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SUMMARY

A new �nite element (FE) scheme is proposed for the solution of time-dependent semi-in�nite wave-
guide problems, in dispersive or non-dispersive media. The semi-in�nite domain is truncated via an
arti�cial boundary B, and a high-order non-re�ecting boundary condition (NRBC), based on the Hig-
don non-re�ecting operators, is developed and applied on B. The new NRBC does not involve any
high derivatives beyond second order, but its order of accuracy is as high as one desires. It involves
some parameters which are chosen automatically as a pre-process. A C 0 semi-discrete FE formulation
incorporating this NRBC is constructed for the problem in the �nite domain bounded by B. Augmented
and split versions of this FE formulation are proposed. The semi-discrete system of equations is solved
by the Newmark time-integration scheme. Numerical examples concerning dispersive waves in a semi-
in�nite wave guide are used to demonstrate the performance of the new method. Copyright ? 2003
John Wiley & Sons, Ltd.

KEY WORDS: waves; high-order; arti�cial boundary; non-re�ecting boundary condition; �nite elements;
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1. INTRODUCTION

The numerical solution of exterior wave problems has been an active area of research in the
last three decades [1], in the context of various �elds of application like acoustics, electromag-
netics, meteorology, solid geophysics and aerodynamics. Several types of methods have been
developed for such problems. The 1970s and early 1980s produced some low-order local non-
re�ecting boundary conditions (NRBCs) that became well-known, e.g. the Engquist–Majda
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Figure 1. Set-up for the NRBC method: (a) an exterior scattering problem;
(b) a semi-in�nite wave-guide problem.

NRBCs [2] and the Bayliss–Turkel NRBCs [3]. See also the review paper by Givoli [4]. In
addition, the in�nite element method was invented [5], and boundary element methods for
the solution of in�nite-domain problems have become popular; see the historical account by
Rizzo [6]. The period between the late 1980s and mid 1990s has been characterized by the
emergence of exact nonlocal NRBCs like those based on the Dirichlet-to-Neumann (DtN) map
[7, 8], by the invention of the perfectly matched layer (PML) [9], and by the development of
new in�nite elements especially designed for wave problems [10, 11]. See, for example, the
special collections of papers on the subject [12–14].
The method of NRBCs can be described as follows. First, the in�nite domain is truncated

via an arti�cial boundary B, thus dividing the original domain into a �nite computational
domain � and a residual in�nite domain D. Then, a special boundary condition is imposed
on B, in order to complete the statement of the problem in � (i.e. make the solution in �
unique) and, most importantly, to ensure that no (or little) spurious wave re�ection occurs
from B. This boundary condition is called a NRBC, although a few other names are often
used too [4]. Finally, the problem is solved numerically in �, say by the �nite element (FE)
method. The set-up is illustrated in Figure 1. Figure 1(a) pertains to an exterior problem
outside of a scatterer or an obstacle in full space. The arti�cial boundary B has a rectangular
shape in the �gure, although sometimes a smooth shape (like a circle in two dimensions or
a sphere in three dimensions) is preferred. Figure 1(b) describes a semi-in�nite wave-guide
problem. In the example shown, B is a cross-section of the wave-guide which constitutes the
east side of �. In the present paper we shall limit ourselves to the second type of problems,
and in particular to two-dimensional semi-in�nite wave-guides.
Naturally, the quality of the numerical solution strongly depends on the properties of the

NRBC employed. In the last 25 years or so, much research has been done to develop NRBCs
that after discretization lead to a scheme which is stable, accurate, e�cient and easy to
implement. See References [15–17] for recent reviews on the subject. Of course, it is di�cult
to �nd a single NRBC which is ideal in all respects and all cases; this is why the quest for
better NRBCs and their associated discretization schemes continues.
Recently, high-order local NRBCs have been introduced. Sequences of increasing-order

NRBCs have been available for a long time (e.g. the Bayliss–Turkel conditions [3] consti-
tute such a sequence), but they had been regarded as impractical beyond 2nd or 3rd order
from the implementation point of view. Only since the mid 1990s have practical high-order
NRBCs have been devised. The present paper is concerned with such a high-order NRBC
scheme.
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The �rst high-order local NRBC has been proposed by Collino [18], for two-dimensional
time-dependent waves in rectangular domains. Its construction requires the solution of the one-
dimensional wave equation on B. Grote and Keller [19] developed a high-order converging
NRBC for the three-dimensional time-dependent wave equation, based on spherical harmonic
transformations. Sofronov [20] has independently published a similar scheme in the Russian
literature. Hagstrom and Hariharan [21] constructed high-order NRBCs for the two- and three-
dimensional time-dependent wave equations based on the analytic series representation for the
outgoing solutions of these equations. For time-dependent waves in a two-dimensional wave
guide, Guddati and Tassoulas [22] devised a high-order NRBC by using rational approxi-
mations and recursive continued fractions. Givoli [23] has shown how to derive high-order
NRBCs for a general class of wave problems, leading to a symmetric FE formulation. In
Reference [24], this methodology was applied to the particular case of time-harmonic waves,
using optimally localized DtN NRBCs.
In the context of arti�cial boundary treatment, wave problems can roughly be divided into

four categories. These are, in order of di�culty:

(1) Linear time-harmonic wave problems.
(2) Linear time-dependent wave problems in non-dispersive homogeneous media.
(3) Linear time-dependent wave problems in dispersive and=or strati�ed media.
(4) Nonlinear time-dependent wave problems.

Linear time-harmonic waves have been treated extensively by NRBCs and absorbing
layers, including exact NRBCs of the DtN type [16], various PML formulations (see, e.g.
References [25, 26]), and converging high-order NRBCs (see, e.g. Reference [24]). Time-
dependent waves are considerably more di�cult to handle from the arti�cial-boundary per-
spective. However, some exact and high-order schemes have been devised in this case as well.
These include the schemes proposed in References [18–23] mentioned above, as well as a
scheme based on the Kirchho� formula for three-dimensional waves [27, 28], an iterative con-
verging local NRBC [29], semi-discrete DtN [30], time-dependent DtN [31], transform-based
methods [32–34], and some variations of the above [35–37].
The presence of wave dispersion and=or medium strati�cation makes the time-dependent

problem still more di�cult as far as NRBC treatment is concerned. None of the high-order and
exact NRBCs mentioned above has been designed to deal with these e�ects. Very recently,
Navon et al. [38] developed a PML scheme for the dispersive shallow water equations.
Nonlinear waves (with the nonlinearity extending to in�nity) are, of course, the most di�cult
to handle. Some highly-accurate NRBCs have been proposed for speci�c classes of nonlinear
wave problems (see references in the review papers [15, 17, 39]).
In this paper, a new family of high-order local NRBCs is developed and incorporated in a

FE scheme for the dispersive time-dependent wave equation. Wave dispersion appears in vari-
ous applications. One important example is that of rotating systems, like the acoustic medium
around helicopter blades, or meteorological models which take into account the earth rotation
[40–42]. Other examples include the vibration of structures with rotational rigidity such as
beams, plates and shells, the vibration of strings and membranes on an elastic foundation,
acoustic wave propagation in a bubbly medium, and some nonlinear wave problems after
linearization [40].
The starting point for the development of the new family of NRBCs is the NRBC devised by

Higdon [43], which was designed for low-order �nite di�erence schemes. In Reference [44],
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Givoli and Neta extended this formulation in a direct manner to high-order �nite di�erence
discretizations. However, the Higdon construction involves spatial and temporal derivatives
of increasing orders, and is not compatible with the FE method. In contrast, the NRBCs
proposed here, despite being high-order accurate, do not involve any high derivatives beyond
second order. The elimination of all high-order derivatives is enabled through the introduction
of special auxiliary variables on B. This allows the easy use of the NRBC up to any order
desired. The NRBCs involve some parameters which are chosen automatically as a pre-process.
A similar construction has been devised in Reference [45] for �nite di�erence schemes. In the
present paper, the new NRBCs are incorporated in a standard C 0 FE formulation, which turns
out to be stable even with equal-order interpolation for all the variables. The computational
e�ort associated with the high-order boundary scheme will be shown to grow only linearly
with the order.
Following is the outline of the rest of this paper. In Section 2 the problem under investiga-

tion is stated. In Section 3, the new family of high-order NRBCs is developed. In Section 4,
a FE semi-discrete formulation is constructed which incorporates a NRBC of this family with
any desired order. Two versions of this formulation are presented: a non-symmetric augmented
version and a symmetric split version. In Section 5 the Newmark time-integration scheme is
applied to the semi-discrete system of equations obtained in the split formulation. In Section 6
some computational issues are discussed. The performance of the method is demonstrated in
Section 7 via numerical examples concerning dispersive waves in a semi-in�nite wave guide.
Some remarks conclude the paper in Section 8.

2. STATEMENT OF THE PROBLEM

As a model serving for introducing the ideas developed here, wave propagation in a two-
dimensional channel or wave guide is considered; see Figure 1(b). This allows one to con-
centrate on a single straight arti�cial boundary (the east boundary B). Extension of the same
ideas to other con�gurations, such as three dimensional wave-guide problems and exterior
scattering problems of the type illustrated in Figure 1(a) with a box-like arti�cial boundary,
is possible. In the latter case, however, the non-trivial issue of corners must be dealt with,
which is outside the scope of this paper.
The wave guide is assumed to consist of two parts: a �nite irregular part � and a semi-

in�nite ‘uniform tail’ D. In the irregular region � the geometry, governing equations, and the
given initial and boundary conditions are completely general. They are only limited by the
capabilities of the �nite element code to be used. Thus, the domain � may have a general
shape (see the ‘bump’ shown in Figure 1(b)), may include submerged obstacles, and may
be associated with inhomogeneity, anisotropy and even non-linearity. On the other hand, the
domain D is assumed to be bounded by two straight parallel rays, and to be associated with
none of the irregularities mentioned above. A Cartesian co-ordinate system (x; y) is introduced
such that the wave-guide in D is parallel to the x direction; see Figure 1(b). The width of
the wave-guide in D is denoted by b.
To �x ideas, some speci�c equations and boundary conditions are chosen here. In �, the

linear inhomogeneous dispersive (Klein–Gordon) equation is assumed to hold:

�u−∇·C20∇u+ f2u= S in � (1)
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Here and elsewhere a superposed dot indicates di�erentiation with respect to time. In (1), u
is the unknown wave �eld, C0 is the given medium wave speed, f is the given dispersion
parameter, and S is a given wave source function. The C0 and f are functions of location,
and the wave source S is a function of location and time. Equation (1) describes, for example,
the lateral vibration of a membrane strip on an elastic foundation, or the acoustic pressure
in a dispersive medium (say, a linearized bubbly medium). Also, it can be shown that the
linearized (around zero mean �ow) shallow water equations with a �at bottom reduce to (1),
where u is the water elevation above the reference level [41]. In the geophysical context, f is
called the Coriolis parameter and is related to the angular velocity of the earth. Of course,
the method proposed in this paper is also applicable to the case f=0, where (1) becomes
the standard scalar wave equation.
In D, the governing equation is a simpli�ed version of (1). It is assumed that in D there are

no wave sources (i.e. S=0) and that the coe�cients C0 and f are constants. Thus, Equation
(1) becomes

�u− C20∇2u+ f2u=0 in D (2)

On the south and north boundaries �S and �N, the Neumann condition

@u
@�
=0 on �S and �N (3)

is imposed, where @=@� is the normal derivative. In acoustics, (3) corresponds to a ‘hard wall’
condition. On the west boundary �W; u is prescribed, i.e.,

u= uW on �W (4)

where uW is a given function on �W (incoming wave). It is assumed that no physical bound-
aries additional to the above (say, of a submerged obstacle) are present. At x→∞ the solution
is known to be bounded and not to include any incoming waves.
To complete the statement of the problem, initial conditions must be given in the entire

domain �∪D at time t=0. In � the general initial conditions

u= u0; u̇= v0 in � at t=0 (5)

are given. In D it is assumed that the medium is initially at rest, namely,

u=0; u̇=0 in D at t=0 (6)

The goal is to solve the problem in the �nite domain � via FEs. To this end, the arti�cial
boundary B is now introduced at x= xB to divide between � and D; see Figure 1(b). It will
be assumed that all the equations and conditions stated above which hold in D hold also on
B. To obtain a well-posed problem in � one must impose a boundary condition on B. This
has to be a NRBC so as to prevent spurious re�ection of waves. The construction of this
NRBC is discussed in the next section.
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3. HIGH-ORDER NON-REFLECTING BOUNDARY CONDITIONS

3.1. The Higdon NRBC

The starting point for developing the high-order NRBCs on B is the sequence of NRBCs
proposed by Higdon [43]. The Higdon NRBC of order J is

HJ :

[
J∏

j=1

(
@
@t
+ Cj

@
@x

)]
u=0 on B (7)

Here, the Cj are constant parameters which have to be chosen and which signify phase
speeds in the x direction. Note that the �rst-order condition H1 is a Sommerfeld-like boundary
condition.
The Higdon conditions possess a few favorable properties. First, they are very general,

namely they apply to a variety of wave problems, in one, two and three dimensions and in
various con�gurations. Moreover, they can be used, without any di�culty, for wave problems
in dispersive and strati�ed media. Most other available NRBCs are either designed for non-
dispersive homogeneous media (as in acoustics and electromagnetics) or are inherently of low
order (as in meteorology and oceanography).
Second, the boundary condition (7) is exact for all plane waves that propagate with an

x-direction phase speed equal to either of C1; : : : ; CJ . To see this, consider a wave which
satis�es Equation (2) in D and the boundary condition (3) on �S and �N . Such a wave has
the form

u=A cos
(n�y

b

)
cos k(x − Cxt +  ); n=0; 1; 2; : : : (8)

where

Cx=
!
k

(9)

In (8) and (9), A is the wave amplitude,  is its phase, k is the x-component wave number, !
is the wave frequency and Cx is the x-direction phase velocity. It is common to refer to n as
the ‘mode number’. The wave number k, the frequency ! and the mode number n depend on
each other through the dispersion relation. In D, where C0 and f are constant, the dispersion
relation is

!2n=C20

(
k2 +

n2�2

b2

)
+ f2; n=0; 1; 2; : : : (10)

In general, solutions of (2) and (3) consist of an in�nite number of plane waves of the form
(8). There are also solutions that decay exponentially in the x direction; however, they are
usually not of great concern, since the decaying modes are expected to be insigni�cant at the
time they reach B. Now, it is easy to verify that if one of the Cjs in (7) is equal to Cx, then
the wave (8) satis�es the boundary condition (7) exactly.
Third, the Higdon NRBCs allow a relatively easy accuracy control. It can be shown (see

Higdon [43] for a similar setting) that when a plane wave of form (8) impinges on the
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boundary B where the NRBC HJ is imposed, the resulting re�ection coe�cient is

R=
J∏

j=1

∣∣∣∣Cj − Cx

Cj + Cx

∣∣∣∣ (11)

Again one sees that if Cj=Cx for any one of the j’s then R=0, namely there is no re�ection
and the NRBC is exact. Moreover, one sees that the re�ection coe�cient is a product of J
factors, each of which is smaller than 1. This implies that the re�ection coe�cient becomes
smaller as the order J increases regardless of the choice made for the parameters Cj. Of
course, a good choice for the Cj would lead to better accuracy with a lower order J , but
even if one misses the correct Cjs considerably (say, with the simplest choice Cj=C0 for
j=1; : : : ; J ), one is still guaranteed to reduce the spurious re�ection as the order J increases.
This is an important property of Higdon’s NRBCs and is the reason for their robustness.
Fourth, for certain choices of the parameters, the Higdon NRBCs are equivalent to NRBCs

that are derived from rational approximation of the dispersion relation (the Engquist–Majda
conditions [2] being the most well-known example). This has been proved by Higdon in Refer-
ence [43]. Thus, the Higdon NRBCs can be viewed as generalization of rational-approximation
NRBCs.
Despite all these advantages, the Higdon NRBCs have not been used extensively in the

past. The reasons for this are as follows:

• For J¿2, the Higdon NRBCs are not compatible with the FE method. They have been
used in the past only with �nite di�erence discretization.

• Explicit �nite di�erence formulas for the discrete Higdon conditions were developed
in the literature up to third order only, because of their algebraic complexity which
increases rapidly with the order. Thus, although in theory (7) is written as a high-order
NRBC, only the low-order Higdon conditions have been used in practice. Recently, Givoli
and Neta constructed �nite di�erence schemes based on high-order Higdon conditions
[44, 45].

• The NRBC HJ involves high normal and temporal derivatives, up to order J . These
pose obvious numerical di�culties.

• Until recently, no procedure has been provided in the literature for the automatic choice
of the parameters Cjs which appear in the Higdon NRBCs. In Reference [44] such a
procedure has been devised and incorporated in a �nite di�erence scheme.

Starting from the Higdon NRBCs (7), new NRBCs are now derived which are free from
all these di�culties and are designed to �t the FE methodology.

3.2. The new high-order NRBCs

The HJ condition (7) is �rst replaced by the equivalent condition

HJ :

[
J∏

j=1

(
@
@x
+
1
Cj

@
@t

)]
u=0 on B (12)

Now the auxiliary functions �1; : : : ; �J−1 are introduced. These functions are de�ned on B as
well as in the exterior domain D. Eventually they will be used only on B, but the derivation
requires that they be de�ned in D as well, or at least in a non-vanishing region adjacent
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to B. The functions �j are de�ned via the relations

(
@
@x
+
1
C1

@
@t

)
u=�1 (13)

(
@
@x
+
1
C2

@
@t

)
�1 =�2 (14)

...(
@
@x
+
1
CJ

@
@t

)
�J−1 = 0 (15)

By de�nition, these relations hold in D, and also on B. It is easy to see that (13)–(15), when
imposed as boundary conditions on B, are equivalent to the single boundary condition (12).
By de�ning

�0≡ u; �J ≡ 0 (16)

Equations (13)–(15) can be written concisely as(
@
@x
+
1
Cj

@
@t

)
�j−1 =�j; j=1; : : : ; J (17)

This set of conditions involves only �rst-order derivatives. However, due to the appearance
of the x-derivative in (17), the �j cannot be discretized on the boundary B alone. Therefore
(17) will be manipulated in order to get rid of the x-derivative.
The function u satis�es the wave equation (2) in D. The function �1 is obtained by applying

the linear operator @=@x+ (1=C1)@=@t to u, as in (13); hence it is clear that �1 also satis�es
the same equation in D. Similarly, it can be deduced that each of the functions �j satis�es a
wave equation like (2), namely,

��j − C20∇2�j + f2�j=0 in D (18)

Another way of writing this equation is

@2�j

@x2
+

@2�j

@y2
− 1

C20
��j −

f2

C20
�j=0 (19)

Now, the following identity is used:

@2�j

@x2
=
(

@
@x

− 1
Cj+1

@
@t

)(
@
@x
+

1
Cj+1

@
@t

)
�j +

1
C2j+1

��j (20)

Substituting (20) in (19) and replacing j with j − 1 everywhere yields, for j=1; : : : ; J
(

@
@x

− 1
Cj

@
@t

)(
@
@x
+
1
Cj

@
@t

)
�j−1 +

(
1
C2j

− 1
C20

)
��j−1 +

@2�j−1
@y2

− f2

C20
�j−1 = 0 (21)
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From this and (17) one gets, for j=1; : : : ; J

(
@
@x

− 1
Cj

@
@t

)
�j +

(
1
C2j

− 1
C20

)
��j−1 +

@2�j−1
@y2

− f2

C20
�j−1 = 0 (22)

On the other hand, (17) can also be written as

(
@
@x
+

1
Cj+1

@
@t

)
�j=�j+1; j=0; : : : ; J − 1 (23)

Subtracting (22) from (23) �nally gives, for j=1; : : : ; J − 1
(
1
Cj
+

1
Cj+1

)
�̇j=�j+1 +

(
1
C2j

− 1
C20

)
��j−1 +

@2�j−1
@y2

− f2

C20
�j−1 (24)

As desired, the new boundary condition (24) does not involve x-derivatives. In addition, there
are no high y- and t-derivatives in (24) beyond second order.
Rewriting (13), (24) and (16), the new formulation of the J th-order NRBC on B can be

summarized as follows:

�0u̇+
@u
@x
=�1 (25)

�j�̇j − �j
��j−1 − �′′

j−1 + ��j−1 =�j+1; j=1; : : : ; J − 1 (26)

�j=
1
C2j

− 1
C20

; �0 =
1
C1

; �j=
1
Cj
+

1
Cj+1

; �=
f2

C20
(27)

�0≡ u; �J ≡ 0 (28)

In (26) and elsewhere, a prime indicates di�erentiation with respect to y along B, i.e., the
tangential derivative on B.
It will be bene�cial to also write the NRBC (25)–(28) in a matrix form. To this end the

J -dimensional vector of unknowns

UT = {u �1 �2 : : : �J−1} (29)

is de�ned on B. Here the T denotes transposition. With this de�nition, (25)–(28) can be
written in the form

−@u
@x
e1 =AU+ BU̇+D �U − EU′′ on B (30)

Here e1 is the J -dimensional vector de�ned by

eT1 = {1 0 0 : : : 0} (31)
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The four J -dimensional matrices appearing in (30) are:

A=




0 −1 0 0 : : : 0

� 0 −1 0 : : : 0

0 � 0 −1 : : : 0

...
...

. . . . . . . . .
...

0 : : : 0 � 0 −1
0 : : : 0 0 � 0



; B=




�0 0 0 0 : : : 0

0 �1 0 0 : : : 0

0 0 �2 0 : : : 0

...
...

. . . . . . . . .
...

0 : : : 0 0 �J−2 0

0 : : : 0 0 0 �J−1




(32)

D=




0 0 0 0 : : : 0

−�1 0 0 0 : : : 0

0 −�2 0 0 : : : 0

...
...

. . . . . . . . .
...

0 : : : 0 −�J−2 0 0

0 : : : 0 0 −�J−1 0



; E=




0 0 0 0 : : : 0

1 0 0 0 : : : 0

0 1 0 0 : : : 0

...
...

. . . . . . . . .
...

0 : : : 0 1 0 0

0 : : : 0 0 1 0




(33)

Note the tridiagonal structure of these four matrices. Note also that the matrices A; D and E
are non-symmetric.

4. FINITE ELEMENT SEMI-DISCRETE FORMULATION

The problem to be solved in � consists of the inhomogeneous wave equation (1), the initial
conditions (5), the north and south boundary condition (30), the west boundary condition (4),
and the east NRBC given by (25)–(28) or equivalently by (30).
Two FE formulations will be presented here: an augmented one and a split one.

4.1. The augmented FE formulation

First, the weak (or variational) form of the problem in � is constructed. The solution u is
sought in the space of trial functions,

S= {u | u∈H 1(�) and u= uW on �W} (34)

Here H 1(�) is the Sobolev space of square-integrable functions in �. Now, Equation (1) is
multiplied by the arbitrary weight function w∈S0, where

S0 = {w |w∈H 1(�) and w=0 on �W} (35)
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and the result is integrated over �. This yields, after integration by parts,

∫
�
w �u d� +

∫
�
(∇w·C20∇u+ wf2u) d�−

∫
B
wC20

@u
@x
dB=

∫
�
wS d� (36)

for u∈S and for all w∈S0. The integral over B on the left side of (36) will involve the
auxiliary functions �j. In analogy to (29), a vector of weight functions is de�ned, i.e.

WT = {w �1 �2 : : : �J−1} (37)

where the �j are arbitrary weight functions associated with the �j. In (29) and (37), u and w
are de�ned in �, whereas the �j and �j are de�ned on B. With these de�nitions, the integral
over B in (36) is calculated by using the NRBC (30):

−
∫
B
w

@u
@x
dB=−

∫
B
W · e1 @u@x dB=

∫
B
W(AU+ BU̇+D �U − EU′′) dB

=
∫
B
WAU dB+

∫
B
WBU̇ dB+

∫
B
WD �U dB+

∫
B
W′EU′ dB (38)

The last equality in (38) is obtained by integration by parts, where the contribution from the
boundary of B vanishes due to (3). Using (38) in (36), the weak form of the problem in �
follows:

Find U∈ Ŝ such that for all W∈ Ŝ0

d(W; �U) + a(W;U) + b0(W;U) + b1(W; U̇) + b2(W; �U)=L(W) (39)

where

Ŝ= {U |U1 ∈S; Uj ∈H 1(B) for j=2; : : : ; J} (40)

Ŝ0 = {W |W1 ∈S0; Wj ∈H 1(B) for j=2; : : : ; J} (41)

d(W; �U) =
∫
�
W1 �U1 d� (42)

a(W;U) =
∫
�
(∇W1 ·C20∇U1 +W1f2U1) d� (43)

b0(W;U) =
∫
B
C20 (WAU+W

′EU′) dB (44)

b1(W; U̇) =
∫
B
C20WBU̇ dB (45)
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b2(W; �U) =
∫
B
C20WD �U dB (46)

L(W) =
∫
�
W1S d� (47)

The Galerkin FE method is used to discretize this problem in space. In each element, the
functions W(x)= {Wj(x)} and U(x; t)= {Uj(x; t)} are replaced by their �nite-dimensional
approximations

We
j (x)=

Nen∑
a=1

�We
ja N

( j)
a (x); U e

j (x; t)=
Nen∑
a=1

�Ue
ja(t)N

( j)
a (x); x≡ (x; y)∈�e (48)

Here �e is the domain of element e, N ( j)
a (x) is the element shape function associated with

variable Uj and node a, Nen is the number of element nodes, and �Ue
ja(t) is the unknown

value of the variable Uj at node a of element e and time t. (No summation is implied in
this paper for repeated indices.) Similar expressions can be written on the global level too.
Note that in (48) di�erent shape functions, N ( j)

a , are assigned to the di�erent variables Uj.
It is convenient to take the same shape functions for all the variables, namely N ( j)

a ≡Na,
but one has to address the issue of numerical stability. See discussion in Section 6. Using
the approximations (48) in the weak form of the problem (39) leads to the following linear
system of ordinary di�erential equations (ODEs) in time:

�M ��U(t) + �C �̇U(t) + �K �U(t)= �S(t) (49)

Here �M is the mass matrix, �C is the damping matrix, �K is the sti�ness matrix, �S is the load
vector, and �U(t) is the vector of unknowns, whose entries are the unknown nodal values of
the variables u and �j, for j=1; : : : ; J − 1. All these are global-level arrays, with dimension
N + (J − 1)NB, where N is the total number of ‘u’ degrees of freedom and NB is the
number of nodes on B. The system (49) is accompanied by appropriate initial conditions. The
vector of initial values is easily obtained: it depends solely on the given functions u0 and v0
(see (5)) since all the auxiliary variables �j are de�ned along B only, and thus vanish
identically at time t=0.
As usual in the FE method, the global arrays �M; �C; �K and �S appearing in (49) are formed

by calculating and assembling together the analogous arrays on the element level, �me; �ce; �ke

and �se. Thus,

�M=
Nel
A
e=1

�me; �C=
Nel
A
e=1
�ce; �K=

Nel
A
e=1
�ke; �S=

Nel
A
e=1
�se (50)

where A
Nel
e=1 is the assembly operator and Nel is the total number of elements. The expressions

for the element matrices and vector are:

�me = �m�e + �mBe; �ke= �k�e + �kBe (51)

�m�e =
[
�m�e(ai)(bj)

]
; �mBe=

[
�mBe
(ai)(bj)

]
; �ce=

[
�ce
(ai)(bj)

]
(52)
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�k�e =
[
�k�e(ai)(bj)

]
; �kBe=

[
�kBe
(ai)(bj)

]
; �se=

{
�se(ai)
}

(53)

�m�e(ai)(bj) = �i1�j1

∫
�e

N (i)
a N ( j)

b d� (54)

�k�e(ai)(bj) = �i1�j1

∫
�e
(∇N (i)

a · C20∇N ( j)
b + N (i)

a f2N ( j)
b ) d� (55)

�mBe
(ai)(bj) =

∫
Be

N (i)
a C20DijN

( j)
b dB (56)

�ce(ai)(bj) =
∫
Be

N (i)
a C20BijN

( j)
b dB (57)

�kBe
(ai)(bj) =

∫
Be

C20 (N
(i)
a AijN

( j)
b + N (i)′

a EijN
( j)′

b ) dB (58)

�s e
(ai) = �i1

∫
�e

N (i)
a S d�− �i1

Nen∑
b=1

�k�e(a1)(b1)(uW)
e
b (59)

Here (ai) is the index associated with node a and ‘degree of freedom’ i (for i=1; : : : ; J ),
and similarly for (bj). Also, �ij is the Kronecker delta, �e and Be denote, respectively, the
part of � and B associated with element e, and (uW)eb is de�ned to be the value of the given
west-boundary function uW at node b of element e if this node is on �W, and zero otherwise.
The FE formulation (49)–(59) is a mixed C 0 formulation. The matrices �m�e and �k�e and the

vector �se are the standard element mass and sti�ness matrices and load vector. More precisely,
each of them consists of a non-zero block which is standard, and corresponds to i= j=1,
namely to the ‘u’ degree of freedom, and additional zero rows and columns corresponding to
the auxiliary degrees of freedom. The element matrices �mBe, �ce and �kBe are contributed by the
NRBC on B. They are non-zero only for elements with non-empty Be, namely for elements
that have a boundary on B. Note that the damping term �C �̇U in (49) originates only from the
NRBC on B, the original problem involving no physical damping. All the element matrices
except �mBe and �kBe are symmetric. The latter two, given by (56) and (58) are non-symmetric
due to the asymmetry of the matrices A; D and E in (32) and (33). The consequence of this
is that the global mass and sti�ness matrices �M and �K are also non-symmetric.
The dynamic system (49) may be solved by a standard time-integration method, such as

one of the Newmark family of schemes [46].

4.2. The split FE formulation

The augmented FE formulation discussed in the previous subsection has two disadvantages:
(a) it is non-symmetric, and (b) it involves large sparse global matrices whose entries are
associated with both ‘primary’ and ‘auxiliary’ degrees of freedom. Now an alternative FE
formulation is proposed, in which the global system of coupled equations is split to separate
equations for the di�erent variables. This formulation is symmetric and involves more compact
matrices.
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In the split formulation, the weak equation (36) is considered again, but now (25) is
substituted directly into it, which yields∫

�
w �u d� +

∫
�
(∇w·C20∇u+ wf2u) d� +

∫
B
wC20�0u̇ dB−

∫
B
wC20�1 dB=

∫
�
wS d� (60)

for u∈S and for all w∈S0. This is not a complete weak form of the problem in �, since
the unknown function �1 appears in the last term on the left side. Now a separate weak form
can be obtained for Equation (26), by multiplying it by the weight function �j and integrating
over B. This yields, after integrating by parts (and using (3) to deduce that the boundary
term vanishes),∫

B
�j�j�̇j dB−

∫
B
�j�j

��j−1 dB+
∫
B
�′j�

′
j−1 dB+

∫
B
�j��j−1 dB=

∫
B
�j�j+1 dB (61)

for j=1; : : : ; J − 1, for �j ∈H 1(B) and any �j ∈H 1(B). Recall that �0≡ u and �J ≡ 0; see
(28). Equations (60) and (61) together constitute a weak form of the problem, equivalent to
(39), namely:
Find u∈S and �j ∈H 1; j=1; : : : ; J − 1, such that Equations (60) and (61) are satis�ed

for all w∈S0 and �j ∈H 1.
This problem is now discretized in space using the Galerkin FE method. In each element,

the functions w(x); u(x; t); �j(x) and �j(x; t) are replaced by their �nite-dimensional approx-
imations

we(x) =
Nen∑
a=1

we
aNa(x); ue(x)=

Nen∑
a=1

de
a(t)Na(x); x≡ (x; y)∈�e (62)

�ej(x) =
Nen∑
a=1

�ejaN
( j)
a (x); �e

j (x)=
Nen∑
a=1

�e
jaN

( j)
a (x); x≡ (x; y)∈Be (63)

The notation used here is similar to that used in Subsection 4.1. As in the augmented formu-
lation, di�erent shape functions are assigned to the di�erent variables: Na for the variable u
and N ( j)

a for the variable �j. Again, it is convenient to take the same shape functions for all
the variables; see discussion in Section 6.
These approximations are used in the weak equations (60) and (61). This leads to the

following set of ODEs in time:

M �d+Cḋ+Kd=S+GM1 (64)

CjṀj=Pj �Mj−1 −QjMj−1 +RjMj+1; j=1; : : : ; J − 1 (65)

Here, Mj is the unknown vector whose entries are the nodal values of the variable �j on
B. In (64), M; C and K are the standard N ×N mass matrix, damping matrix and sti�ness
matrix, respectively, where N is the total number of ‘u’ degrees of freedom. Also, S is the
load vector, d is the global unknown vector whose entries are the nodal values of u, and
G is an N ×NB rectangular matrix, where NB is the number of nodes on B. In (65), all
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the matrices are NB ×NB. Relating to (28), we have that MJ ≡ 0, and that M0 is the NB-
dimensional vector whose entries are equal to the entries of the N -dimensional vector d for
the degrees of freedom on B.
As before, all the global arrays are obtained from analogous element arrays via assembly,

namely

M=
Nel
A
e=1
me; C=

Nel
A
e=1
ce; K=

Nel
A
e=1
ke (66)

S=
Nel
A
e=1
se; G=

Nel
A
e=1
ge; Cj=

Nel
A
e=1
cej (67)

Pj =
Nel
A
e=1
pej ; Qj=

Nel
A
e=1
qe
j ; Rj=

Nel
A
e=1
rej (68)

The expressions for the element arrays are:

me = [me
ab]; ce=[ceab]; ke=[ke

ab] (69)

se = {sea}; ge=[ge
ab]; cej =[(c

e
j )ab] (70)

pej = [(p
e
j )ab]; qej =[(q

e
j)ab]; rej =[(r

e
j )ab] (71)

me
ab =

∫
�e

NaNb d� (72)

ke
ab =

∫
�e
(∇Na·C20∇Nb + Naf2Nb) d� (73)

sea =
∫
�e

NaS d�−
Nen∑
b=1

ke
ab(uW)

e
b (74)

ceab =
∫
Be

�0C20NaNb dB (75)

ge
ab =

∫
Be

C20NaN
(1)
b dB (76)

(cej)ab =
∫
Be

�jN ( j)
a N ( j)

b dB (77)

(pe
j )ab =

∫
Be

�jN ( j)
a N ( j−1)

b dB (78)

(qe
j)ab =

∫
Be
(N ( j)

a
′N ( j−1)

b
′ + �N ( j)

a N ( j−1)
b ) dB (79)

(rej )ab =
∫
Be

N ( j)
a N ( j+1)

b dB (80)
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It is clear that the element matrices me; ce; ke and cej , and hence also the global matrices
M; C; K and Cj, are symmetric. These global matrices are the ones which appear on the left
sides of the ODEs (64) and (65), and whose symmetry is bene�cial for the time-integration
scheme discussed in the next section. The symmetry of the other global square matrices
Pj; Qj and Rj is less important since they appear on the right hand sides of (64) and
(65), as ‘loading terms.’ Nevertheless, if all the shape functions N ( j)

a are the same (i.e.
independent of j), then the element matrices pej ; qej and rej , and hence Pj; Qj and Rj, are
symmetric too.

5. SOLUTION OF THE DYNAMIC SYSTEM

A time-integration scheme is proposed now for the solution of (64) and (65), which constitute
J coupled systems of ODEs. Each of these systems is discretized based on the Newmark
family of schemes for second-order ODEs in time [46]. This family has two parameters,
06�61=2 and 06	61, which control the accuracy and stability of the scheme. Note that
the system (65) is actually �rst-order in time for Mj, so that the ‘mass matrix’ is zero for this
system. However, one can still use the Newmark method as long as the ‘damping matrix’ Cj

is non-singular, which is indeed the case. The advantage of using the Newmark scheme for
(65) (as opposed, say, to using the generalized trapezoidal scheme [46]) is that it yields the
‘acceleration’, namely Mj, in each time-step. This ‘acceleration’ is needed because it appears
in the right side of (65).
The approximations of d; ḋ and �d at time-step n are denoted by dn; vn and an, respectively.

Also, the approximations of Mj and Ṁj and �Mj at time-step n are denoted by Mj; n; Vj; n and
Aj; n, respectively.
In predictor–corrector form, the proposed time-integration scheme is

Prediction:

d̃n+1 = dn +	tvn +
	t2

2
(1− 2�)an (81)

ṽn+1 = vn + (1− 	)	tan (82)

M̃j; n+1 =Mj; n +	tVj; n +
	t2

2
(1− 2�)Aj; n; j=1; : : : ; J − 1 (83)

Ṽj; n+1 =Vj; n + (1− 	)	tAj; n; j=1; : : : ; J − 1 (84)

Solution:

(M+ 		tC+ �	t2K)an+1 =Sn+1 +GM̃1; n+1 −Cṽn+1 −Kd̃n+1 (85)

		tCjAj; n+1 =PjAj−1; n+1 −QjMj−1; n+1 +RjM̃j+1; n+1 −CjṼj; n+1; j=1; : : : ; J − 1 (86)
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Correction:

dn+1 = d̃n+1 + �	t2an+1 (87)

vn+1 = ṽn+1 + 		tan+1 (88)

Mj; n+1 = M̃j; n+1 + �	t2Aj; n+1; j=1; : : : ; J − 1 (89)

Vj; n+1 = Ṽj; n+1 + 		tAj; n+1; j=1; : : : ; J − 1 (90)

Note the order in which these calculations should be done in each time step. First, the
prediction phase is performed to yield d̃n+1 and ṽn+1, as well as M̃j; n+1 and Ṽj; n+1 for all the
js. Then (85) is solved for an+1. Then dn+1 and vn+1 are calculated in the correction phase.
Then (86) is solved with j=1, for A1; n+1. Note that this equation involves on the right side
A0; n+1 and M0; n+1, namely an+1 and dn+1, which have already been computed. Then M1; n+1
and V1; n+1 are calculated in the correction phase. Then (86) is solved with j=2, for A2; n+1,
using on the right side the vectors A1; n+1 and M1; n+1 which are already known. The procedure
goes on in this fashion.
In (85) and (86), the predicted vector M̃j+1; n+1 has been used rather than Mj+1; n+1, since

the latter is not known when solving for an+1 or Aj; n+1. This may lead to a numerical in-
stability or to poor accuracy. To avoid these, the whole solution process given by Equations
(85)–(90) is repeated, within a time step, a number of times in an iterative manner. Each
additional cycle consists in solving (86) again (followed by correction), and then solving
(86) (followed by correction) for j=1; : : : ; J − 1, while in each case using the last computed
Mj+1; n+1 instead of M̃j+1; n+1. Numerical experiments show that usually one additional cycle is
needed to yield stable and accurate results.

6. COMPUTATIONAL ISSUES

6.1. Choosing the parameters Cj

The new J th-order NRBC (25)–(28), like the original Higdon NRBC, involves the J param-
eters C1; : : : ; CJ . Now the choice of these parameters is discussed.
First, it should be noted that some physical limitations may apply to the chosen values of

the Cj’s. In the wave-guide model considered here, one has from (9) and (10)

Cx=C0

√
1 +

n2�2=b2 + f2

k2
; n=0; 1; 2; : : : (91)

and thus Cx¿C0. Hence in this case one should take Cj¿C0 for all the js.
Second, recall that even the simple choice Cj=C0 for j=1; : : : ; J is guaranteed to reduce

the spurious re�ection as J increases (see Section 3.1). This choice may be successful in
many cases provided that J is su�ciently large. What one gains from making a special-
ized choice for the Cj is the ability to obtain the desired level of accuracy with a smaller
order J .
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Third, there are three general approaches for choosing the parameters Cj:

(a) The user chooses the Cj a priori in a manual manner based on an ‘educated guess’.
(b) The Cj are chosen automatically by the computer code as a preprocess.
(c) The Cj are not constant, but are determined adaptively by the computer code.

Approach (a) is the one adopted by Higdon [43], and is based on the assumption that the
user has some a priori knowledge on the character of the exact solution. While this may be a
good assumption in some applications, it is de�nitely desirable to have at hand an automatic
procedure that will not require the user’s intervention.
Approach (b) is attractive since it is automatic yet very inexpensive computationally. This

approach has been adopted in Reference [44] as well as here, using an algorithm which
is based on the maximum resolvable wave numbers in the x and y directions, and on the
minimax formula [47] for choosing the x-component wave numbers. See Reference [44] for
more details.
Approach (c) is the most sophisticated, and also the most expensive computationally. In this

approach, the values Cj are estimated for every node on the boundary at each time step, from
the solution in the previous time-steps. For the Sommerfeld-like NRBC (J =1), a procedure
of this type is used a lot in meteorological applications; see Reference [42] and references
therein. Analogous procedures may be employed with higher orders. An adaptive scheme of
a di�erent type, perhaps more suitable to high orders, is based on the Fast Fourier Transform
(FFT); see Reference [48].

6.2. Computational e�ort as a function of J

It is easy to see that the number of operations related directly to the J th-order NRBC on B is
O(JNB) per time-step, namely increases linearly with the order J of the NRBC. The associated
computational e�ort is typically marginal with respect to the total e�ort required by the entire
solution process. In comparison, the scheme proposed in Reference [44] which directly uses the
original Higdon NRBCs (but with a special high-order �nite di�erence discretization scheme)
requires O(3JNB) operations per time-step, namely its complexity grows exponentially with J .

6.3. Choice of FE shape functions

The FE formulation presented above allows, at least in theory, a general choice of the shape
functions, namely di�erent shape functions N ( j)

a may be chosen for the di�erent variables �j.
However, it is advantageous to choose all the shape functions to be the same for all the
variables, for the following reasons:

1. This is convenient from the programming point of view: only one family of shape
functions has to be coded.

2. This allows the use of the simplest possible interpolation, i.e. linear, for all the variables.
3. This choice makes all the square global matrices in (64) and (65) symmetric. See
Section 4.2.

4. Moreover, it can be proved that this choice makes all the square global matrices in (64)
and (65) positive de�nite or negative de�nite (depending on the sign of the coe�cient
appearing in the expressions (72)–(80)), and hence non-singular.
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5. This choice, together with the assumption that the coe�cients are constant in each ele-
ment, makes the element matrices ce; cej ; pej and rej (see (75), (77), (78) and (80)) as
well as the non-zero square block of ge (see (76)) all equal up to a constant factor, and
thus enables a very e�cient calculation on the element level.

However, one has to be careful with the choice of the shape functions in a mixed FE
formulation like the present one, since the FE scheme must satisfy the Babu
ska–Brezzi (BB)
condition of stability [46]. Fortunately, numerical experiments show that equal-order interpo-
lation, and in particular bilinear shape functions in � for u and linear one-dimensional shape
functions on B for all the �j, is a stable combination. No locking or other convergence dif-
�culties have been observed. The situation is somewhat similar to the mixed FE formulation
devised in Reference [24] for time-harmonic waves. Yet, the satisfaction of the BB condition
is still to be proved mathematically.

6.4. Shape of the arti�cial boundary

In the wave-guide problem considered here the arti�cial boundary B is simply a straight
segment. The extension to a three-dimensional wave guide where B is a planar surface is
immediate. Some complication occurs when the problem under consideration is that of exterior
scattering (see Figure 1(a)), where B is a closed line or a closed surface. If B is a rectangle or
a rectangular box, then it has corners which must be dealt with. For the well-posedness of the
problem in � with the NRBC (25)–(28) on B, corner conditions which relate the tangential
and normal derivatives on two sides meeting at a corner must be applied. Discussion of these
corner conditions is outside the scope of the present paper. If B has a smooth shape (e.g. a
circle in two dimensions or a sphere in three dimensions) the NRBC can be adapted to this
geometry by using variable transformation; see e.g. Reference [48]. These issues are left for
future research.

7. NUMERICAL EXPERIMENTS

The new FE scheme is now applied to a number of simple model problems. In each case,
the FE solution is compared to a reference solution, which is exact as far as the boundary-
condition treatment is concerned. The latter solution is obtained by solving the problem in
a computational domain which is very long in the x direction. During the simulation time
the wave generated on or near �W does not reach the remote (east) boundary of this long
domain. Thus in the reference solution the issue of spurious re�ection is avoided altogether,
regardless of the boundary condition used on the remote boundary. In the following �gures,
this reference solution will be termed ‘exact’ or uex.
A uniform wave-guide is considered (see Figure 1(b)), with width b=3 and medium wave

speed C0 = 1. There are no wave sources (S=0), and on the west boundary u= uW =0 is
prescribed. First f=0 is taken, which corresponds to the case of a non-dispersive medium.
One should note, however, that geometrical dispersion, which is generated by the e�ect of
waves bouncing from the south and north walls, always occurs in wave guides, even when
f=0. This may be seen from the dispersion relation (10), by noting the way in which
(C0n�=b)2, i.e. the geometrical dispersion, is added to f2, i.e. the medium dispersion. The
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Table I. The non-dispersive wave-guide problem: values of the parameters Cj and the
corresponding values of �j and �j.

J C1 C2 C3 C4 �0 �1 �2 �3 �1 �2 �3

1 1.00 1.00
2 1.00 1.73 0.58 1.58 −0.67
3 1.00 1.47 2.80 0.68 1.04 1.36 −0.54 −0.87
4 1.00 1.44 1.73 3.99 0.69 1.27 0.83 1.25 −0.52 −0.67 −0.94

initial values (see (5)) are zero everywhere except in the strip 06x61. In this strip,

u(x; y; 0)=H(0;1)(x) cos
(
4�y
b

)
; u̇(x; y; 0)=0 (92)

Here H(0;1)(x) is the ‘hat function’ which varies piecewise-linearly from the value 0 at x=0
to 1 at x=0:5 and then to 0 again at x=1.
The arti�cial boundary B is introduced at x= xB=3. Thus, the computational domain �

is a 3× 3 square. In � a mesh of 60× 60=3600 four-node square elements is employed.
Equal-order interpolation is used for all the variables: bilinear shape functions for u, and
linear shape functions on B for the �js. For the ‘exact’ solution, a 9× 3 rectangle is used
as the computational domain, with a mesh of 180× 60 elements. For the time integration,
the Newmark scheme (81)–(90) is used with parameters �=0:25 and 	=0:5 (trapezoidal:
implicit, 2nd-order accurate, unconditionally stable [46]), with a step-size 	t=0:01.
The NRBC parameters Cj are chosen automatically by using the scheme devised in Refer-

ence [44] (see Section 6.1). Table I gives the values of the Cj for J =1; : : : ; 4, along with
the corresponding values of the �j and �j which appear in the scheme (see (25)–(27), (75),
(77) and (78)).
Figure 2 compares the ‘exact’ solution to the FE solutions obtained with di�erent values

of the NRBC order J . The solutions are shown along B, at time t=8. The NRBC ‘J =0’ is
the zero Neumann boundary condition @u=@x=0 on B. The latter condition actually generates
total re�ection and hence yields huge errors, as the �gure shows. The solutions corresponding
to J =1; : : : ; 4 approach the ‘exact’ solution as J is increased. The J =4 solution is indistin-
guishable from the ‘exact’ solution.
To measure the global error, the error measure

EB(t)=

√
NB∑
m=1
(u(xB; ym; t)− uex(xB; ym; t))2 (93)

is de�ned. This is the Eulerian norm of the error over B. Figure 3 shows the evolution of
this error norm in time, in a logarithmic scale, for di�erent values of J . In this �gure, the
values of EB were calculated at times t=1; 2; : : : ; 10 and were connected by straight lines. The
global error initially increases in time, but quickly levels o�. The error generally decreases
with increasing J . Up to J =3 the improvement achieved by increasing J is dramatic, but the
errors associated with J =3 and J =4 are comparable. The latter fact shows that for J¿3
the dominant error is the FE discretization error and not the NRBC error.
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Figure 2. The non-dispersive wave-guide problem: comparison of solutions along the
arti�cial boundary B, at time t=8.

Figure 3. The non-dispersive wave-guide problem: global error EB as a function of time
for di�erent values of the NRBC order J .

Now the previous experiment is repeated for the dispersive case: the dispersion parameter is
set to f=1. All the other parameters remain unchanged. Figure 4 shows the ‘exact’ solution
and solutions obtained with J =0; : : : ; 4 along B at time t=6. As seen by comparing Figures
2 and 4, the J =0 and 1 solutions are as inaccurate as in the non-dispersive case, while again
the J =4 solution practically coincides with the ‘exact’ solution. However, interestingly, the
J =2 and 3 solutions are now much closer to the ‘exact’ solution compared to the non-
dispersive case. Figure 5 shows the global error EB as a function of time for J =0; 1; : : : ; 5.
Here the values at t=0:1; 0:2; : : : ; 8:0 were plotted and connected with straight lines. The
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Figure 4. The dispersive wave-guide problem: comparison of solutions along
the arti�cial boundary B, at time t=6.

Figure 5. The dispersive wave-guide problem: global error EB as a function of time for
di�erent values of the NRBC order J .

errors appear to be oscillatory and to decrease with increasing J . Again, the errors for J¿3
are comparable, which indicates that the FE discretization error dominates for these high-order
NRBCs. Nevertheless, integration of the error in time shows that the J =4 solution is slightly
more accurate on average than the J =3 solution, and that the J =5 is still slightly better.
(See next example for quantitative results in this context).
To demonstrate the di�culties involved in this example, we consider the angle of incidence


 of the incoming wave at the point P(3; 1:6) on B. This is de�ned as the angle between
the wave direction 	 and the normal to B at P, namely 
= |90◦ − 	|. The wave direction 	
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Figure 6. The dispersive wave-guide problem: angle of incidence of the incoming wave at the point
P(3; 1:6) on the arti�cial boundary B as a function of time.

is computed via

cos 	=
∇u
|∇u| · ey=

@u=@y√
(@u=@x)2 + (@u=@y)2

(94)

where 	 is measured clockwise from the −y axis and ey is the unit vector pointing in the y
direction. The partial derivatives appearing in (94) can be calculated via the expressions

@xu=−k cos
(
4�y
b

)
sin k(x − Cxt); @yu=−(4�=b) sin

(
4�y
b

)
cos k(x − Cxt) (95)

which correspond to the mode-4 wave

u= cos
(
4�y
b

)
cos k(x − Cxt) (96)

While (96) is certainly not the exact solution of the present problem (see the initial condition
(92)), the most dominant wave in the solution will have this form. We take k=� since
the ‘hat-function’ initial condition is similar to a half sine-wave with half-period 1. Figure 6
shows the angle of incidence 
 at P as a function of time. It is seen that 
 varies between
0 and 90◦ in an oscillatory manner. Such cases where there are waves with a wide range of
incidence angles are known to be relatively di�cult for NRBC treatment.
Now the wave-guide problem illustrated in Figure 7 is considered. This problem is similar to

the previous one (the dispersion parameter remains f=1), with the following two di�erences.
First, the initial conditions are zero everywhere except in the strip 06x61 where

u(x; y; 0)=H(0;1)(x); u̇(x; y; 0)=0 (97)

Note that in contrast to the previous example (see (92)), the initial values do not depend on
y, but only on x through the ‘hat function’ H(0;1)(x). Second, the medium wave speed C0 is
not constant in �. It is C0 = 1 everywhere except in a small square area, of size 0:2× 0:2,
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Figure 7. Set-up for the ‘bump’ wave-guide problem.

(a) (b)

Figure 8. The ‘bump’ wave-guide problem: comparison of solutions along the arti�cial
boundary B, at times: (a) t=4; (b) t=8.

where C0 = 3. This area, shown in Figure 7, models a ‘hard bump’ in the medium, which
causes wave scattering inside the wave guide, and is solely responsible for the y-dependence
of the solution. The ‘bump’ area includes 16 FEs.
Figures 8(a) and 8(b) show the ‘exact’ solutions as well as solutions obtained for various

values of J , along B at times t=4 and 8, respectively. The current problem is hard enough
so that even with high-order NRBCs some small error is noticeable. In particular, note that
at time t=8 (Figure 8(b)), the J =4 and 5 solutions almost coincide, but are slightly o� the
‘exact’ solution. Still, they are much more accurate than the solutions corresponding to J63.
For a given simulation time T , one can de�ne the global error-measure in space and time,

�EB(T )=
(∫ T

0
E2B(t) dt

)1=2
(98)

This is the accumulated error on B during the entire simulation. Figure 9 shows this error as
a function of the simulation time T for various values of J . For all J s, The error increases
initially with the simulation time, but then become almost constant for long simulations.
Unlike the instantaneous error shown in the previous �gures, the accumulated error decreases
monotonically with increasing J . The superiority of the J =5 solution over all lower-order
solutions is apparent.
Incidentally, the ‘bump’ problem turned out to be hard also in terms of numerical stability.

In this example, two Newmark cycles (see Section 5) were not su�cient to stabilize the
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Figure 9. The ‘bump’ wave-guide problem: the global accumulated error �EB(T ) as a function of the
simulation time T for various values of J .

solution, and a third one was needed. In fact, the corners of the ‘bump’ area are points of
singularity in the solution, which are obviously not well-resolved with the mesh and type of
FEs used. However, this issue does not concern us in the present study of NRBC performance.
As a �nal numerical experiment, a uniform wave guide is considered again, with width

b=5 and medium wave speed C0 = 1, and with no dispersion (f=0). The initial values are
zero everywhere, and the boundary function uW on �W is given by

uW(y; t)=



cos
[ �
2r
(y − y0)

]
if |y − y0|6r and 06t6t0

0 otherwise
(99)

Thus, the wave source on the west boundary is a cosine function in y with three parameters:
its center location y0, its width r, and its time duration t0. The chosen parameter values are
y0 = 2:5, r=1:5, and t0 = 0:5.
The arti�cial boundary B is introduced at x= xB=5, thus de�ning as the computational

domain � a 5× 5 square. In � a mesh of 20× 20=400 four-node square elements is used,
with linear-order interpolation for all the variables, as before. The long domain for the ‘exact’
solution is a 15× 5 rectangle, with a mesh of 60× 20 elements. As before, the Newmark
scheme is used for the time-integration with the trapezoidal parameters �=0:25 and 	=0:5,
and 	t=0:01.
The NRBC with J =4 is chosen, with parameters Cj which are obtained automatically as be-

fore. These turn out to be Cj=C0 = 1, 1.44, 1.73 and 3.99. The numerical solution is compared
to the ‘exact’ solution obtained by using the long mesh, as well as to a solution obtained in
the short domain � but with the J =1 NRBC on B. In the latter case, the parameter C1 = 2:5
is used, which is in the middle of the range of the four Cjs mentioned above.
Figures 10(a)–(d) show the three solutions at times t=4, 5, 8 and 10. In each of these

�gures, the top plot is that of the ‘exact’ solution, the middle plot corresponds to the J =4
solution, and the lower plot describes the J =1 solution. Both the colors and the contour lines
represent values of u.
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(a) (b)

(c) (d)

Figure 10. Solution of the west-source problem, with no dispersion. The top plot is the ‘exact’ solution,
the middle plot is the J =4 solution, and the lower plot is the J =1 solution. Solutions are shown

at times: (a) t=4; (b) t=5; (c) t=8; and (d) t=10.
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Figure 11. The west-source problem: global error E as a function of time, generated by the J =4
solution and by the J =1 solution.

At time t=4 (Figure 10(a)) the main bulk of the wave packet generated on �W just
reaches B. A slight spurious re�ection can be observed in the J =1 solution, but overall the
three solutions are very similar. The front of the wave packet crosses the boundary B and
advances beyond it at time t=5 (Figure 10(b)). At this time, the J =4 solution is almost
indistinguishable from the ‘exact’ solution, whereas in the J =1 solution a strong spurious
re�ection is evident. At times t=8 and 10 (Figures 10(c) and 10(d)), most of the wave
packet has left �. The re�ected wave moves backwards in the J =1 solution and pollutes the
computational domain. On the other hand, the J =4 solution exhibits wave traces which are
similar to those present in the ‘exact’ solution.
In order to examine the errors generated in this example quantitatively, we introduce the

global error measure E�(t), de�ned by

E�(t)=

√
1

NxNy

Nx∑
p=1

Ny∑
q=1
(u(xp; yq; t)− uex(xp; yq; t))2 (100)

Here Nx and Ny are, respectively, the number of nodes in the x and y directions in the
computational domain �. In traveling-pulse type problems like the present example, the error
measure E�(t) is preferred over EB de�ned in (98) or �EB de�ned in (98). The reason is that
the latter measures indicate the error only over the boundary B, while, as Figures 7(b)–(d)
demonstrate, the major errors are not necessarily found on this boundary but they penetrate
the interior and constantly change their locations.
Figure 11 shows the global error E� as a function of time for the J =4 solution and for

the J =1 solution. Up until t=3, before the wave reaches the arti�cial boundary, both errors
are extremely small. Once the wave reaches the boundary both global errors increase but the
J =1 error is up to 10 times larger than the J =4 error.

8. CONCLUDING REMARKS

In this paper, a new FE scheme has been developed for the solution of time-dependent wave
problems in unbounded domains. The FE scheme incorporates a special high-order NRBC
on an arti�cial boundary B which bounds the �nite computational domain. The NRBC is
of an arbitrarily high order. The scheme is coded once and for all for any order J ; J is
simply an input parameter given by the user. This is enabled through the introduction of
auxiliary variables on B, which lead to a C 0 mixed FE formulation. Numerical experiments
indicate that the FE scheme is stable even with equal-order interpolation, which is a very
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advantageous choice. Linear and bilinear shape functions for all the variables have been used
in the numerical examples shown here, without any numerical di�culties. An automatic pre-
process method of choosing the parameters appearing in the NRBC has been employed. The
computational e�ort directly associated with the NRBC has been shown to increase only
linearly with the order J .
Owing to the generality of the proposed NRBCs it is possible to use them for problems in

dispersive and strati�ed media. Good performance of the scheme has been demonstrated in
both the non-dispersive and dispersive cases.
Related future work will include the adaptation of the proposed approach to more compli-

cated con�gurations, such as exterior problems with a rectangular arti�cial boundary B, and
three-dimensional problems. In the former case, the non-trivial issue of corners has to be dealt
with. In addition, the new FE scheme will be applied to the Shallow Water Equations (SWEs).
These serve as an important testbed for more complicated models in meteorology [42]. It
would be interesting, among other things, to test the performance of the high-order Higdon
NRBCs when the non-linear SWEs are used in the computational domain �. The new NRBCs
will also be adapted to the case of curved arti�cial boundaries by using variable transformation.
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