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a b s t r a c t

Higdon-type non-reflecting boundary conditions (NRBCs) are developed for the 2-D linear-
ized Euler equations with Coriolis forces. This implementation is applied to a simplified
form of the equations, with the NRBCs applied to all four sides of the domain. We demon-
strate the validity of the NRBCs to high order. We close with a list of areas for further
research.

Published by Elsevier B.V.

1. Introduction

To perform mesoscale atmospheric modeling on a computer, one immediately runs into the problem of defining the com-
putational domain. At some point, there has to be an edge to the computational domain, but the physical atmosphere lacks
any edges. How, then, can we define a computational boundary where no physical boundary exists? The answer of course is
to define a non-reflecting boundary condition (NRBC). How best to define such a boundary has been an active area of research
for approximately 30 years. Ideally, an NRBC will be stable, accurate, fast, and easy to implement; realistically, one must gen-
erally choose two or three of those criteria, at best.

There are typically two approaches to NRBC development. The first is to prescribe the behavior at the boundaries in such a
way as to reduce any spurious reflections. Early examples include the Sommerfeld-condition-based work of Orlanski [26]
and the Padé approximations of Engquist and Majda [4,5]. This approach was expanded by Higdon [13–19] and subsequently
automated by Givoli, Neta, and van Joolen [7–10,29–32]. The Orlanski scheme and the Engquist–Majda scheme are less accu-
rate than their successors; however, the Higdon scheme and its offshoots suffer from very high computational overhead.

The second approach is to surround the domain with a more dispersive computational medium, so that incoming waves
enter the absorbing layer and diffuse to zero before their reflections re-enter the original domain. Examples include the per-
fectly matched layer (PML) developed by Bérenger [1], applied to the linearized shallow water equations by Navon et. al. [24]
and to the linearized Euler equations by Hu [20–22], and the sponge layer used by Giraldo and Restelli [6]. This approach
requires additional storage and computation time for the expanded domain, and some reflections are still evident when
the theoretically-exact absorbing layer is applied to a discrete computational domain.

Here we apply the Higdon scheme to the linearized Euler equations. We take advantage of the Givoli–Neta–van Joo-
len automation and make subsequent improvements to reduce the computational overhead. This method removes
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approximately 97% of the Sommerfeld-condition’s reflection error with only a modest increase to the computational
time.

The rest of the paper is organized as follows: In Section 2 we outline the problem under consideration, the linearized Euler
equations in 2-D with no advection, solved in an infinite domain with NRBCs on all four sides. Section 3 details the NRBCs
and their application to the linearized Euler equations. In Section 4 we derive the Klein–Gordon equation from the linearized
Euler equations with no mean flow. We discuss the finite difference discretization for the NRBCs and the interior scheme in
Sections 5 and 6, and we provide a numerical example in Section 7. We then list some areas for further research (Section 8)
and summarize our results (Section 9).

2. Problem statement

Consider the linearized Euler equations in an open domain. For simplicity we assume that the domain has a flat bottom
and that there is no advection, although this assumption may be removed in future studies. A Cartesian coordinate system
ðx; yÞ is introduced, as shown in Fig. 1.

The non-linear Euler equations are

otqþ oxðquÞ þ oyðqvÞ ¼ 0;

otuþ uoxuþ voyuþ 1
q

oxp ¼ fv;

otvþ uoxvþ voyvþ 1
q

oyp ¼ �fu;

otpþ uoxpþ voypþ cpðoxuþ oyvÞ ¼ 0;

ð1Þ

where we use the following shorthand for partial derivatives

oa ¼
o

oa
; oab ¼

o2

oaob
;

and t denotes the time, uðx; y; tÞ and vðx; y; tÞ the unknown velocities in the x and y directions, qðx; y; tÞ the density, pðx; y; tÞ
the pressure, f the constant Coriolis acceleration due to the Earth’s rotation, and c ¼ cp=cv the constant ratio of specific heats.
Linearizing these equations about mean zero velocities, constant mean density q0 and constant mean pressure p0 (see, e.g.,
[20] or [23]), we get

otqþ q0ðoxuþ oyvÞ ¼ 0; ð2aÞ

otuþ
1
q0

oxp ¼ fv; ð2bÞ

otvþ
1
q0

oyp ¼ �fu; ð2cÞ

otpþ cp0ðoxuþ oyvÞ ¼ 0: ð2dÞ

At~x!1 the solution is known to be bounded and not to include any incoming waves. To complete the statement of the
problem, initial values for u, v, p and q are given at time t ¼ 0 in the entire domain.

Ω

ΓS

ΓN

ΓEΓW

x

y

Fig. 1. An open domain X truncated by artificial boundaries CN , CW , CS , and CE .
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We now truncate the infinite domain by introducing an artificial boundary C, with CN located at y ¼ yN , CW located at
x ¼ xW , CS located at y ¼ yS, and CE located at x ¼ xE (see dotted lines in Fig. 1). To obtain a well-posed problem in the finite
domain X we need, instead of the condition at infinity, a single boundary condition on each of the artificial boundaries
CN;W ;S;E. This should be a non-reflecting boundary condition (NRBC). We shall apply a high-order NRBC for the variables,
as described in the following section.

3. Higdon-type NRBCs

On the artificial boundaries C we use one of the Higdon NRBCs [19]. These NRBCs were presented and analyzed in a se-
quence of papers [13,15–18] for non-dispersive acoustic and elastic waves, and were extended in [19] for dispersive waves.
Their main advantages are as follows:

1. The Higdon NRBCs are very general, namely they apply to a variety of wave problems, in one, two, and three dimensions
and in various configurations.

2. They form a sequence of NRBCs of increasing order. This enables one, in principle (leaving implementational issues aside
for the moment), to obtain solutions with unlimited accuracy.

3. The Higdon NRBCs can be used, without any difficulty, for dispersive wave problems and for problems in stratified media.
Most other available NRBCs are either designed for non-dispersive media (as in acoustics and electromagnetics) or are of
low order (as in meteorology and oceanography).

The scheme used here is different than the original Higdon scheme [19] in the following ways:

1. The discrete Higdon conditions were developed in the literature up to third order only, because of their algebraic complex-
ity which increases rapidly with the order. Givoli and Neta [8] showed how to easily implement these conditions to an arbi-
trarily high order. The scheme is coded once and for all for any order; the order of the scheme is simply an input parameter.

2. The original Higdon conditions were applied to the Klein–Gordon linear wave equation and to the elastic equations. Here
we show how to apply them to the linearized Euler equations (2b).

3. The Higdon NRBCs involve some parameters which must be chosen. Higdon [19] discusses some general guidelines for
their manual a priori choice by the user. Neta et. al. [25] showed how a simple choice for these parameters can dramatically
simplify the calculations and enable implementation of NRBCs of much higher order with less computational overhead.

The Higdon NRBC of order J is

HJ :
YJ

j¼1

ðot þ CjoxÞ
" #

g ¼ 0 on CE; ð3Þ

where g represents any one of the state variables q;u; v; p. Here, the Cj are parameters which have to be chosen and which
signify phase speeds in the x-direction. The boundary condition (3) is exact for all waves that propagate with an x-direction
phase speed equal to any of C1 . . . CJ . This is easy to see from the reflection coefficient (see below). For the boundary CW we
replace ox by �ox. Likewise, on CN;S we use �oy. Givoli and Neta [8] and Dea et. al. [2] summarize several observations about
these NRBCs, most of which we omit here for brevity. One point is worth repeating: For the Klein–Gordon equation, Higdon
showed [19] that the reflection coefficient for an NRBC of order J can be given by

jRj ¼
YJ

j¼1

Cj � Cx

Cj þ Cx

����
����; ð4Þ

where Cx is the wave speed in the x direction. Note that this reflection coefficient is a product of J factors, each of which is less
than one. Consequently, increasing the order J of the NRBC will result in reduced reflections, even if the Cj values are sub-
optimal. We will take advantage of this fact when we discuss the NRBC discretization in Section 5, where we show that a
certain choice of Cj can reduce the computational complexity from Oð3JÞ to OðJ2Þ.

4. Equivalence of linearized Euler equations and Klein–Gordon equation

Higdon showed in [19] that this NRBC formulation is compatible with the Klein–Gordon (dispersive wave) equation

o2
t g� C2

0r2gþ f 2g ¼ 0: ð5Þ

Hence, if we can show that (2b) is equivalent to (5), we can claim that this NRBC formulation will be stable here.
Differentiate (2bd) with respect to t

ottpþ cp0ðoxtuþ oytvÞ ¼ 0: ð6Þ
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Now differentiate (2bb) with respect to x and (2bc) with respect to y and add

oxtuþ otyvþ 1
q0

oxxpþ oyyp
� �

¼ f ðoxv� oyuÞ: ð7Þ

Now substitute (7) into (6)

ottp�
cp0

q0
ðoxxpþ oyypÞ þ fcp0ðoxv� oyuÞ ¼ 0: ð8Þ

Differentiate (2bb) with respect to y and (2bc) with respect to x and subtract

oytu� oxtv ¼ f ðoyvþ oxuÞ: ð9Þ

If we substitute this result into the time derivative of (8), removing the r�~u term, and apply (2bd), we get an equation
for otp, which we can integrate over time to get

ottp�
cp0

q0
r2pþ f 2ðp� p0Þ ¼ 0; ð10Þ

which gives us the Klein–Gordon equation for the pressure perturbation p� p0 with wave speed
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cp0=q0

p
:

5. Discretization of NRBCs

The Higdon condition HJ is a product of J operators of the form ot þ Cjox. Consider the following finite difference approx-
imations (see e.g. [27]):

ot ’
I � S�t

dt
; ox ’

I � S�x
dx

: ð11Þ

In (11), dt and dx are, respectively, the time-step size and grid spacing in the x direction, I is the identity operator, and S�t
and S�x are backward shift operators defined by

S�t gn
pq ¼ gn�1

pq ; S�x gn
pq ¼ gn

p�1;q: ð12Þ
Here and elsewhere, gn

pq is the FD approximation of gðx; y; tÞ at grid point ðxp; yqÞ and at time tn. We use (11) in (3) to
obtain

YJ

j¼1

I � S�t
dt
þ Cj

I � S�x
dx

� �" #
gn

Eq ¼ 0: ð13Þ

Here, the index E corresponds to a grid point on the boundary CE. On the other open boundaries, the normal derivatives
and shift operators should be adjusted accordingly.

Givoli and Neta [8] showed how to implement the Higdon NRBCs to any order using a simple algorithm. Their algorithm
requires the summation of Oð3JÞ terms. However, if we make the simplification

Cj � C0 8j 2 1 . . . J; ð14Þ

then we can simplify the summation to

Z � aI þ bS�t þ cS�x
� �Jgn

Eq ¼
XJ

b¼0

XJ�b

c¼0

J!
a!b!c!

aabbccS�b
t S�c

x gn
Eq ¼ 0; ð15Þ

where

a ¼ 1� c;
b ¼ �1;

c ¼ �C0
dt
dx
;

a ¼ J � b� c:
This summation consists of only OðJ2Þ terms, reducing the computational time considerably. As shown in the discussion of

the reflection coefficient in Section 3, this choice of Cj will be less accurate than an optimized selection of Cj’s based on dis-
persive wave speeds; however, the results will still improve as we increase our order J: We accept the slight loss of accuracy
in exchange for the significant increase in speed. Note also that the J ¼ 1 case, with this choice of Cj, is the classic Sommerfeld
radiation condition. We choose this particular NRBC wave speed as a middle ground between the phase speeds of the dis-
persive waves and the lowered normal velocities associated with non-zero incidence angles.

6. Discretization in the interior

We consider explicit FD interior discretization schemes for the linearized Euler equations (2b) to be used in conjunction
with the HJ condition. The interaction between the HJ condition and the interior scheme is a source of concern, since simple
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choices for an explicit interior scheme turn out to give rise to instabilities. The effort to contrive a compatible discretization
scheme was described in [2] for the linearized Euler equations without Coriolis. There, we used a one-sided differencing
scheme for the interior, such that the discretized system was equivalent to the standard second-order centered-difference
scheme for the scalar wave equation in p, which Higdon proved in [19] was compatible with the NRBC formulation. However,
subsequent work has shown that adding the Coriolis terms to this scheme results in a system which cannot be converted to
the Klein–Gordon equation. Hence, another approach is needed.

Let us reconsider a second-order centered-difference (leap-frog) scheme,

g0ðaÞ � gðaþ daÞ � gða� daÞ
2da

; ð16Þ

where g denotes any of our four state variables, and a denotes any of our spatial or temporal variables. Using the shift oper-
ator notation from the preceding section, we define our difference approximations as

Da ¼
Sþa � S�a

2da
; ð17Þ

a 2 fx; y; tg:

From this definition, we propose the following discretization scheme for (2b):

Dtqþ q0ðDxuþ DyvÞ ¼ 0; ð18aÞ

Dtuþ
1
q0

Dxp ¼ fv; ð18bÞ

Dtvþ
1
q0

Dyp ¼ �fu; ð18cÞ

Dtpþ cp0ðDxuþ DyvÞ ¼ 0: ð18dÞ

Apply Dx to (18bb), Dy to (18bc), Dt to (18bd), and make the appropriate substitution. This gives us

DtDtp ¼
cp0

q0
ðDxDxpþ DyDypÞ � fcp0ðDxv� DyuÞ: ð19Þ

If f ¼ 0, then this discretization is equivalent to a scalar wave discretization. Hence, in the absence of Coriolis forces, the dis-
cretization scheme (18b) is compatible with the discrete Higdon NRBCs (as modified below).

Continuing our derivation, we apply Dy to (18bb) and Dx to (18bc), then subtract and combine terms to get

Dt Dyu� Dxv
� �

¼ f Dyvþ Dxu
� �

: ð20Þ

We then substitute (18bd) into this result to get

DtðDyu� DxvÞ ¼ � f
cp0

Dp: ð21Þ

If we apply Dt to (19) and incorporate (21), we get

Dt DtDtp�
cp0

q0
DxDxpþ DyDyp
� �

þ f 2p
� 	

¼ 0: ð22Þ

Thus, the quantity inside the brackets is constant from one time step to the next. Since this equation applies to our initial
state, then the quantity within the brackets must initially be zero and thus remain zero always; hence

DtDtp ¼
cp0

q0
ðDxDxpþ DyDypÞ � f 2p: ð23Þ

If we expand our D½x;y;t� symbols into their corresponding shift operators and apply them to the state variable p, we see
that (23) is actually

pnþ2
i;j � 2pn

i;j þ pn�2
i;j

ð2dtÞ2
¼ cp0

q0

pn
iþ2;j � 2pn

i;j þ pn
i�2;j

ð2dxÞ2
þ

pn
i;jþ2 � 2pn

i;j þ pn
i;j�2

ð2dyÞ2

 !
� f 2pn

i;j: ð24Þ

This equation is the standard second-order centered-difference scheme for the Klein–Gordon equation on a double-sized
grid. Hence, the appropriate discretization for the Higdon scheme is not (11) but

ot ’
I � S�2

t

2dt
; ox ’

I � S�2
x

2dx
: ð25Þ

Remark 1. This scheme cannot resolve the shortest wavelengths resolvable by the interior scheme. Rather, it treats a
particular wave as an overlap of two waves, each with twice the wavelength of the original wave, and it resolves the waves
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on alternating time steps (see Fig. 2). Despite this apparent deficiency, we have observed no loss of stability even in a
contrived example featuring such short wavelengths.

7. Numerical example

Let us consider a simple numerical example. We look at a square domain 10 km on each side, subdividing it into a
100� 100 computational domain with the Higdon-like NRBCs on all four sides (see Fig. 1). We define the NRBC for all four
state variables, because we use a centered-difference discretization. A one-sided discretization scheme would enable us to
use a natural boundary condition on one side or another, but previous experiments have shown that such a scheme is
unstable.

Using a mean atmoshperic density of 1.2 kg/m3 and pressure of 1.01 � 105 N/m2 [12], a Coriolis value of
f = 7.292116 � 10�5 rad/s [28], and zero advection, our initial condition is a cosine bubble in the center of the domain

p0
x;y ¼

p0 1þ cos p
2

d
rð Þ

100

� �
: d � r

p0 : otherwise

8<
:

q0
x;y ¼

q0
p0

x;y

p0


 �cv
cp

: d � r

q0 : otherwise;

8<
:

ð26Þ

where

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� xCÞ2 þ ðy� yCÞ

2
q

;

r ¼ 1 km;

and xC and yC denote the center of the domain. The initial condition for q is chosen to maintain constant potential temper-
ature with the pressure perturbation [3]. For comparison, our reference solution domain is 30 km wide and 30 km high, with
the domain of interest in the center. We define the normalized error norm for each state variable g as

Eg ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPNx
i¼1

PNy

j¼1ðgJði; jÞ � g0ði; jÞÞ
2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPNx

i¼1

PNy

j¼1g0ði; jÞ
2

q ; ð27Þ

where Nx;Ny are the number of grid points in the x and y directions, respectively, gJ is a solution state variable using the J-
order NRBC, and g0 is the reference solution. We divide by the norm of g0 so that the error norms of each state variable are
approximately the same order of magnitude. Our time step is set to 90% of the maximum dt allowed by the CFL limit, where
the CFL limit is

C0
dt
dx

� �2

þ C0
dt
dy

� �2

� 1; ð28Þ

where C0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cp0=q0

p
is the acoustic wave speed. Using the discretization scheme (18b), we run the simulation up to t ¼ 24,

long enough for the primary wave to exit the computational domain with the wave trough just passing through the corners.
Figs. 3–6 show the four state variables at the end of the run for J ¼ 10: Fig. 7 compares the state variable u at the end of the
J ¼ 1 and J ¼ 10 cases; note the dramatic reduction in spurious reflection in the J ¼ 10 case. (We have observed here that if
the order is increased beyond J ¼ 10, numerical instabilities appear which destroy the solution. We observed the same insta-
bility for J > 10 in developing the numerical examples of [25] for the Klein–Gordon equation. The cause is unknown but is

Fig. 2. A computational wave (red) interpreted as an overlap of two longer-wavelength waves (green and blue). (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
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suspected to be due to round-off errors associated with small individual values in the summation of the high-order deriv-
atives.) Table 1 and Fig. 8 shows the error norms (27) for each state variable as J goes from 1 to 10.

Fig. 3. The solution for the density q using J ¼ 10. (TL) Computed solution using NRBCs. (Right) Reference solution. (CL) Reference solution domain
corresponding to NRBC solution domain. (BL) Delta between computed and reference solutions, with error norm computed by (27).

Fig. 4. The solution for the x-direction velocity u using J ¼ 10. (TL) Computed solution using NRBCs. (Right) Reference solution. (CL) Reference solution
domain corresponding to NRBC solution domain. (BL) Delta between computed and reference solutions, with error norm computed by (27).

216 J.R. Dea et al. / Wave Motion 46 (2009) 210–220
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One note about the time step: we have found experimentally that if dt is set to exactly the CFL limit, then the error
norm for J ¼ 10 is only approximately 55% the J ¼ 1 error norm. On the other hand, if we use exactly half the CFL limit
for our dt, then the error norm reduction is on the order of 99.5%. We chose 90% of the maximum dt as a compromise
between increased accuracy and increased time step size. The reason for the improved NRBC performance with smaller
dt is unknown, but it may be similar to the ‘‘safety factor” recommended by Tannehill et al. for the non-linear Navier–
Stokes equations (see p. 627 of [27]). Analysis of this particular aspect of the NRBC performance will be addressed in
future research.

8. Areas for further research

The preceding example demonstrates, in a limited setting, that high-order Higdon NRBCs are compatible with the line-
arized Euler equations. However, there are far more areas to explore in this implementation. The following list shows some
of the areas available for future research, some of which are currently under investigation by the authors:

1. Thorough investigation of the long-time stability for large J.
2. Extending the scheme to the case of the linearized Euler equations with Coriolis and nonzero mean flow (advection).
3. Thorough investigation of the relationship between the time step size (the Courant number) and the NRBC performance

for large J.
4. Extending the scheme to the full 3-D system, including the effects of gravity.
5. Implementing the scheme with auxiliary variables, using high-order finite differences and finite elements, using both the

Givoli–Neta AV formulation [10] and the Hagstrom–Warburton variation [11].
6. Extending the scheme to permit incoming waves, for example, in a nested mesoscale model.
7. Experimenting with the use of the NRBC with the non-linear Euler equations (1) in the computational domain. (Need to

find a stable interior scheme-NRBC combination.)

9. Conclusion

In this paper, we have shown that Higdon-type NRBCs are compatible with the linearized Euler equations with Coriolis
and zero mean flow. These NRBCs provide greater accuracy (reduced spurious reflection) than the basic Sommerfeld bound-
ary condition. A prototypical implementation was developed, and a numerical example demonstrating the capabilities of the
scheme was provided.

Fig. 5. The solution for the y-direction velocity v using J ¼ 10. (TL) Computed solution using NRBCs. (Right) Reference solution. (CL) Reference solution
domain corresponding to NRBC solution domain. (BL) Delta between computed and reference solutions, with error norm computed by (27).
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Fig. 6. The solution for the pressure p using J ¼ 10. (TL) Computed solution using NRBCs. (Right) Reference solution. (CL) Reference solution domain
corresponding to NRBC solution domain. (BL) Delta between computed and reference solutions, with error norm computed by (27).

Fig. 7. A comparison of solutions for u using J ¼ 1 and J ¼ 10. (TL) Computed solution using J ¼ 1. (TR) Computed solution using J ¼ 10. (BL) Delta between
reference solution and J ¼ 1 solution, with error norm computed by (27). (BR) Delta between reference solution and J ¼ 10 solution, with error norm
computed by (27).
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