Intern. J. Computer Math.. 1986. Vol. 20. pp. 67-75
0020-7160.86.2001-0067 $18.50.0

1986 Gordon and Breach. Science Publishers. Ine.
Prated 1o Great Brtain

Families of Backward
Differentiation Methods Based
on Trigonometric Polynomials

BENY NETA®

Naval Postgraduate School, NRC Research Associate, Department of
Meteorology, Monterey, California 93943, U.S.A.

(Received July, 1985; in final form September, 1985)

Backward differentiation methods based on trigonometric polynomials for the initial
value problems whose solutions are known to be periodic are constructed. It is
assumed that the frequency w can be estimated in advance. The resulting methods
depend on a parameter v=hw, where h is the step size, and reduce to classical
backward methods if v—0. Neta and Ford [6] constructed Nystrém and gqneralized
Milne-Simpson type methods. Those methods require the Jacobian matrix’ to have

purely imaginary eigenvalues. The methods we construct here will not suffer of this
deficiency.
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1. INTRODUCTION

Gautschi [3] constructed methods of Adams and Stdrmer type for
problems with oscillatory solutions whose frequency is known.
However, these methods are sensitive to changes in the frequency w.
Neta and Ford [6] developed Nystrom and generalized Milne-
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68 B. NETA

Simpson type methods. These methods showed less sensitivity to
perturbation in w but require the eigenvalues of the Jacobian to be
purely imaginary. Many authors developed various methods for this
problem (see Stiefel and Bettis [7], Bettis [1], Lyche [5], van der
Houwen and Sommeijer [4]).

In this paper we consider the initial value problem

V(xX)=f(x,¥(x)), Mxo)=Jo, (1)

whose solution is known to oscillate with a known frequency w. We
construct backward differentiation formulae. These methods will not
suffer from the restriction in [6].

Let us recall some definitions and notations, see e.g. [3]. Let
C*[a,b] (s=0) denote the linear space of functions y(x) having s
continuous derivatives in the finite closed interval [a,b]. We assume
that the space is normed by

= % max |y“(x)] (2)
i=0 xefa.b)

DerFiNiTiION A linear functional % in C°[a,b] is said to be of
algebraic order p, if

£x'=0, r=0,1,...,p, LxPT'£0. (3)

DerFmNiTioN  The method
k
.Zo @Ynsj=hBV) sy v=wh, a=+1, 4
i=
is said to be of trigonometric order q relative to the frequency w if the
associated linear difference operator
k
Lyix)= ) ap(x+jh)—hBy(v)y'(x +kh), (5)
j=0
satisfies

FLl1=0 and FLcosrwx=ZLsinrwx=0. r=12,....q. (6)

Zcos{(g+1)wx) and ¥ sin((g+ 1)wx) not both identically zero.
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2. CONSTRUCTION OF METHODS

The methods constructed are of the form

k-1
Yot t ‘Zo AjVn+j= hB(V) v s (7)
j=

The operator % is then defined by

k=1
ZLy(x)=y(x+kh)+ .Zo 2y(x + jh) —hB(v)y'(x + kh). (8)
1= .

2.1 k=2. The parameters %, 2, and f, can be calculated from
% +2%,+1=0
ot +a, cosv+cos2v+ f,vsin 2v=0
o, sinv+sin 2v—f,vcos 2v=0, 9
The solution obtained via MACSYMA (Project MAC's SYmbolic
MAnipulation system written in LISP and used for performing

symbolic as well as numerical mathematical manipulation [2])-.
The solution is given in terms of x=cosv,

%o 1+12x’
%:_711:2.1’
ﬂz=;(—221i—1vl—), (10)
and the method
H;myn—zf%ymﬂwﬁh%fm.

This is a method of trigonometric order 1.
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2.2 k=3, In this case we have a one-parameter family of methods
of trigonometric order 1. The system

a0+11 +a2+ l =0,
2o+, COS v+, COS 2v + cos 3v + fyvsin 3v=0,
, sin v+, sin 2v +sin 3v— Byvcos 3v=0, (11

is solved by MACYSMA, using z, as a parameter,

1 ax(l-i—.\')
T 1+2x  1+2x°

5 1+x tad2 1
=2 2x— s
%2 1+2x  ° 1+ 2x

2sinv
ﬂﬁm(doﬂ)- (12)

ay

The parameter 2, can be chosen so as to increase the algebraic
order. With the help of MACSYMA, one can show that the
truncation error is

|

11 2N L., (22 4 Jht
— (—9— Ao +§)W'h3yn — (-l—g Ag +§)}13y,‘ —(1 +410)W’ -2— ¥Vn +O(}15).
. -2 . .
Choosing %="7 will yield a method of algebraic order 3. The

truncation error is then,

3 e 5
—-ﬁw h*yr +0(h°), (13)
anq the method.
' 11+8cosv(1+cosv) 712+9cosv—4coslv ]
“Fa 1+2cosv A 1+2cosv Yns2
18sinv
11y, =} L s (14)

Iv(l +2cosv)
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2.3 k=4. The five parameters are computed from

10+11+12+13+1=0,

Me

a;cos (vjr)+cos(drv)+Brvsin(4rv)=0, r=1,2,
0

i
3

> a;sin(vjr) +sin (4rv) — B rvcos (4rv)=0, r=91,2 (15)
i=1

ERad ]

by MACSYMA. Let

D=16cos®v+12cos’v—2cosv—1, (16)
then
ag=(2cosv+1)/D, (17
a, =8 cos? v(—cosv—1)/D, (18)
a, =4cos?v(2cosv+1)%/D, (19)
a3 = —8cos? v(cos v+ 1)(2cos v+ 1)/D, (20)

— cos v(cos?v—1)(2cos2v+1)
Dvsiny )

134=

(20

In the next section we describe some of the numerical experiments

performed and compare our results with those obtained by previ-
ously published methods.

3. NUMERICAL EXPERIMENTS

In our numerical experiments we solved the following differential
equation (see [6]):

y'+Ay"+y +iy=0, 05t=12n, (22)
whose exact solution is

Wx)=C,cosx+C,sinx+Cye ** (23)
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In order to get a small perturbation to the periodic solution we
choose the initial values

y0)=y(0)=1+10"1° y"(0)=—1+1071°, (24)
Therefore the constants in (23) are
c;=1+10"10-2-10719/(1+42),
c,=14+107142-1071%5/(1 4 1?),
c3=2-10710/1+42). (25)
In Table 1 we compare results obtained by Adams method,
Nystrom method, and generalized Milne~-Simpson with a backward

differentiation method all of trigonometric order 1 for various values
of 7 and h=nr/60, w=1.

TABLE ]
Adams

Generalized Backward

’ Explicit Implicit Nystrém  Milne-Simpson dif{crenliation
0 0.17-9 0.17-9 0.17-9 0.17-9 —0.15-14
0.1 0.18-9 0.19-9 0.18-9 0.44-11
02 0.19-9 0.20-9 0.20-9 0.10-12
05  0.20-9 0.36-3 0.14-8 —0.15-14
1.0 0.20-9 0.20-9 unstable unstable —0.15-14
50 0.18-9 —0.15-14
100  0.17-9 —0.15-14
175 0.17-9 —0.15-14
20.0 unstable 0.18-9 —0.15-14

uncoanditionally

stable

The results in Table I are taken from [6] except the last column
which was obtained with quadruple precision on IBM 3033. This
shows that the method is unconditionally stable.

In Table II we compare our backward differentiation method with
Adams implicit and generalized Milne-Simpson all of trigonometric
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order 1. The solution of the following svstem is approximated

Y()=F(t,Y), Y(0)=(0,1,1,0)7 (26)
where
Y=(y1,y2 ¥ ¥a)"
F=(y, —)’1/’3, Yas —,Vs/"s), (27
and
rr=yi+yi
The exact solution is
Y,=(sint,cost,cost, —sint)7. (128)

Clearly, w=1. We have computed the solution at t=12n using
various values of w. In Table II we have compared the L, norm of
the error at t=12r using h=n/60.

TABLE II

w Adams G.M-§ B. D.

0.90 0.231-2 0.230-5 0.323-1
0.95 0.119-2 0.124-5 0.166-1
1.00 0.189-12 0.262-10  0.202-7
1.05 0.125-2 0.144-5 0.174-1
1.10 0.256-2 0.310-5 0.356-1

Note that the method performs equally well if w is over or
underestimated. Note also that the results are not as good as those
of the Generalized Milne-Simpson method. This phenomenon was
pointed out by van der Houwen and Sommeijer [4].

In our last experiment we solve the “almost periodic” problem
studied by Stiefel and Bettis [7].

2" 4+-=0.001 ei‘, i=\/l—[, 0Lt £40m, (29)
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z(0)=1, (30)
='(0)=0.9995i, (3D

whose theoretical solution is
=(r)=cos t +0.0005¢ sin t +i(sint —0.0005t cos t). (32)
The solution represents motion on a perturbation of a circular orbit

in the complex plane: the point z(t) spirals slowly outwards. We
write the equations in the form

Yi=J)a

yy=—y, +0.001 cost,

(33)
¥3=Ya
Vy=y3+0.001sin¢,
(0 =1, y2(0)=y3(0)=0, v4(0)= 0.9995. (34)
The exact solution of this éystem is \
y,(r)=cos ¢ +0.0005¢ sin t, B
y,(1)= —0.9995sin r +0.0005s cos ¢,
(35)

v4(1) =sin1—0.0005¢ cos 1,

y4(1) =0.9995 cos ¢ +0.0005¢ sint.

The system was solved numerically using backward differentiation
method of trigonometric order 2. The results for h=mr/60 are
presented in Table III for various values of w.

Note that in this almost periodic problem the results are about the
same for all w used. The accuracy in y, and y, is better than that in
the other components.

It is suggested that backward differentiation formulae be used only
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TABLE III

" G. M-S Adam [Imp. B.D.

0.90 0.134-3 0.842-3 0.463-2
0.95 0.129-3 0.841-3 0.464-2
1.00 0.115-3 0.839-3 0.464-2
.05 0.133-3 0.837-3 0.466-2
1.10 0.120-3 0.835-3 0.468-2

in case the Jacobian has purely imaginary eigenvalues. Otherwise,
Nystrom or generalized Milne-Simpson method may be used.
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