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ABSTRACT

In this article, we discuss finite element methods based on
bilinear basis functions on rectangles and linear functions on
various triangular elements. We compare the results with
second and fourth order finite differences and the so-called A,
B and C schemes. The model used for this comparative study is
the quasi-geostrophic approximation in the shallow water equa-
tions on a B-plane.

It is shown that the finite element methods (on isosceles
triangles or rectangle) produce better estimates to the fre-
quency than the finite differences,

1. INTRODUCTION

Advective processes are dominant in atmospheric and oceanic
circulation Systems, while diffusive effects are important only
in boundary layer regions. Any numerical model for these sys—
tems should treat advective effects accurately. In [8] we ana-
lyzed various finite element formulations of the linearized
advection equation in two dimensions, which can be written in
the form

g% + V cos § §£-+ V sin 0 g% =
where V is the mean flow speed and & is the wind direction
relative to the x-axis. The quantity F(x,y,t) should be inter-
preted as vorticity or temperature, for example. The schemes
considered in [8] employ leapfrog time differencing and finite
element spatial approximations. Linear elements on the follow-
ing triangles are treated: isosceles (Figure 1), biased
(Figure 2), criss-crossed (Figure 3), and unbiased (Figure 4),
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Bilinear basis functions on rectangles (Figure 5) are also
examined. The computational stability conditions are derived
for each method and the computational phase speed is compared
with second- and fourth-order finite differences and the exact
value.

The various finite element and finite difference schemes
were compared for the case where the mean flow was directed
along the x axis (0 = 0). The finite element formulation which
is based on isosceles triangles was clearly superior to the
formulations based on right triangles. The phase speed for the
rectangular finite element scheme was found to be independent
of the y-wavenumber. The isosceles triangle scheme gave better
phase speeds than the rectangular scheme for low y-wavenumbers,
but the situation is reversed for the higher ones. The finite
difference schemes gave poorer results. One can conclude that
there is little difference between the finite element formula-
tion with isosceles triangles and rectangles. However, in the
case of variable grids, the triangles will be changed so that
they are no longer isosceles. Also using rectangles, the
resulting equations are easier to solve (Staniforth [10]).

2. LINEARIZED SHALLOW WATER MODEL

The linear equations of motion of an inviscid stratified
flow can be separated into vertical modes, with the horizontal
flow governed by the shallow water equations. See Gill and
Clarke [3].

A similar comparative study for the shallow water fluid
model with topography is given in [9]). The system of equations
consists of three equations with the three forecast variables
¢, u and v. The equations are
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where ¢ = gh is the geopotential height (h = height of free
surface), ¢g is the bottom topography (assumed to be indepen-
dent of time), u and v are the components of the wind speed and
f is the Coriolis parameter.

Cullen and Hall [1] showed that the accuracy of the Galer-
kin finite element solution was better for the vorticity-
divergence formulation of the shallow-water equations than for
an increase in resolution with the primitive equations (2).
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Williams and Schoenstadt [13] noted that staggered variable
formulations of the primitive equations and the unstaggered
vorticity-divergence formulation gave the best treatment of
geostrophic adjustment for small-scale features. The analysis
in [9] uses the linearized vorticity divergence formulation
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with the geostrophic relations

fu = - el
oy
(4)
fv = %Q
X

where ¢ = QX-— EE-is the relative vorticity, D = EE-+ v is the
9x 9y 0x = dy

divergence and f is constant.

The finite elements again perform better than the finite
differences with the rectangles than with the isosceles
triangles.

3. FREE PLANETARY WAVES

The atmosphere is almost always in a state of near-equili-
brium. When this state is disturbed the admosphere adjusts
back to near-equilibrium through the action of inertia-gravity
waves and planetary waves. The properties of inertia-gravity
waves were discussed by Lord Kelvin (Thomson [11]). The slower
planetary waves, which are caused by the dependence of the
Coriolis parameter f on latitude, are discussed by Longuet-
Higgins [4-6].

Mesinger and Arakawa [7 ] have discussed various finite
difference schemes used in oceanic and atmospheric models.
These schemes differ in the location of the variables on the
grid. Here we discuss A-, B- and C-grids (Figures 6-8). The
B-grid is generally used in coarse-resolution models whereas
the C-grid is used in fine-resolution models. 1In the A-grid
the variables are unstaggered. The staggering of variables on
the B- and C-grid is shown in Figures 7 and 8, respectively.

The basic equations of motion describing the horizontal
structure of a normal mode are (see Wajsowicz [12] and Gill
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where
f = f0 + By. (6)

To obtain the frequency ¢ we assume each of the forecast
varibles to be of the form

ei(ux+vy—ct) N

It was shown by Williams and Neta [14] that the frequency of
the Rossby wave is given by

S +f7a
where o, 6, § depgnd on the numerical scheme used [14].

In the next 8 figures, we contoured the frequency 0 as a
function of pd/m and vd/T for various finite elements and
finite difference schemes. It can be seen that the isosceles
triangles give results closer to the analytic one than any
other method. The rectangular finite elements compete with C
grid for second place. For other grid resultions one has simi-
lar results (see Williams and Neta [14)).

A comparative study of the numerical zonal and meridional
group velocities was also performed in [14]. These group
velocities are defined by

- 9o
Gy = 3y >
z oy *

The authors conclude that for coarser grids the finite elements
are better than the finite differences. For finer resolutions
the group velocities are well approximated by all but the A
and B schemes.
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