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1. Introduction

There aremany iterativemethods for the solution of a single nonlinear equation [1,2]. Most are for simple roots and a few
are for a repeated root. Here we are only interested in methods for repeated roots. In fact, we will not discuss derivative-free
methods or methods with memory.

The usual technique of comparing a newmethod to existing ones, is by comparing the performance on selected problems
using one or two initial points or by comparing the efficiency index (see [1]). In recentwork, one can find a visual comparison,
by plotting the basins of attraction for the methods. The idea of using basins of attraction appeared first in Stewart [3] and
followedby theworks of Amat et al. [4,5], and [6], Scott et al. [7], Chicharro et al. [8], Chun et al. [9–12], Cordero et al. [13], Neta
et al. [14,15], Argyros and Magreñan, [16], Magreñan, [17] and Geum et al. [18–20] and [21]. In later works [11,12,22–24],
we have introduced a more quantitative comparison, by listing the average number of iterations per point, the CPU time
and the number of points requiring 40 iterations. We have also discussed methods to choose the parameters appearing in
the method and/or the weight function (see, e.g. [25]). The only papers comparing basins of attraction for methods to obtain
multiple roots are due to Geum et al. [18,19] and [20], Neta et al. [26], Neta and Chun [27–29], and Chun and Neta [30,31].

First we list the methods we consider here with their order of convergence (p), number of function- (and derivative-)
evaluations per step (ν) and efficiency (I).

(1) A method of order 1.5 for double roots (p = 1.5, ν = 3, I = 1.1447)
(2) Modified Newton’s method (also known as Schröder’s method) (p = 2, ν = 2, I = 1.4142)
(3) Halley or Hansen–Patrick (p = 3, ν = 3, I = 1.4422)
(4) Victory–Neta (p = 3, ν = 3, I = 1.4422)
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(5) Neta (Chebyshev-based method) (p = 3, ν = 3, I = 1.4422)
(6) Dong (4 methods) (p = 3, ν = 3, I = 1.4422)
(7) Osada (p = 3, ν = 3, I = 1.4422)
(8) Laguerre (p = 3, ν = 3, I = 1.4422)

• Euler–Cauchy
• Halley
• Ostrowski
• Hansen–Patrick

(9) Chun and Neta (p = 3, ν = 3, I = 1.4422)
(10) Chun–Bae–Neta (p = 3, ν = 3, I = 1.4422)
(11) Li et al. (6 methods) (p = 4, ν = 3, I = 1.5874)
(12) Kanwar et al. (p = 4, ν = 3, I = 1.5874)
(13) Zhou et al. (p = 4, ν = 3, I = 1.5874)
(14) Liu and Zhou (p = 4, ν = 3, I = 1.5874)
(15) Sbibih et al. (p = 4, ν = 3, I = 1.5874)
(16) Soleymani (p = 4, ν = 3, I = 1.5874)
(17) Geum et al. (p = 4, ν = 3, I = 1.5874).
(18) Geum et al. (p = 6, ν = 4, I = 1.5651)
(19) Geum et al. (p = 6, ν = 4, I = 1.5651)
(20) Geum et al. (p = 8, ν = 4, I = 1.6818).

(1) A method of order 1.5 for double roots given by Werner [32]

yn = xn − un,

xn+1 = xn − snun,
(1)

where

sn =

⎧⎪⎨⎪⎩
2

1 +
√
1 − 4rn

if rn ≤
1
4

1
2rn

otherwise.

We always use

un =
fn
f ′
n
, (2)

rn =
f (yn)
fn

, (3)

and f (i)n is short for f (i)(xn), i = 1, 2, . . ..

Remark. We will not experiment with this method, since it is of a low order and limited to the case of double roots.
One can see the basins for this method for the case of (z2 − 1)2 in [26].

(2) The quadratically convergent modified Newton’s method is (see Schröder [33] or Rall [34])

xn+1 = xn − mun. (4)

(3) The cubically convergent Halley’s method [35] which is a special case of the Hansen and Patrick’s method [36]

xn+1 = xn −
un

m+1
2m −

unf ′′n
2f ′n

. (5)

(4) The third order method developed by Victory and Neta [37]

yn = xn − un,

xn+1 = yn −
f (yn)
f ′
n

1 + Arn
1 + Brn

,
(6)

where

A = µ2m
− µm+1,

B = −
µm(m − 2)(m − 1) + 1

(m − 1)2
,

µ =
m

m − 1
.

(7)
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(5) The third order method developed by Neta [38] and based on Chebyshev’s method (see [39–41]).

yn = xn − αun,

xn+1 = xn − un

[
β + γ

f (yn)
fn

]
,

(8)

where

α =
1
2
m(m + 3)
m + 1

,

β =
m3

+ 4m2
+ 9m + 2

(m + 3)2
,

γ =
2m+1(m2

− 1)

(m + 3)2
(m−1
m+1

)m .

(6) The four third order methods developed by Dong [42] and [43]:

(a) Dong1

yn = xn −
√
mun,

xn+1 = yn − m
(
1 −

1
√
m

)1−m f (yn)
f ′
n

,
(9)

(b) Dong2

yn = xn − un,

xn+1 = yn +
un rn

rn −
(
1 −

1
m

)m−1 , (10)

(c) Dong3

yn = xn − un,

xn+1 = yn −
fn( m

m−1

)m+1f ′(yn) +
m−m2−1
(m−1)2

f ′
n

, (11)

(d) Dong4

yn = xn −
m

m + 1
un,

xn+1 = yn −

m
m+1 fn(

1 +
1
m

)m
f ′(yn) − f ′

n

.
(12)

(7) The third order method due to Osada [44]

xn+1 = xn −
1
2
m(m + 1)un +

1
2
(m − 1)2

f ′
n

f ′′
n

. (13)

(8) Laguerre’s family of methods

xn+1 = xn −
λun

1 + sgn(λ − m)
√(

λ−m
m

) [
(λ − 1) − λ

unf ′′(xn)
f ′(xn)

] (14)

where λ (̸= 0, m) is a real parameter. When f (x) is a polynomial of degree n, this method with λ = n is the ordinary
Laguerre method for multiple roots, see Bodewig [45]. This method converges cubically. Some special cases are:

• Euler–Cauchy for λ = 2m

xn+1 = xn −
2mun

1 +

√
(2m − 1) − 2m unf ′′(xn)

f ′(xn)

. (15)

• Halley for λ → 0 after rationalization

xn+1 = xn −
un

m+1
2m −

unf ′′(xn)
2f ′(xn)

. (16)



14 C. Chun, B. Neta / Journal of Computational and Applied Mathematics 340 (2018) 11–42

• Ostrowski for λ → ∞

xn+1 = xn −

√
mun√

1 −
unf ′′(xn)
f ′(xn)

. (17)

• Hansen–Patrick family [36] for λ = m(1/ν + 1)

xn+1 = xn −
m(ν + 1)un

ν +

√(
m(ν + 1) − ν

)
− m(ν + 1) unf

′′(xn)
f ′(xn)

. (18)

Petković et al. [46] have shown the equivalence between Laguerre family (14) and Hansen–Patrick family (18). When
λ → m the method becomes second order given by (4).
Neta and Chun [27] have shown that the best method of Laguerre family is Euler–Cauchy.

(9) Chun and Neta third order [47], denoted CN3,

xn+1 = xn −
2m2u2

nf
′′(xn)

m(3 − m)unf ′′(xn) + (m − 1)2f ′(xn)
. (19)

(10) Chun, Bae and Neta [48]
Two new third-order families of methods for multiple roots.

(a) CBN1

xn+1 = xn −
m[(2θ − 1)m + 3 − 2θ ]

2
un +

θ (m − 1)2

2
f ′(xn)
f ′′(xn)

−
(1 − θ )m2

2
u2
nf

′′(xn)
f ′(xn)

,

(20)

(b) CBN2

yn = xn − un,

xn+1 = yn + θ
unrn

rn − (1 −
1
m )m−1

− (1 − θ )
f (yn)
f ′(xn)

1 + Arn
1 + Brn

,
(21)

where A and B are given by (7).

(11) The six fourth order methods developed by Li et al. [49] and based on the results of Neta and Johnson [50] and
Neta [51].

(a) LCN1

yn = xn −
2m

m + 2
un,

zn = xn −
2m

m + 2
un + 2(

m
m + 2

)mvn,

xn+1 = xn −
f (xn)

a1f ′(xn) + a2f ′(yn) + a3f ′(zn)
,

(22)

where we always use

vn =
fn

f ′(yn)
, (23)

and

a1 = −
1
16

3m4
+ 16m3

+ 40m2
− 176

m(m + 8)
,

a2 =
1
8
m4

+ 3m3
+ 10m2

− 4m + 8
( m
m+2 )

mm(m + 8)
,

a3 =
1
16

m5
+ 6m4

+ 8m3
− 16m2

− 48m − 32
m2(m + 8)

.
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(b) LCN2

yn = xn −
2m

m + 2
un,

zn = xn − 2(
m

m + 2
)mvn,

xn+1 = xn −
f (xn)

a1f ′(xn) + a2f ′(yn) + a3f ′(zn)
,

(24)

where

a1 =
1
8
m6

− m5
− 14m4

+ 12m3
+ 48m2

− 80m + 32
m(m3 + 2m2 − 8m + 4)

,

a2 = −
m
16

3m4
− 6m3

− 20m2
+ 40m − 16

( m
m+2 )

m(m3 + 2m2 − 8m + 4)
,

a3 =
1
16

m3(m2
− 4)

( m
m+2 )

m(m3 + 2m2 − 8m + 4)
.

(c) LCN3

yn = xn −
2m

m + 2
un,

zn = xn −
2m

m + 2
un + 2(

m
m + 2

)mvn,

xn+1 = xn − a1un − a2vn − a3
f (xn)
f ′(zn)

,

(25)

where

a1 =
m
8

m4
+ 4m3

− 8m + 48
m2 + 2m + 6

,

a2 =
1
4

( m
m+2 )

mm(m3
+ 12m2

+ 36m + 32)

m2 + 2m + 6
,

a3 = −
1
8
m2(m3

+ 6m2
+ 12m + 8)

m2 + 2m + 6
.

(d) LCN4

yn = xn −
2m

m + 2
un,

zn = xn − 2(
m

m + 2
)mvn,

xn+1 = xn − a1un − a2vn − a3
f (xn)
f ′(zn)

,

(26)

where

a1 = −
1
4
m(2m4

− m3
− 12m2

+ 20m − 8)
m2 − 4m + 2

,

a2 =
1
8

( m
m+2 )

mm(5m4
+ 10m3

− 16m2
− 24m + 16)

m2 − 4m + 2
,

a3 = −
1
8

m3(m + 2)2( m
m+2 )

m

m2 − 4m + 2
.

(e) LCN5

yn = xn −
2m

m + 2
un,

xn+1 = xn − a3vn −
un

b1 + b2tn
,

(27)

where

tn =
f ′(yn)
f ′(xn)

(28)
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and

a3 = −
1
2

( m
m+2 )

mm(m4
+ 4m3

− 16m − 16)

m3 − 4m + 8
,

b1 = −
(m3

− 4m + 8)2

m(m4 + 4m3 − 4m2 − 16m + 16)(m2 + 2m − 4)
,

b2 =
m2(m3

− 4m + 8)
( m
m+2 )

m(m4 + 4m3 − 4m2 − 16m + 16)(m2 + 2m − 4)
.

(f) LCN6

yn = xn −
2m

m + 2
un,

xn+1 = xn − a3un −
un

b1 + b2tn
,

(29)

where

a3 = −
1
2
m2

+ m,

b1 = −
1
m

, b2 =
1

m( m
m+2 )

m .

(12) The fourth-order family of methods by Kanwar et al. [52] is given by

yn = xn −
2m

m + 2
un

1 − pun
,

xn+1 = xn −
un

1 − pun
Q

(
tn + h

τ − pun

)
,

(30)

where Q is a real valued weight function satisfying

Q (µ) = m,

Q ′(µ) = −
m3

( m
m+2

)−m

4(1 + m)
,

Q ′′(µ) =
m4

( m
m+2

)−2m

4(m + 1)2
,

|Q ′′′(µ)| < ∞,

(31)

and

µ =
2(m + 1)
m + 2

(
m

m + 2

)m−1

=
2(m + 1)

m

(
m

m + 2

)m

,

τ =
1

m + 1
,

h = −

(
m

m + 2

)m

.

(32)

Remark. The authors gave an erroneous value of µ which is corrected in [30].
The authors considered three members of the family. In all cases the parameter p is taken as ±1 so that there is no
subtraction in the denominator. The third member chosen by Kanwar et al. was a quadratic polynomial for Q . It will
not be considered here, since Chun and Neta [29] have shown that such a choice will give inferior results.

• KBK1

Q (t) =
A
t

+ B, (33)
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where

A = m(1 + m)
(

m
m + 2

)m

,

B = −
m(m − 2)

2
.

(34)

• KBK2

Q (t) =
A

(t + C)2
+ B, (35)

where

A =
27
8

(m + 1)2
(

m
m + 2

)2m

,

B = −
3
8
m2

+ m,

C =
m + 1
m

(
m

m + 2

)m

.

(36)

(13) The method presented by Zhou et al. [53]

yn = xn −
2m

m + 2
un,

xn+1 = xn − φ(tn)un,

(37)

where φ is at least twice differentiable function satisfying the following conditions

φ(λ) = m,

φ′(λ) = −
1
4
m3

(
m + 2
m

)m

,

φ′′(λ) =
1
4
m4

(
m + 2
m

)2m

,

(38)

and λ =
( m
m+2

)m−1
, we will consider the following functions:

• ZCS1 [29]

φ(t) =
b + ct + dt2

1 + at + gt2
. (39)

where

b =
m
8

((m + 2)2λma + (m + 2)λ2m2g + m3
+ 6m2

+ 8m + 8),

c = −
m
4λ

((m3
+ 3m2

+ 2m − 4)λa + (m2
+ m − 2)λ2mg

+m(m + 2)(m + 3)),

d =
m
8λ2 (m2(m + 2)λa + (m3

− 4m + 8)λ2g + m(m + 2)2),

(40)

with a = −4, g = 0.
• ZCS2 [29]

Same weight function φ given by (39) with a = −6.01, g = 8.04.
• ZCS3 [53]

φ(t) =
B + Ct
1 + At

, (41)

where A = −
(m+2

m

)m
, B = −

m2

2 , C =
1
2m(m − 2)

(m+2
m

)m
.

(14) There are two other optimal fourth order methods from the family developed by Liu and Zhou [54]

yn = xn − mun,

xn+1 = xn − mH(wn)un,
(42)



18 C. Chun, B. Neta / Journal of Computational and Applied Mathematics 340 (2018) 11–42

where

wn =
(m−1)√tn

and H(0) = 0, H ′(0) = 1, H ′′(0) =
4m
m−1 .

The two members given there are

• LZ11 (Liu and Zhou [54])

yn = xn − mun,

xn+1 = yn − m
(

wn +
2m

m − 1
w2

n

)
un,

(43)

• LZ12 (Liu and Zhou [54])

yn = xn − mun,

xn+1 = yn +
(m − 1)mwn

1 − m + 2mwn
un.

(44)

(15) Sbibih et al. [55] SSTZ

yn = xn − µun,

xn+1 = xn − φ(rn)un,
(45)

where the weight function φ is a complex function, and µ is a non-zero real or complex number. They have shown
that the family is of order three, form ≥ 2, and of order four for simple roots, if the function φ satisfies the following
conditions:

φ(tm) = m

φ′(tm) =
1

tm−1(1 − t)2⏐⏐⏐⏐( 1
φ′

)′

(tm)
⏐⏐⏐⏐ < ∞

(46)

where t = 1 −
µ

m .

They have also demonstrated that the following methods are special cases:

• Dong3 and Dong4 [43]
• Victory and Neta [37]
• Neta [38]
• Chun and Neta [47]
• Homeier [56]
• Geum and Kim [57]
• Kim and Geum [58].

The authors picked 4 different weight functions

• SSTZ1

φ(x) = ax + b

a =
1

tm−1(1 − t)2

b = m −
t

(1 − t)2

(47)

• SSTZ2

φ(x) =
a

b − x
a = m2tm−1(1 − t)2

b = mtm−1(1 − t)2 + tm

(48)

• SSTZ3

φ(x) = x2 + ax + b

a =
1

tm−1(1 − t)2
− 2tm

b = m + t2m −
t

(1 − t)2

(49)
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• SSTZ4

φ(x) =
x2 + ax + b
(1 − x)2

a = −2tm − 2m(1 − tm) +
(1 − tm)2

tm−1(1 − t)2

b = t2m + m(1 − t2m) −
t(1 − tm)2

(1 − t)2
.

(50)

(16) Soleymani and Babajee [59], denoted SB,

yn = xn −
2m

m + 2
un,

xn+1 = xn +
4md

d(m2 + 2m − 4) − m2tn

[
1 −

m3(m − 2)
16d2

(tn −
m + 2
m

d)2
]
un

(51)

where d = ( m
m+2 )

m.

(17) Geum et al. [20]
A fourth order family of methods

yn = xn − γ un, γ is a real number,
xn+1 = xn − Qf (s)un,

(52)

where s = t1/kn , k is integer, tn given by (28) and γ = 2m/(m + 2); Qf is analytic in a neighborhood of λ with λ

is real number to be determined later for optimal quartic-order convergence. Since s is a one-to-k multiple-valued
function, we consider its principal analytic branch [60]. Hence, it is convenient to treat s as a principal root given by
s = exp[

1
k Log(tn)], with Log(tn) = Log

⏐⏐tn⏐⏐ + i Arg(tn) for −π < Arg(tn) ≤ π ; this convention of Arg(z) for complex z
agreeswith that of Log[z] command ofMathematica [61] to be adopted in numerical experiments. Bymeans of further
inspection of s, we find that λ is characterized in such a way that s =

⏐⏐tn⏐⏐1/k · exp[
i
k Arg(tn)] = λ + O(en).

Several possible weight functions were suggested in [20] and found that the following performed best:

• GKN2A1

Qf (s) =
m + a2(s − ρ)
1 + b2(s − ρ)

(53)

where

a2 =
µ

4ρ

b2 =
δ

2ρ

with µ = m(2 + 2m − m3), δ = 1 + m + m2, ρ =
( m
m+2

)1−1/m

• GKN2A2

Qf (s) =
m + a2(s − ρ)
1 + b2(s − ρ)

(54)

where a2, and b2 are given as in GKN2A1 and µ = m(8+ 2m− 3m2
−m3), δ = (m+ 2)2, ρ =

( m
m+2

)(m−1)/(m+3)

• GKN2C

Qf (s) =
m + a3(s − ρ)2

1 + b3(s − ρ)
(55)

where

a3 =
τµ

16ρ2

b3 =
τ

4ρ
with

µ = m(8 + 2m − 3m2
− m3), τ = m(m + 2)(m + 3), ρ =

(
m

m + 2

)(m−1)/(m+3)

.
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Table 1
The function Hf for each of the methods.

Method Hf

Werner sn
Schröder m

Halley 1
m+1
2m −

1
2 un

f ′′n
f ′n

Victory–Neta 1 + rn 1+Arn
1+Brn

N3 β + γ rn

Dong1
√
m + m

(
1 −

1
√
m

)1−m
rn

Dong2 1 −
rn

rn−

(
1− 1

m

)m−1

Dong3 1 +
f ′(xn)(

m
m−1

)m+1
f ′(yn)+ m−m2−1

(m−1)2
f ′(xn)

Dong4 m
m−1 +

m
m+1 f ′(xn)(

1+ 1
m

)m
f ′(yn)−f ′(xn)

Osada 1
2m(m + 1) −

1
2 (m − 1)2 f ′(xn)2

f ′′(xn)f (xn)

Euler–Cauchy 2m

1+
√
(2m−1)−2m unf ′′ (xn )

f ′ (xn )

CN3 2m2un f ′′(xn)
m(3−m)un f ′′(xn)+(m−1)2 f ′(xn)

CBN1 m[(2θ−1)m+3−2θ ]

2 −
θ (m−1)2

2
f ′(xn)2

f (xn)f ′′(xn)
+

(1−θ )m2

2 un
f ′′(xn)
f ′(xn)

Table 2
The function Hf for each of the methods.

Method Hf

LCN6 a3 +
1

b1+b2 tn
SSTZ2 a

b−rn

SB 1 −
m3(m−2)

16d2
(
tn −

m+2
m d

)2
GKN2A1 Qf (s)
GKN2A2 Qf (s)
GKN2C Qf (s)

GKN4C m + Qf (s, q) rntn
GKN5YD Kf (s, q)

WI3X Lf (s) + Kf (s, v)

(18) Geum et al. sixth order [19]
A family of two-point sixth-order multiple-zero finders of modified double-Newton type⎧⎨⎩yn = xn − mun,

xn+1 = yn − Qf (s, q) ·
f (yn)
f ′(yn)

,
(56)

where the desired form of the weight function Qf using only two-point functional information at xn and yn,
with

s =

(
f (yn)
f (xn)

)1/m

and

q =

(
f ′(yn)
f ′(xn)

)1/(m−1)

.
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Fig. 1. The top row for Schröder’s method. Second row for Halley (left), Victory–Neta (center) and N3 (right). Third row for Dong1 (left), Dong2 (center),
and Dong3 (right). Fourth row for Dong4 (left), Osada (center), and Euler–Cauchy (right). Bottom row for CN3 (left) and CBN1 (right) for the roots of the
polynomial (z2 − 1)2 . (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Table 3
Extraneous fixed points for each of the methods.

Method Extraneous fixed points Stability

Werner None
Schröder None
Halley None
Victory–Neta ±.304883324753541 ± .218806866816708i, All repulsive

±.236865602520895 ± .0485319817905315i,
N3 ±.496010694841520 ± .247226513585838i All repulsive
Dong1 ±.411795739431937 ± .180936391794009i All repulsive
Dong2 0, 0, 0, 0 Parabolic
Dong3 ±.365828568271531, ±.824187531341104i All repulsive
Dong4 ±.2, ±.4472135955i All repulsive
Osada ±.6546536707 All repulsive
Euler–Cauchy None
CN3 ±.5773502692 Repulsive
CBN1 ±.5278690810 ± .04826983348i All repulsive but almost parabolic
LCN6 None
SSTZ2 0, 0, 0, 0, ±1, ±1 All parabolic
SB 0, 0, 0, 0 All parabolic
GKN2A1 ±.191563 ± .158752i Repulsive
GKN2A2 ±.202398 ± .164549i Repulsive
GKN2C ±.349353, ±.675194i Repulsive
GKN4C ±.286835 ± .655947i, ±.240302i, ±.620034, ±.650152 Repulsive
GKN5YD ±1.29099i, ±i, ±.57735i, ±.377964i Repulsive
WI3X 0(double), ± i, ±2.41421i, ± 414214i Indifferent

Table 4
Average number of function evaluations per point for each example (1–9) and each of the methods.

Method Ex1 Ex2 Ex3 Ex4 Ex5 Ex6 Ex7 Ex8 Ex9 Average

Schröder 11.65 15.21 15.21 14.62 28.30 22.22 14.81 28.30 20.37 18.97

Halley 11.63 13.31 13.31 14.71 18.57 16.04 13.18 18.57 15.74 15.01
Victory–Neta 12.41 18.27 15.99 15.11 27.69 24.79 14.35 30.30 21.69 20.07
N3 12.62 21.43 22.34 17.55 41.81 34.95 17.87 41.96 32.42 27.0
Dong1 12.94 20.45 20.44 17.67 39.31 33.37 17.10 40.41 29.60 25.7
Dong2 11.92 18.65 16.42 14.8 25.79 22.75 13.99 26.72 21.24 19.14
Dong3 11.11 15.08 11.62 12.84 16.58 13.81 11.13 16.31 14.03 13.61
Dong4 10.27 11.77 12.30 13.50 18.26 15.00 12.03 17.99 14.84 14.0
Osada 14.72 19.89 18.95 18.54 37.49 28.90 18.10 37.95 26.23 24.53
Euler–Cauchy 3.00 11.44 11.43 12.44 22.05 16.83 10.40 22.05 14.22 13.76
CN3 14.14 19.22 16.55 16.88 30.13 29.17 16.73 37.26 20.24 22.26
CBN1 13.29 18.54 18.36 18.1 37.05 29.38 16.65 37.63 26.86 23.99

LCN6 13.26 19.92 13.78 13.87 23.93 17.80 13.24 22.85 18.47 17.46
SSTZ2 11.63 15.22 14.44 14.76 23.05 19.94 15.26 24.15 18.47 17.44
SB 13.26 19.92 14.67 14.04 26.10 21.48 13.36 26.32 19.83 18.78
GKN2A1 10.24 12.46 13.83 13.89 24.29 17.91 13.08 22.90 18.57 16.35
GKN2A2 10.19 12.37 13.82 13.89 24.29 17.98 13.07 22.97 18.57 16.35
GKN2C 10.04 12.17 13.29 13.69 24.18 18.36 12.60 23.44 17.85 16.18

GKN4C 32.70 35.78 35.32 35.42 50.02 39.99 31.13 48.06 59.73 40.91
GKN5YD 15.31 16.76 27.49 24.23 41.55 26.76 20.36 33.46 35.48 26.82

WI3X 11.44 14.36 35.08 17.80 45.32 16.68 25.28 34.40 46.92 27.48

Four different families were suggested by the authors and experimented with. It was found that the best is GKN4C,
where

Qf (s, q) =
m + a1s

1 + b1s + b2s2
×

1
1 + c1q

, (57)

where a1 =
2m(4m4

−16m3
+31m2

−30m+13)
(m−1)(4m2−8m+7)

, b1 =
4(2m2

−4m+3)
(m−1)(4m2−8m+7)

, b2 = −
4m2

−8m+3
4m2−8m+7

and c1 = 2(m − 1).
(19) Geum et al. [21]

Another family of sixth order three-point iterative methods⎧⎨⎩
yn = xn − mun,

zn = xn − m · Qf (s)un,

xn+1 = xn − m · Kf (s, q)un,

(58)
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Fig. 2. The top row for LCN6 (left), SSTZ2 (center), and SB (right). Second row for GKN2A1 (left), GKN2A2 (center) and GKN2C (right). Bottom row for GKN4C
(left), GKN5YD (center) and WI3X (right) for the roots of the polynomial (z2 − 1)2 . (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

Table 5
CPU time (in seconds) required for each example (1–9) and each of the methods.

Method Ex1 Ex2 Ex3 Ex4 Ex5 Ex6 Ex7 Ex8 Ex9 Average

Schröder 151.48 252.85 306.87 282.13 865.09 537.69 322.77 862.42 454.57 448.43

Halley 176.92 284.34 353.00 383.79 804.44 536.46 413.37 734.09 524.13 467.84
Victory–Neta 251.26 456.80 477.19 454.95 1248.66 891.89 523.93 1409.11 802.02 723.98
N3 179.70 373.70 449.47 364.78 1274.11 846.97 447.44 1409.28 780.99 680.72
Dong1 239.95 447.79 448.46 373.36 1288.02 1001.82 502.24 1502.98 871.75 741.82
Dong2 212.36 435.79 466.71 400.77 1065.32 760.86 463.42 1146.11 678.36 625.52
Dong3 171.82 312.00 297.65 311.32 644.78 424.68 323.90 614.42 405.95 389.61
Dong4 166.53 255.97 317.80 346.21 707.31 450.48 354.78 700.32 462.26 417.96
Osada 188.70 373.98 467.52 440.58 1441.29 876.32 524.98 1354.32 775.47 715.91
Euler–Cauchy 110.84 422.97 488.28 497.10 1284.76 789.51 483.74 1222.44 678.03 664.18
CN3 242.99 485.59 563.83 592.74 1604.36 1163.50 658.07 1786.29 829.05 880.71
CBN1 269.24 542.73 728.32 697.39 2202.41 1349.16 767.65 2070.65 1224.64 1094.69

LCN6 225.19 428.52 356.59 358.72 928.92 558.40 397.55 832.61 562.60 516.57
SSTZ2 190.54 228.23 333.45 320.96 725.45 530.36 394.10 733.97 467.24 442.70
SB 240.44 448.02 399.55 388.44 1036.19 688.65 407.27 980.53 630.70 579.98
GKN2A1 170.19 520.23 1285.43 1249.01 2666.63 1753.03 1275.85 2360.92 1847.14 1458.71
GKN2A2 779.11 1002.09 1303.15 1267.24 2690.49 1793 1271.49 2355.26 1766.40 1580.91
GKN2C 779.74 1013.60 1229.63 1255.29 2551.65 1809.69 1237.96 2447.59 1636.47 1551.29

GKN4C 891.41 1147.76 3641.83 3473.80 5924.45 3585.96 2505.16 4177.14 6454.71 3533.58
GKN5YD 578.08 714.77 2928.72 2549.29 4991.94 3219.67 2342.15 3830.95 3962.43 2790.89

WI3X 528.95 767.416 1984.55 2033.89 3202.67 2066.64 1596.09 2406.81 2898.58 1942.84
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Fig. 3. The top row for Schröder’s method. Second row for Halley (left), Victory–Neta (center) and N3 (right). Third row for Dong1 (left), Dong2 (center),
and Dong3 (right). Fourth row for Dong4 (left), Osada (center), and Euler–Cauchy (right). Bottom row for CN3 (left) and CBN1 (right) for the roots of the
polynomial (z3 − 1)2 .



C. Chun, B. Neta / Journal of Computational and Applied Mathematics 340 (2018) 11–42 25

Fig. 4. The top row for LCN6 (left), SSTZ2 (center), and SB (right). Second row for GKN2A1 (left), GKN2A2 (center) and GKN2C (right). Bottom row for GKN4C
(left), GKN5YD (center) and WI3X (right) for the roots of the polynomial (z3 − 1)2 .

where

s = r1/mn , (59)

q =

[
f (zn)
f (xn)

] 1
m

, (60)

and where rn is given by (3) and Qf is analytic in a neighborhood of 0 and Kf is holomorphic [62] in a neighborhood
of (0, 0). Since s and v are respectively one-to-m multiple-valued functions, we consider their principal analytic
branches [60].
Several possible weight functions were suggested in [21] and it was shown that GKN5YD is best, i.e.

Qf (s) =
(s − 2)(2s − 1)
(s − 1)(5s − 2)

(61)

Kf (s, q) =
(s − 2)(2s − 1)

(5s − 2)(s + q − 1)
. (62)

(20) Geum et al. [63]
This is the only known family of eighth order methods⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

yn = xn − m ·
f (xn)
f ′(xn)

,

zn = xn − m · Lf (s) ·
f (xn)
f ′(xn)

,

xn+1 = xn − m · [Lf (s) + Kf (s, v)] ·
f (xn)
f ′(xn)

,

(63)
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Fig. 5. The top row for Schröder’s method. Second row for Halley (left), Victory–Neta (center) and N3 (right). Third row for Dong1 (left), Dong2 (center),
and Dong3 (right). Fourth row for Dong4 (left), Osada (center), and Euler–Cauchy (right). Bottom row for CN3 (left) and CBN1 (right) for the roots of the
polynomial (z3 − 1)4 .
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Fig. 6. The top row for LCN6 (left), SSTZ2 (center), and SB (right). Second row for GKN2A1 (left), GKN2A2 (center) and GKN2C (right). Bottom row for GKN4C
(left), GKN5YD (center) and WI3X (right) for the roots of the polynomial (z3 − 1)4 .

where

s =

[
f (yn)
f (xn)

] 1
m

, (64)

v =

[
f (zn)
f (yn)

] 1
m

. (65)

It was found that the best method (WI3X) is when

Lf (s) =
1 − s
1 − 2s

and

Kf (s, v) = −sv
1 − 3s + s2

−1 + 5s − 6s2 − s3 + (1 − 3s − s2 + 6s3)v
.

2. Extraneous fixed points

In this section, we introduce the notion of extraneous fixed points and show how to find those for any given method. It
is easy to see that any method can be written as

xn+1 = xn − Hf
fn
f ′
n

(66)
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Fig. 7. The top row for Schröder’s method. Second row for Halley (left), Victory–Neta (center) and N3 (right). Third row for Dong1 (left), Dong2 (center),
and Dong3 (right). Fourth row for Dong4 (left), Osada (center), and Euler–Cauchy (right). Bottom row for CN3 (left) and CBN1 (right) for the roots of the
polynomial (z3 − z)4 .
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Fig. 8. The top row for LCN6 (left), SSTZ2 (center), and SB (right). Second row for GKN2A1 (left), GKN2A2 (center) and GKN2C (right). Bottom row for GKN4C
(left), GKN5YD (center) and WI3X (right) for the roots of the polynomial (z3 − z)4 .

where the function Hf depends on xn and other intermediate values. In Tables 1 and 2 we list the function Hf for each of the
methods discussed here (see Tables 1 and 2).

It is clear that if xn is a zero of the function f (x) then xn is a fixed point of the iterative method (66). But even if xn is a
zero of Hf and not of f (x) it is a fixed point. Those fixed points that are zeros of Hf and not of f (x) are called extraneous
fixed points. For example, Schröder’s method does not have any extraneous fixed point, since Hf = 1. In order to find the
extraneous fixed points, we substitute the quadratic polynomial (z2 − 1)m for f (z) and then find the zeros of Hf . See Table 3
for the extraneous fixed points for each method.

In our previouswork,we found thatmethodswithout extraneous fixed point or those having such points on the imaginary
axis performbetter thanothers. For families ofmethods,we showedhow to choose theparameter(s) such that the extraneous
fixedpoints are onor close to the imaginary axis.When amethod contains aweight function,we suggested a rational function
as aweight function. This leading to a family ofmethodswith at least one parameter.We also demonstrated that a polynomial
weight function does not give as good results.

To choose the parameters in themethods, the following criterion can be used, whichwas developed in [24] and is defined
below.

Let E = {z1, z2, . . . , zn} be the set of the extraneous fixed points corresponding to the values given to the parameters. We
define

d = max
zi∈E

|Re(zi)|. (67)

We look for the parameters which attain the minimum of the function d given in (67).
For the method (20) the best value of θ = −0.2 and for (21) the best parameter is θ = 1 which is Dong2.
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Fig. 9. The top row for Schröder’s method. Second row for Halley (left), Victory–Neta (center) and N3 (right). Third row for Dong1 (left), Dong2 (center),
and Dong3 (right). Fourth row for Dong4 (left), Osada (center), and Euler–Cauchy (right). Bottom row for CN3 (left) and CBN1 (right) for the roots of the
polynomial (z7 − 1)4 .
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Fig. 10. The top row for LCN6 (left), SSTZ2 (center), and SB (right). Second row for GKN2A1 (left), GKN2A2 (center) and GKN2C (right). Bottom row for
GKN4C (left), GKN5YD (center) and WI3X (right) for the roots of the polynomial (z7 − 1)4 .

Remarks.

(1) The fourmethods LCN1–LCN4 [49] are not optimal as defined byKung and Traub [64] and thereforewill not be included
here. Neta and Chun [28] have compared LCN5, LCN6, ZCS3, LZ11 and LZ12. They have shown that LCN6 and ZCS3 are
best and therefore we will not include LCN5 and the methods developed by Liu and Zhou [54].

(2) Chun andNeta [30] found that KBK1 andKBK2 and ZCS1–ZCS3 cannot competewith LCN6 and theywill not be included
in the comparison.

(3) It was shown [30] that ZCS3 is just a rearrangement of LCN6 therefore ZCS3 will not be included here.
(4) Chun andNeta [31] have shown that out of the 4members in Sbibih et al. [55], only SSTZ2withµ =

1
3 is best. Therefore

we will not use the other 3 members of that family here.

3. Numerical experiments

In this section, we detail the experiments we have used with each of the methods. All the examples have roots within
a square of [−3,3] by [−3,3]. We have taken 360,000 equally spaced points in the square as initial points for the methods
and we have registered the total number of iterations required to converge to a root and also to which root it converged.
We have also collected the CPU time (in seconds) required to run each method on all the points using Dell Optiplex 990
desktop computer. We then computed the average number of function evaluations required per point and the number of
points requiring 40 iterations.

Example 1. In our first example, we have taken the polynomial

p1(z) = (z2 − 1)2 (68)

whose roots z = ±1 are both real and of multiplicitym = 2.
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Fig. 11. The top row for Schröder’s method. Second row for Halley (left), Victory–Neta (center) and N3 (right). Third row for Dong1 (left), Dong2 (center),
and Dong3 (right). Fourth row for Dong4 (left), Osada (center), and Euler–Cauchy (right). Bottom row for CN3 (left) and CBN1 (right) for the roots of the
polynomial (z5 − 1)3 .

The basins for the 12 methods of order 2–3 are given in Fig. 1. Fig. 2 displays the basins for methods of order 4 and 6.
The basin for each root is colored differently. The darker the shading, the higher is the number of function evaluations per
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Fig. 12. The top row for LCN6 (left), SSTZ2 (center), and SB (right). Second row for GKN2A1 (left), GKN2A2 (center) and GKN2C (right). Bottom row for
GKN4C (left), GKN5YD (center) and WI3X (right) for the roots of the polynomial (z5 − 1)3 .

point on average. The reason we have used the number of function evaluations and not the number of iterations is because
the methods require a different number of function evaluations per step. For example, Schröder’s method uses 2 function
evaluations per step, but Osada’s method uses 3 function evaluations. The boundary between the two basins is a straight line
for the following methods: Schröder (Fig. 1 top row), Halley (Fig. 1 second row left), Dong3 (Fig. 1 third row right), Dong4
(Fig. 1 fourth row left), Euler–Cauchy (Fig. 1 fourth row right) and SSTZ2 (Fig. 2 top row center). In order to have a more
quantitative comparison, we have collected the number of function evaluations per point on average in Table 4, the CPU
time in seconds required to get the method to run over all 6012 initial points in the square containing the roots (Table 5)
and the number of black points, i.e. those points for which the method did not converge after 40 iterations, in Table 6. The
method using the lowest number of function evaluations is Euler–Cauchy (3.0) followed by GKN2C (10.04), GKN2A2 (10.19),
GKN2A1 (10.24) and Dong4 (10.27), the highest is GKN4C (32.70). All other methods require between 11.11 and 15.31. The
fastest methods are Euler–Cauchy (110.84 s), Schröder (151.48), Dong4 (166.53), GKN2A1 (170.19), Dong3 (171.82) and
Halley (176.92). The slowest is the sixth order method GKN4C (891.41 s). It is surprising that the other sixth order method
(GKN5YD) and the eighth order method (WI3X) are faster than some of the fourth order methods. The least number of black
points (1) was achieved by Euler–Cauchy, GKN2A1, GKN2A2 and GKN2C. The highest number is for LCN6 and SB (10289
points). Notice that Euler–Cauchy was best in all 3 measures for this example.

Example 2. The polynomial has the three roots of unity,

p2(z) = (z3 − 1)2. (69)

The basins are given in Figs. 3 and 4. Now the only one with straight line boundaries is Euler–Cauchy (Fig. 3 fourth row
right). The least number of function evaluations per point on averagewas achieved by Euler–Cauchy, Dong4, GKN2C, GKN2A2
and GKN2A1 (in that order). The highest is GKN4C (35.78 function evaluations). The fastest methods are SSTZ2 (228.23),
Schröder (252.85), Dong4 (255.97) and Halley (284.34). Euler–Cauchy is no longer among the fastest (422.97). The slowest
is GKN4C (1147.76 s). The lowest number of black points (1) is for Dong3, Euler–Cauchy, GKN2A2, GKN2C and GKN4C. Five
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Fig. 13. The top row for Schröder’s method. Second row for Halley (left), Victory–Neta (center) and N3 (right). Third row for Dong1 (left), Dong2 (center),
and Dong3 (right). Fourth row for Dong4 (left), Osada (center), and Euler–Cauchy (right). Bottom row for CN3 (left) and CBN1 (right) for the roots of the
polynomial (z3 + 4z2 − 10)3 .

other methods have less than 10 black points: Schröder (8), Halley (2), Osada (7), CN3 (5) and GKN2A1 (2). The worst are
again LCN6 and SB with 26951 points.
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Fig. 14. The top row for LCN6 (left), SSTZ2 (center), and SB (right). Second row for GKN2A1 (left), GKN2A2 (center) and GKN2C (right). Bottom row for
GKN4C (left), GKN5YD (center) and WI3X (right) for the roots of the polynomial (z3 + 4z2 − 10)3 .

Example 3. The third example is a polynomial whose roots are all of multiplicity four. The roots are the three roots of unity,
i.e.

p3(z) = (z3 − 1)4. (70)

The basins are given in Figs. 5 and 6. The difference between this example and the previous one is the multiplicity. The
best method is again Euler–Cauchy for which the boundaries are straight lines. The methods requiring the least number of
function evaluations per point on average are Euler–Cauchy (11.43) followed byDong3 (11.62) andDong4 (12.30). The fastest
methods are Dong3 (297.65), Schröder (306.87) and Dong4 (317.8). The slowest is GKN4C (3562.90 s). The least number of
black points is achieved by Dong3, Osada, Euler–Cauchy, GKN2A2 and GKN4C. Three other methods have less than 10 black
points, namely Halley (2), GKN2A1 (6) and Schröder (8). The highest number is for Dong2 (11699 points).

Example 4. The fourth example is a polynomial whose roots are all of multiplicity four.

p4(z) = (z3 − z)4. (71)

The roots are z = 0, ±1. The basins are given in Figs. 7 and 8. This is harder even for Euler–Cauchy which shows a much
smaller basin for the root in the origin. The least number of function evaluations was used by Euler–Cauchy (12.44) followed
by Dong3 (12.84). The highest number (35.42) was required by GKN4C. Notice that in all these examples the sixth order
method GKN5YD performed better than the other sixth order method, GKN4C. The fastest methods are Schröder, Dong3 and
SSTZ2 and the slowest is as always GKN4C (3473.80 s). Twelve methods do not have black points: Schröder, Halley, Dong3,
Osada, Euler–Cauchy, CN3, CBN1, LCN6, GKN2A1, GKN2A2, GKN2C and GKN4C.

Example 5. In our next example we took the polynomial

p5(z) = (z7 − 1)4. (72)
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Fig. 15. The top row for Schröder’s method. Second row for Halley (left), Victory–Neta (center) and N3 (right). Third row for Dong1 (left), Dong2 (center),
and Dong3 (right). Fourth row for Dong4 (left), Osada (center), and Euler–Cauchy (right). Bottom row for CN3 (left) and CBN1 (right) for the roots of the
polynomial (z7 − 1)3 .

The seven roots of unity are all of multiplicity 4. The basins are plotted in Figs. 9 and 10. The best method is again Euler–
Cauchy, since the boundaries are straight lines away from a neighborhood of the origin. Halley’s method does not have so
many black points near the origin as other schemes. the fastestmethod is Dong3 (644.78 s) followed by Dong4, SSTZ2, Halley
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Fig. 16. The top row for LCN6 (left), SSTZ2 (center), and SB (right). Second row for GKN2A1 (left), GKN2A2 (center) and GKN2C (right). Bottom row for
GKN4C (left), GKN5YD (center) and WI3X (right) for the roots of the polynomial (z7 − 1)3 .

and Schröder. The least number of function evaluations is for Dong3 (16.58) and Dong4 (18.26). The least number of black
point is for Halley (55) and Euler–Cauchy (69). The most number of black points is for N3 (65295) and Dong1 (53847).

Example 6.

p6(z) = (z5 − 1)3. (73)

The 5 roots of unity are all with multiplicity m = 3. The basins are displayed in Figs. 11 and 12. Again, the least number of
function evaluations is for Dong3 followed by Dong4. In this case Euler–Cauchy comes fourth. Dong3 is the fastest followed
by Dong4 and SSTZ2. In terms of black points, the best is Euler–Cauchy and WI3X (1) followed by Dong3 (3).

Example 7. Another example with 3 roots all with multiplicity 3 is:

p7(z) = (z3 + 4z2 − 10)3. (74)

The basins are displayed in Figs. 13 and 14. The only method for which the boundaries are straight lines is Euler–Cauchy
(Fig. 13, rightmost on the fourth row). Consulting Table 4, we find that Euler–Cauchy uses the least number of function
evaluations per point on average (10.4) followed by Dong3 (11.13) and Dong4 (12.03). The worst in this sense is GKN4C
(31.13). The fastest method is Schröder’s method (322.77) followed by Dong3 (323.9) and the slowest is GKN4C (2505.16).
The following four methods have only one black point: Euler–Cauchy, GKN2A1, GKN2A2 and GKN2C followed by GKN4C
with 2 black points. All the others have at least 55 black points.

Example 8.

p8(z) = (z7 − 1)3. (75)
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Fig. 17. The top row for Schröder’s method. Second row for Halley (left), Victory–Neta (center) and N3 (right). Third row for Dong1 (left), Dong2 (center),
and Dong3 (right). Fourth row for Dong4 (left), Osada (center), and Euler–Cauchy (right). Bottom row for CN3 (left) and CBN1 (right) for the roots of the
polynomial (z4 − 1)5 .

This example is similar to Example 5 except for the multiplicity. The basins are given in Figs. 15 and 16. The conclusions are
identical. Therefore, we can conclude that the multiplicity does not affect the results.
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Fig. 18. The top row for LCN6 (left), SSTZ2 (center), and SB (right). Second row for GKN2A1 (left), GKN2A2 (center) and GKN2C (right). Bottom row for
GKN4C (left), GKN5YD (center) and WI3X (right) for the roots of the polynomial (z4 − 1)5 .

Table 6
Number of points requiring 40 iterations for each example (1–9) and each of the methods.

Method Ex1 Ex2 Ex3 Ex4 Ex5 Ex6 Ex7 Ex8 Ex9 Average

Schröder 601 8 8 0 20299 5158 175 20301 2433 5443

Halley 601 2 2 0 55 20 91 54 1201 225
Victory–Neta 603 2125 2771 50 24492 19371 135 29705 15029 10476
N3 601 4506 10463 628 65295 44368 617 64582 37001 25340
Dong1 601 3922 7648 946 53847 39855 544 57086 29393 21538
Dong2 2729 18953 11699 1340 26353 23368 3560 29107 21593 15411
Dong3 601 1 1 0 314 3 102 168 1201 266
Dong4 603 139 105 12 2210 1152 105 2324 1697 927
Osada 601 7 1 0 16949 3285 93 17726 1793 4495
Euler–Cauchy 1 1 1 0 69 1 1 69 1 16
CN3 601 5 22 0 7523 10800 72 29221 1241 5498
CBN1 601 209 205 0 29161 11971 55 31179 5849 8803

LCN6 10289 26951 11 0 3158 229 93 2957 1225 4990
SSTZ2 733 6261 3772 116 15995 13458 413 19818 9781 7816
SB 10289 26951 2612 128 26499 16871 154 28233 11833 13730
GKN2A1 1 2 6 0 3541 282 1 2535 281 739
GKN2A2 1 1 1 0 3428 315 1 2619 225 732
GKN2C 1 1 17 0 15179 3667 1 14109 1585 3840

GKN4C 601 1 1 0 7595 1128 2 7736 817 1987
GKN5YD 791 1119 3994 1702 29887 5563 658 14618 10465 7644

WI3X 747 128 1 1024 1729 1 61 602 1225 613

Example 9. In our last polynomial example, we have taken a polynomial whose roots are ±1 and ±i all of multiplicity 5

p9(z) = (z4 − 1)5. (76)

The basins are displayed in Figs. 17 and 18. Again, Euler–Cauchy is the only one with straight line boundaries. The least
number of function evaluations per point is achieved by Dong3 (14.03), followed by Euler–Cauchy (14.22). Dong3 is also the
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Fig. 19. The top row for Halley. The second row for Dong3 (left) and Dong4 (right). Bottom row for Euler–Cauchy (left) and SSTZ2 (right) for the roots of
the function (z − i)3(ez+i

− 1)3 .

fastest (405.95 s) followed by Schröder’s method with 454.57 s. Euler–Cauchy is the only method with one black point, all
the other have at least 225 black points.

It is obvious from these 9 examples that Euler–Cauchy is the only one with straight line boundaries. This is important,
since it says that from every point we approach the closest root. It is also the method with the least number of black points
(16) when averaged across the 9 examples. Unfortunately it is not the fastest. Euler–Cauchy on average uses 664.18 s to run
over all 6012 initial points in the 6 by 6 square. The fastest is Dong3 (389.61) followed by Dong4 (417.96), SSTZ2 (442.70)
and Schröder (448.43). The slowest is GKN4C with 3533.58 s. Euler–Cauchy uses 13.76 function evaluations per point with
Dong3 slightly less (13.61). The worst is GKN4C (40.91). All other methods use between 14.0 and 27.48.

We now add a non-polynomial example. We ran the example on the top 3 methods for each category, namely: Halley,
Dong3, Dong4, Euler–Cauchy and SSTZ2.

Example 10. The function used is

p10(z) = (z − i)3(ez+i
− 1)3 (77)

whose roots are ±i all of multiplicity 3. The basins are displayed in Fig. 19. The best is Dong4 even though it has black points
and Euler–Cauchy does not. We have collected the number of function evaluations per point, the CPU time in seconds and
the number of black points in Table 7. Dong3 and Dong4 use the least number of function evaluations per point and SSTZ2
uses the most. The fastest is SSTZ2 (472.246 s) and the slowest is Euler–Cauchy (825.869 s). Euler–Cauchy is the only one
with no black points followed by Dong4 (795) and Dong3 (1078).

4. Conclusions

Based on the 9 polynomial examples, we conclude that Dong3was at the top 3methods in the 3 categories. Euler–Cauchy
and Dong4 were in the top 3 in two categories, but Euler–Cauchy is the only one that has straight line boundaries. Upon
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Table 7
Results for Example 10.

Method Number of function evaluation per point CPU Number of black points

Halley 12.47 608.731 1210
Dong3 10.95 549.685 1078
Dong4 11.03 573.584 795
Euler–Cauchy 12.67 825.869 0

SSTZ2 16.69 539.842 1378

WI3X 25.88 2225.07 579

considering the last example, we find that Dong3 is at the top based on the number of function evaluations per point, SSTZ2
is at the top based on the CPU time and Euler–Cauchy is at the top with no black point. Since Dong3 and Dong4 were at the
top 3 in the 9 polynomial examples and in one category for the last example, we recommend them along with Euler–Cauchy
(no black points) and SSTZ2 (fastest).
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