, (1 = 0 = DAt),
Eq. (5) becomes,
i
x"(iAt) = x(iAt) — (At)® zﬁw H{(i- Hade”(ja) - (1)
=0
where we have abbreviated the general nonlinear force as
f', o and B are real scalar constants depending on the
quadrature rule chosen, and the w, are the quadrature
weights. For example, if we LonSIdcr the simplest of
quadrature rules, the rectangular rule (for a purpose to be
made clear below), a=1,B =1, and w=1. For i =0,1,2,
Eq. {11) becomes ,

x" (0At) = x(0At) (12)

x"(1A0) = x(1At) - A H(1AE (041) + H(0AE"(141)]

(13)
X (24t) = x(2A0) - ...

. A{H(2AOF (04t} + H{IAOF (1A1) + H(0AOE" (240)]

(14)
and we note that H(t=0) = 0, yielding the correct series for
the rectangular rule. It is important to recognize that the
bracketed terms in Egs. (12), (13), and (14) are equivalent
to those produced by the discrete convolution.

The trapezoid rule and Simpson’s rule are commonly used
quadratures for this application [9,10]. The performance of
the trapezoid rule in the solution of the linear synthesis
problem 1s reported in [2].

6. Discrete Convolution and Filter
Matrices

We define the basic convolution in order to establish a
notation for the development of the block-by-block
convelution which follows. The convolution of two
vectors x and y is denoted as x*y. The discrete
convolution of X and y is given by

X*y=§X(n—k)Y(k) (15)
If xand y are each (n x 1), e.g.
T
X =(x, X2 Xp1 Xn)
T
y =(Y1 Y2 Yo Yn)

then the convolution x*y can be written as the following
matrix-vector product, where the matrix is Toeplitz,
constant diagonal, and is referred to as a filter matrix h(x)
it1:

z=x*y=h{x). y=...

Xy 0 0 ¥ A
X X, 0 - iy,
_ : x-z X 'O ‘ J } (16)
Xpel %oz v oo xp Ofly g
L ¥n X501 Xpoz o Xy X][¥y

and the elements of x are referred to as filter weights [11].
Note that here we refer to h as an arbitrary filter matrix,
which should not cause confusion with the use of the
symbol H to refer to the impulse response function (IRF)
matrix, as the IRF matrix is a filter matrix as well.

We now definc a delay matrix D [I1] with the following
structure:

an

S = O O
[e B o B
[o B - N]

O
1
0
0

L J
where the dimension of D is consistent with the length of
the vector on which it operates. The matrix D produces a
delay in time by one sample. For example, consider the 3
by 1 vector x,

¢ 0 Ofx 0
D-x=|1l 0 DKxy;=1x (18)
0 1 0](x, X,

where the product Dx is equivalent to the vector x shifted
forward in time (delayed) by one sample. We can introduce
delays of arbitrary samples as DJ. The product Dix
produces a vector equivalent to the vector x but delayed by
Jj samples.

The filter matrix h is equal to the summation of powers
of the delay matrix multiplied by the filter weights, x..
Alternatively, the columns of the filter matrix h are each
products of powers of the delay matrix D and the vector x,
i.e. the j" column of h is given by DJx. The filter matrix
of a vector x of length n is therefore,

n—1i
h(x)= Y x;-D* =[D°x D'x D" %x D““X] (19)
§=0

7. Block-by-Block Convolution

We now develop the block-by-block (BBB) convolution of
two vectors, x and y, i.e. x*y. We subdivide the entire
time record of duration T seconds, consisting of N sample
points (At = T/N) into a number of equally sized blocks,
or subintervals, i.e. each subinterval contains the same
number of sample points. We will subdivide the entire
record into K blocks, where each block consists of J =
N/K samples, and the duration of each block is JAt
seconds.

It is important to emphasize that there is a delay of J
samples between blocks. For the purpose of developing
the BBB algorithm, we will need to extract those rows of
a vector corresponding to a particular block. To this end,
we define the following row extraction matrix r:

0 - 010
‘ 0 1
0 (20}

o B
(= =
— D

The product of the matrix r with a vector x is the
subvector of x consisting of the rows (samples) of the K"
block, Le. F-x =xy where

T
Xx =[xJ(K—1)+I Xo-1 xn]
Using the delay matrix D, we can define a matrix which
extracts the rows of the k" block, where k =1,2,....K.
0 - 0 0 - e 0

1
: 0 1
r,=r-D"= 0

o o= O
o = O

0 :
1 0 - 0

a2y
The matrix equation, Eq. {16), can be written in a block-
partitioned form as follows. We can write the k"
subvector of z, i.e. z,, as,

0

k
z), = Elrk ~h{x) ~r$ Vo (22)
m=

where y,, =T, -¥. It is important to note that the block

filter matrix 1, -h(x) rs need never be formed, as the
following relations hold:

. r [xET) iftk=m
r, h(x) r; = x((k—m-DJ+2:(k-m+1)J) ifk>m
(23)

where x(p:q) indicates the subvector of x consisting of
elements p through q.

8. Performance Comparison - Standard
and Block-by-Block Convolution

A fraditional (single-block) convolution, for sufficiently
long records of length n, is most efficiently computed
using the FFT, yielding a total number of floating point
operations (FLOPS) proportional to n*log,(n). The
computing language MATLAB provides a built-in
function for convolution which uses FIR filters for the
calculation, and yields total FLOPS proportional to n’. As
we are here interested in comparing the performance of the
BBB algorithm with the traditional single-block
convolution, the use of the MATLAB function will
provide much convenience with no loss in the ability to
compare algorithms. The number of FLOPS for the BBB
algorithm is given by:

FLOPS = K(zJ2 - .T) + %(K2 - K)(412 — 4T+ 1)

which vields an optimum number of blocks greater than
the total pumber of samples N, and is a non-integer
number of blocks. What is useful about this sclution is
that is indicates that the FLOPS required by a BBB
convolution decreases monotonically with increasing
block number. This is shown in Figure 1, which
compares the FLOPS required by a standard convolution
to the BBB convolution for varying total number of
samples, N, and for different numbers of blocks.

751

1 T T T T T
Conv. :

104 1 BIOCk N
4 Blocks :

s} 8 Blocks |....... P
16 Blocks :

64 32Blocks| o n

Al e T i

a2l P N

1024 2048 4096 2192 16384

Figure 1. FLOPS (x10°%) vs record length

However, if we compare actual compute time (using
MATLAB), we see that there is a point at which
increasing the number of blocks results in increased
compule times, as the computing “overhead" associated
with increased block number cutweighs the decrease In
computing time due to the reduction in FLOPS required.
This is shown in Figure 2, and 8 blocks is the minimum.

25

ol d t -

Conv.

1 Block
4 Blocks
8 Blocks
16 Blocks
32 Blocks

200, .

4] I = = I : cla :
1024 2048 4096 8192 16384
Figure 2. Compute time (sec) vs. record length

9. Recursive
Solution

Block-by-Block Iteration

Before discussing the recursive block-by-block iteration,
we outline the basic iteration algorithm for the solution of
Eq. (5). In the algorithm which follows, it is implied that
the vector x is partitioned consistently with Eq. (2), with
the alteration that the partition associated with the 7"
coordinates has been deleted. Only those coordinates x*
directly involved in the synthesis, i.e. those coordinates

subjected to forces of synthesis, are included in the

7311

iteration. The “i” set coordinate responses are calculated by
a direct convolution of the associated IRF with the
(converged) forces of synthesis, which result from the
iteration. The coordinate set involved in the synthesis is
the defined by the set union s = mucwbwhere s denotes
the synthesis set. The IRF matrix is therefore more fully
denoted as H(t). For clarity of presentation, the time
dependence and asterisk * indicating a synthesized
quantity will be dropped.
Basic Iteration :

Initialize: j¢=1) <1
While xI*! x

K e=x, -H, * f(xg,ig,y)

je=i+1
Converged forces of synthesis: f, < f(xi, xi, y)
Solution for i-set responses: x; = x; -H, *f
We will now expand this algorithm to incorporate the
recursive, block-by-block approach. The algorithm is
recursive in that the iteration performed for block “k”
makes use of the already converged forces of synthesis f*
for prior-time blocks k-1, k-2, ete, where for the sake of
clarity, the *s” subscript has been dropped. As will be
described, only those forces of synthesis at the current
block are included in the iteration, as prior block synthesis
forces are converged. We will denote the responses and

forces for the k™ block, and at the j* iteration, as x| and

f. The IRF filter matrix for the k" block is denoted as
H,, and is given by
H, =r Hrl (24)
There are K blocks, k = 1,2,...,K, and each block is of
length J (samples). We will make use of Eq. (24) to
symbolically denote the IRF matrix blocks, while keeping
in mind that in practice these matrices need never be
formed. What is formed in practice are the partitioned
vectors from which these IRF blocks are constructed, as
given by Eq.(23). The iteration for the k™ block is given
by,
j*1 _ k! j
Xi =X - El(Hkm 'fm)_Hkk g
Recursive Block-by-Block Algorithm
Initialize: j¢=1, £) <=1 (over all blocks)
Dok=1:K

; J+l i
While xi #xj

(25)

j+l k-l

== X (Hyg fp)-Hy f]
ff(i+l - f(x{:l, X']i:l; y)
je=)+l
End While _
Converged forces of synthesis: f, < f]

End Do

N . * *
Solution for i-set responses: x; =x; ~H;, *f,

is

752

10. Performance of Block Algorithm

The algorithm will be applied to the nonlinear base
isolation problem shown in Figure 3. In this problem, a
deck model of approximately 51,500 DOF supports a
piece of equipment (lumped mass). The ground motion
time history is shown in Figure 4.

0.35 [BascMoten]. . ST e,]
{in) : :
0.3 S e e e et e e : : [
025 L.l e PUTU 3
o2 d. o e, S 3
o015 1 --%..... ey et s]
LA I VS W feeanreiaas feiaee e d
005 §.....\... Ceennennn e, 4
0 ; ;
Ul Uis
Time (sec)

Figure 4. Ground motion time history

The isolators are comprised of a cubically hardening
spring, ie. f(z)=kz+k,yz’, where z is the relative
displacement x — v, at the four comers of the deck. The
block-by-block synthesis solution will be compared to a
direct integration using a widely used commercial finite
element program. The FE solution will be referred to as
the “Direct FE” solution. We will compare the time
histories for one of the comer points, and for the
supported equipment, as calculated using the synthesis
and Direct FE.

An eigensolution of the free-free {linear) deck mode] was
performed to generate a modes database from which IRF
are calculated for the synthesis. All modes under 12,000
Hz were calculated (99 modes). This modes solution took
7 minutes 47 seconds. These modes are not used by the
Direct FE solution,

The actual nonlinear direct transient analysis of the
isolated deck model (cubically hardening springs) was
performed in 40 minutes 46 seconds.

As can be seen from Figures 5 and 6, the block by block
synthesis provides a very accurate solution, taking the
Direct FE as the reference.

We now tabulate the solution times for the block-by-
block algorithm, for different numbers of blocks. This is
shown in Table 1. Note that the time to load the modes
database is not included in the synthesis times tabulated.

0.8

Synth
Direct FE [

os)l

-0.6 1

kY 3 1. 2 3 3 1
Q 0.008 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045

Figure 5. Corner vertical displacement vs time
Displacement {(in} Time (sec)

Synth

Direct FE []

o8

-0.6

U.;ﬂd 0.045
Figure 6. Mass vertical displacement vs time
Displacement (in) Time (sec)

2 N 3 P 1
TOT 0015 002 0025 008 0066

2
0 0.005

Table 1. Synthesis Times Vs. Number of Blocks

Blocks 1 2 4 8 16
Modes 7:47 747 7:47 7:47 7:47
Min:Sec
Synth. 6.71 5.87 2.21 2.03 3.04
{seconds)
Total
Min:Sec 7.54 7:53 § 7:49 | 7:49 | 7:50

Total Time for Direct FE: 40 minutes 46 seconds

Clearly, the Block-by-Block algorithm is extremely fast
compared with Direct FE.

Conclusions
A new recursive block-by-block convolution algorithm
has been deveioped for the solution of the governing
nonlinear Volterra integral equation for locally nonlinear
structural synthesis. The new algorithm is extremely fast,

753

as compared with direct integration, and is also must faster
than the previously reported algorithm [2]. The algorithm
lends itself for use in nonlinear structural dynamic
optimization.

Acknowledgements

This work is dedicated to Joseph Robert Gordis, in honor
of his second year. The authors gratefully acknowledge the
support of the National Science Foundation, #3713481.

References

[11 Gordis, J. H. “Integral Equation Formulation for
Transient Structural Synthesis” AIAA Journal, Vol. 33,
No. 2, pp. 320-324. 1995.

[2] Gordis, J. H. and Radwick, J. L. “Efficient Transient
Analysis for Large Locally Nonlinear Structures”, Shock
and Vibration, Vol. 6, No. 1, 1999.

[3] Gordis, 1. H. “Structural Synthesis in the Frequency
Domain: A General Formulation” Shock and Vibration,
Volume 1, Issue 5, pp. 461-471, 1994,

[4] Gordis, I. H. and Flannelly, W. G. Analysis of Stress
due to Fastener Tolerance in Assembled Components”
AIAA Journal, Vol. 32, No. 12, pp. 2440-2445, 1994,

[5] Gordis, J. H. Bielawa, R. L. Flannelly, W. G. A
General Theory for Frequency Domain Structural
Synthesis Journal of Sound and Vibration 150(1), pp.
139-158, 1991.

[6] Inaudi, J. A. and De La Llera, J. C. Dynamic
Analysis of Nonlinear Structures Using State-Space
Formulation and Partitioned Integration Schemes,
University of California-Berkeley Earthquake Engineering
Research Center Report No. UCB/EERC-92/18, 1992.

[7] Gordis, J. H. and Neta, B. Efficient Nonlinear
Transient Dynamic Analysis for Structural Optimization
Using an Exact Integral Equation Formulation, Naval
Postgraduate School Technical Report. 1999,

(8] Blakely, K. Basic Dynamic Analvsis User's Guide.
Macneal-Schwendler Corp. 1993,

[9] Linz, P. 1985. Analytical and Numerical Methods for
Volterra Equations. Society for Industrial and Applied
Mathematics.

[0 A. J. Jerni, Introduction to Integral Equations
with Applications, Marcel Dekker, Inc., New York, 1985

[11] Strang, G. and Nguyen, T., Wavelets and Filter
Banks Wellesley-Cambridge Press. 1996,

	MAIN MENU
	FRONT MATTER
	TABLE OF CONTENTS
	AUTHOR INDEX
	Search CD-ROM
	Search Results
	Print
	View Full Page
	Zoom In
	Zoom Out
	Go To Previous Document
	CD-ROM Help

