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1. Introduction

The solution of systems of nonlinear equations is required whenever a nonlinear partial differential equation is
approximated. The most well known scheme is Newton’s method given by (see e.g. [1,2] or [3])

Xner = Xn — [F' ()] F Gtn), (1)

where F(x) =0 is the system to be solved and F/(x,) is the Jacobian. Assuming one has a close enough initial vector xq
and that the Jacobian never vanishes for any iterate x,, the method will converge quadratically. This method requires the
construction of the Jacobian and the solution of a system of linear equation at every step. To reduce the cost, one can keep
the Jacobian fixed for say k iterates. In this case the order is k+ 1, e.g. if we keep the Jacobian for 3 iterates, we get a
fourth order method. This is called modified Newton’s method, denoted by MN, and given by

Vn=Xn — [F’(x,,)]_lF(xn),
Zn=Yn — [F’(Xn)]_lFO/n),

Xnit = 2zn — [F'(xa) ] 'F(zn). (2)
There are other ways to modify the procedure, e.g. Steffensen method using divided difference to replace the Jacobian,
see e.g. [4], Ezquerro et al. [5] and also a survey by Rheinboldt [6]. Artidiello et al. [7] have suggested the use of divided
difference instead of one of the Jacobians.
Neta [8] has developed a fourth order method, denoted Neta4, based on his sixth order method for the solution of a
single equation [9]. The method is given by

Yo =%~ [F )] Fxn).
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Zn=Yn—Q (Xnv_Vn)[F/(Xn)]AF(.Vn),
Xup1 = 2Zn — Qa(n Yu) [F (én) ]~ F(20). (3)

where the weight functions chosen here are
FT(Xn)F(Xn) + ZFT(XH)F(VH) —a(a— Z)FT(VH)F(VH)
FT(xn)F (xn) — (@ —2)?FT (yn)F (yn) '

Q1 (Xn. yn) = (4)

and

T T T
Qo (X, Yn) = F (Xn)F();n) +2F (Xn)F(J;n) — 3F (¥n)F (yn) ’ (5)
FT(xn)F (Xn) — OFT (yn)F (¥n)
and the parameter a was chosen as zero. The original idea is to have the weight function chosen in such a way that the
method will be of higher order than 4. This was not successful as the numerical experiments will show.
Methods of higher order than 4 were developed in the literature and we will quote several methods of order five and
six. Cordero et al. [10] have developed a fifth order method, denoted here by CHMT, given by

Yo =%~ [F)] Flxn).

Zn = X = 2[F' (%) + F' )] F(n),

Xus1 =20 — [F' )] Fzn). 6)
Another fifth order family of methods due to Sharma et al. [11] is given by

Vi =Xn — G[F’(xn)]le(xn),

Zn = Xn — [(1 + %)1 - %[F/(xn)]’lﬁ(yn)][F/(xn)]”F(x,,),

Xny1 = 2Zn — [(l + %)I— %[F/(Xn)] 1F’(yn)][F’(x,,)] 1F(z,,). (7)
The case # =1 was shown to be the best and we will use that here and denote it SSK. We also used 6 =2/3 to match
with the other schemes by [12,13].

The first family of methods of order six is found in Hueso et al. [12]

Yn =Xn — %[F/(Xn)]_ll:(xn),

= [ 22 @l o] )+ 2 [F o] o

9 —8a,
24

2
+ ([Fom] P o) }[F’(m]lF(xn),

Xnit =20 [bﬂ I ] ) + 2 B [ )] F )
2
9J§;bl ([F’(yn)]”F’(xn)) i|[F’(yn)]]F(zn), )

Two members were experimented with in [12] and chosen because of their computational efficiency. These are

« HMT1, when a, = 9/8 and by = -9/4

Y =0 2[F 6] F ),

1 9 / -1 ’ 3 7 —r / -
Zu =0 =[50+ g [F O] F )+ 5 [F ] F o) [ x)] " Fx),
Xov =20~ [0+ 2 [F o] P o) + 5 [F o] 'Fom |[F o] Fen. 9)

« HMT2, when a, =0 and b; = -9/4

Yn =Xn — %[F/(Xn)]ill:(xn)s

2
Zn = Xn — [ZH %([F’%)]‘]F/(xn)) }[F’(xm]‘]F(xn),

9 15, -1, mr., -1, , -1
Xn+1 :Zn_[—ZI+ g[F (Yn)] F(Xn)+§[F (Xn)] F(er)][F (yn)] F(zn). (10)
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Table 1

Weight functions.
Method wy Wi (Xn, ¥n) Wa(xn, yn)
CHMT 1 2[F () + F )] F (%) Sn
ssK ; 1+ )i bt 1+~
HMT1 23 — 3+ §sn+ 3tn B1— 350+ B
HMT2 2/3 514 3s2 B1—Fsn+ B
MSsM 2/3 B3, + 32 51— 3,
ABCTL 2/3 I+ 36, - 32+ 563 31— 3ta+ 383

Another sixth order by Montazeri et al. [13] denoted by MSSM is given by

Yn =Xn — %[F/(Xn)]ill:(xn)
m=x0 | 51 =3[F @] o + g ([Fe] P ))2 [F' ()] " F )
n—an 8 n n 8 n n n nl)s

Xovt =20 - [ 1= S[F )] P ow | [F o] ). (11)

This method was rediscovered by Sharma and Arora [14].

Abbasbandy et al. [15] has developed a sixth order method denoted by ABCTL and given by

Yn =Xn — %[F/(Xn)]ill:(xn),

2
2= — [1+ 2] Fow - 5 ([Fan] 'Fow)

5 e e, -
+5 ([Fe] 'Fom) }[F ()] F ).

2
Xni1 = Zn — [31— g[F/(xn)]“F’(yn) + %([F’(xn)]“F’(yn)) }[F’(xn)]”ﬂzn). (12)
2. Development of high order methods

One of the techniques to develop high order methods for the solution of a single nonlinear equation is the weight
function approach, see e.g. Chapter 4 of PetkoviC et al. [16]. One of the early attempts to use this idea is due to Neta
[8] which generalizes the sixth order method using the weight function

1+afyn)/f(xn)
T+ (a=2)f(yn)/f(xa)

We have experimented with several ways to generalize this to systems of equations. Neta [8] have suggested to use a
diagonal matrix as a weight function with diagonal elements being

14 aF(yn)/F(Xn)
1+ (a—2)Eyn)/F(n)
Other ways were considered to get a scalar weight function as in (4) or
1+ aF" (xn)F (yn) /F" (Xn)F (xn)
1+ (@ —2)FT (xn)F (yn) /FT (xn)F (xn)
All these choices did not allow the method to be of order higher than 4 as we have seen in the examples.

The only other possibility to have a weight function in form of a matrix depending on a second Jacobian. This is the
idea found in the methods (6)-(12). We will write those methods in terms of weight functions as follows:

Yo =X = wi[F ()] F ),
Zn =X — W) (Xn,Yn)[F/(Xn)]ilF(xn)

-1
Xnp1 =2Zn —Wp (XnaJ/n)[F/(Xn)] F(zy). (13)
The weights for each method are given in Table 1, where we used (see also [12]) the following notations:

sn=[F' )] 'F (xn).
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and
tn = [F ()] F ).

Based on this table, we suggest the following general family (13) with

wy =2/3, (14)
Wi (Xn, ¥n) = @11 + 8n + A3ty + A4S, + sty + gty (15)
W5 (Xn, yn) = b1l + bysy + bsty + b45% + b5tﬁ. (16)

Clearly this family of methods includes HMT1, HMT2, MSSM and ABCTL as special cases. For the family, we have the
following convergence analysis.

Theorem 2.1. Let the function F : D c R™ — R™ be sufficiently differentiable in a convex set D containing a zero « of F(x).
Suppose that F'(x) is continuous and nonsingular in «. Then for all a;,1<i<6 and b;,1<j <5 satisfying

a1 = —1/2 4+ 3a4 + 3as + 8ag,

a, =9/8 —3a4 — as — 3ag,

as =3/8 —ay — 3as — 6ag,

by = -1/2 —2bs + by — 3bs,

by =3/2+ b3 — 2bs + 2bs, 17)

the local convergence order of the family (13)-(16) is at least six, and the error constant is given by

1024 5 9 27 3
m <K1C2 + EC_?,) (KZC:; + @CzC:J, — @Ql),
where
K; =b3+b4+3b5 — %,
63
K2=(14*(1574(15*6f4, (18)

where e=x; —a eR™, el =(ee, ....e), c¢j=1/D[F (@] FD()eL;(R"R™), FU eL(®RM™x..-xR™"RM™) and
—————

i—times

[F'(@)]"! e L(R™).
Proof. By the Taylor expansion of F(x;) around o we have
F(xa) = F'(@)[e + c2€? + c3€® + cae® + cse® + cee® + 0(e7) ] (19)
and
F'(xn) = F'(@)[1 + 2c2e + 3c3€* + 4cqe® + 5cse” + 6cge® + 0(e) . (20)
Inversion of F'(x,) yields
F(x) ! = [I — 2020 + (4¢3 — 3c3)e? — (8¢5 — 12c5¢3 + 4cy)€?
+(16¢5 — 3653 + 16¢,¢4 + 965 — 5¢5)e* |F' () ™! + 0(e?). (21)
Let us denote E =y, —«. From (19) and (21), we get

1 2 4 14
E=ze+Z0e*+5(-c)e+ <§c§ +2¢4 — —czc3)e4

3 3 3 3 3
40 20 16 8
+(?c§c3 -3 0t ?cg —4c + §C5>€5 +0(ed). (22)
We then obtain
F'(yn) = F'(a)[I + 2¢2E + 3c3E? + 4c4E3 + 5¢5E* + O(E?)] (23)

and its inverse as

4 (28¢5 — 24c03 — ¢4)€?

_ 2 1
F'(yn)™ ' = [1— Sce— (8¢5 +3c3)e? + 5

3279
1

81 (7043 — 1332¢5¢5 + 380c,¢4 + 20765 + 565)64]F’(05)1 +0(e%) (24)
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which lead to
4 8 20 104 56 64 3
Sp=1+ —cre+ (3c3 - —cz)e + (—c4 e+ —c3)e

3 9 27 9 27
400 620 20 , 32, 32
(8—165 31 ——CCq + ?CZQ 9 c3 3 cz)e +0(e) (25)
and
4 8 40 32 4 104
tn =1 5ce+ (4c§ - §c3)ez + (?CZQ - ?cz — 55 Ca )63
148 , 484 80 32 2 400
—(Tczq R o S 3G+ ﬁ%)e +0(e°). (26)
We denote € = z; —«. Using (19), (21), (25) and (26) in the second step of the family, we obtain
€ =Aje+ Are? + Ase® + Azet + 0(e°), (27)
where

Ay =1-a;—a;—as —as —as — as,

1 7 5 11
Ay = (al 302+ 303~ 304+ 505+ 506>C2,
14 10 22
3 — o4+ =

22 10 130 70(1)2
3 3 3 6

14
1 -2 — —a4 — — 05 — —
as + 0(15)C3 + ( a + a as + 3 Ay 9 as 3

2
A3=<2(11—§(12+ 9 2_?

A =<4a 88a +%a —Ea +@a +2584a)c 7(a —ﬂa +Ea —ga +@a +Ea))cc

4 1792772738774 T g T 7 82T I\ T g3 2T 33 T 7T g3 T )1 18 )32

$3(0r - Sra 4 poas — et 20+ o a )y (28)
g1t 31 81 81 27

We now find conditions on the g; to make the first two substeps of the family fourth-order by requiring A; = A, = A3 = 0.
They are given by

1
a; = —= + 3a4 + 3as + 8ag,

2
9
a; = g —3(14—(15—3(15,
3
as = g — a4 — 3(15 — 6(15, (29)
in this case,
1 7 64 64 256
€ = |:§C4 — (203 + <3 ﬁa4 + ﬁas + ﬁas)cg]e‘l + O(es)_ (30)

Using Taylor series of F(z,) about « gives
F(zn) = F (@)[€ + 2% + 0(€?)]. (31)
Using (21), (25), (26), (30), (31) in third substep of the family we get

Xny1 — O = € *WZ(Xann)[F,(xn)]qF(zn)

= Bse* + Bse® + Bge® + 0(e7), (32)
where
B4=(b1+b2+b3+b4+b5—1)[c3c2—%aﬁr%(m —4ag — gi) ]
Bs = 8]1 Dics + 138D263c§ + %D3C4C2 +2(by + by + b3+ by +bs — 1)(6% - %q),
Bs = 2%61 1289192 G363 + %Qqcﬁ
243 cz(G4c3 +954Gscs5) + 23 G563C4 27 G7ce,

D; = (—1792b; — 1536b, — 2048b3 — 1280b4 — 2304bs + 1408)ay
+(2048b;y + 1792b; + 2304b3 + 1536b4 + 2560b5 — 1664 )as
+(8448b; + 7424b;, + 9472b3 + 6400b, + 10496b5 — 6912)as
+1422b; + 1170b, + 1674b3 + 918b4 + 1926b5 — 1044,
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D, = (b]+b2+b3+b4+b571)(a47(1574(15)
81 75 87 69 93 9
6" T e T wm™  wms Ty

31 35 29 37 10
D3 = by +§b2+§b3+§b4+§b5—ﬁ,

Gy = (29568b; + 21120b;, + 39040b5 + 13696b4 + 49536b5 — 18816)ay
—(39040b; + 29568b; + 49536b3 + 21120b4 + 61056b5 — 26752)as
—(166656b; + 127744b, + 209664b3 + 92928b,4 + 256768b5 — 115968 )ag
—19746b, — 12798b, — 27702b; — 6858b4 — 36666b5 + 11214,

G2 = (b] + %bz + %b;; + %IM =+ %bgg — %)(14
—(ﬁb +b—@b +ﬂ +@ —@)a
203 ' T2 20320347203 ° 203)°°
(%72, . 844, 1100, 716, 1228 792\
(203 150372 2033 20374 T 203 5 203) 6
1575, 8397, 1971, 5913 16713, 3771
1856 ' 12992 % 1856 ° 12992 * 12992 ° ' 6496’

G3 = (b1 + by +bs + by + bs — 1)(as — as — 4ag)
1161 1019, 1311 885 13, 963
By R Ty v R L VR R tU
G4 = 6912(b1 +b2+b3+b4+b5—1)((14—(15—4(16)
—9963b; — 8667b, — 11259b3 — 7371b, — 12555bs + 8262,
143 175 127 191 45
Gs = b1 + {5gb2 + 75503 + 15504 + 15505 ~ 53
Co_p 199, 215 191 223, 22
6=t 507721 2077 T 20774 T 20770 23
G7:b]+b2+b3+b4+b5—1.

We find conditions on the b; to make the family sixth-order by requiring B4 = Bs = 0. They are given by

b, =—%—2b3+b4—3b5,

b2=%+b3—2b4+2b5,

in this case,
1024 9 27 3
Xpy1 — O = m(K]cg + ﬁQ) (chg + 5466~ 6—464)66 +0(e”),
where
K =b3+b4+3b5 — %,
63
K2 =044 — 05 —4(15— a

183

(33)

(34)

(36)

This implies that the family (13)-(16) under the conditions given by (17) is of sixth-order convergence. This completes

the proof. O

It is mot possible to increase the order by adding more terms to the weights. We may choose the 6 parameters to

simplify the forms of W; and W,. One choice is

a4 =0,

as =9/8,

ag =0,

bs = —-3/2 - 2bs,
by =0.

(37)
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This gives a one parameter family of methods (13), denoted CN1, with the weights
23 9

Wi (Xn, yn) = ?I -3ty + gt,f,
5 3
W (X, yn) = (i + b5)1 _ (5 n 2b5)tn +bst2. (38)

This family uses only one Jacobian (since only t, appears) as with MSSM, which is the case of bs = 0 . In fact, if we choose
ag #0 we still have only one Jacobian.
Another possibility is to choose the parameters to annihilate the coefficients K; of c% and K, of cg, e.g.

a4 = 63/64,

as =0,

ag =0,

bs =15/8 — 3bs,

by =0. (39)

This gives a one parameter family of methods (13), denoted CN2, with the weights
157 117 39 63 ,

Wi (Xn, yn) = al - asn - @tn + asn
7 27 15
Wa (Xn, yn) = _<Z + 3b5>1+ (§ + st)sn + (§ _ 3b5>tn + bt2. (40)

Remark: If we take the first two sub-steps of (13) we get a three-parameter fourth-order family of methods with g;
satisfying (17). It is not possible to use the parameters to increase the order beyond four.

3. Numerical experiments

We have experimented with these methods using several systems of 2, 3, 4, 5 and 9 equations given here. There are 5
examples of systems of 2 equations, 6 examples of systems of 3 equations and one each of a system of 4, 5 and 9 equations.
In each case we listed the initial iterate X, and the exact solution(s) «. In case there is more than one solution, we will
first list the solution to which the methods converged to.

» Example 1

X1 +6e2 —cosx; =0
3X1 — Xy —sinx; =0 (41)

xo = (.5,.5)T

a=(0,0)"
« Example 2
x1+3logx; —x3 =0
2X%3 — X% — 5% +1=0 (42)

xo=(1,-2)7
o = (1.3734783533, —1.524964837)"

@ = (3.756834008, 2.779849593)"
» Example 3
X2 4+x1%-9=0
3% -6 —4=0 (43)

xo = (=1.2,-2.5)T
o = (—.9012661905, —2.086587595)

o = (9.985950982, —2.086587595)T
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a = (2.998375993, 0.1481079950)"
a = (—3.001624887, 0.1481079950)"
a = (1336355377, 1.754235198)"

a = (—6.734735503, 1.754235198)7
» Example 4

33 +4x3-1=0
B-83-1=0

Xo = (—.7, .Z)T

o = (—0.49725120256, 0.254078592490)"
- Example 5

4x2 +x3-4=0
X1 +Xx3 —sin(x; —x3) =0

xo = (1.2,0.3)T

a = (0.998606944097, —.105530492)
- Example 6

C0SXp; —sinx; =0

X;l —1/xy = 0

e —x3=0
Xo=(12,.515)T

a = (.9095694944, .6612268323, 1.575834144)

a = (—.9095694944, 6612268323, .6345845493)"

Example 7

xxi1—1=0, i=1,2,....,n-1
Xpx1—1=0

x0=2,2,....2)7
If n is odd there are two solutions:

a=1,1,...., D7

a=(-1,-1,....-DT
If n is even, then choose x;,
X] =X X 1
1 =X3= - =2Xp_1 = —
n Xn
Xy =X4=--=2Xp_2 =Xn

We have used this example for n = 3.

185

(44)

(46)
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» Example 8

(X1 —1)xx3 =0
X1(Xa — D (x2+2)x3 =0
(x3+1)(x3-1/2) =0 (48)

xo=(1,2,2)T
a=(1,1,1/2)T
a=(0,0-1)T7
a=(0,0,1/2)7
a=(1,-2,-17
a=(,-2,1/2)T

a=(1,1,-1T7
« Example 9
X +xx3+1=0
X3x%3 =0
X3-1=0 (49)

xo = (=100, 0, 100)T

a=(-1,01T
« Example 10

6x%+x2—3—7=0

x1—6x§—%=0

1
Xi+X+xs— 5 =0 (50)

Xo=(3,0,—1)T
a=(1,1/6,-2/3)"

a = (1.028512437, —.1803603357, —.3481521018)7

and two other complex conjugate solutions.
- Example 11

12x; —3%3 —4x3 —7.17 =0
X3 +10x —x3—11.54=0
X3 +7x3—-7631=0 (51)

Xo= (3,0, 1)7
a=(1211,9)T

a = (7.809384276, —3.953119569, 9.915287083)

and two other pair of complex conjugate solutions.
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Table 2
Computational order of convergence.
Example Newton MN Neta4 CHMT SSK SSK
@=1) 6 =2/3)
1 2 4 3137 6.03 3.479 5.04
2 1.994 3.945 3.965 5.119 4.502 4.402
3 2.004 3.969 4.037 2.641 3.845 3.69
4 2.001 1.567 4.007 3.443 5 4913
5 2.001 3.947 4.024 4,993 1.26 5.038
6 2.001 4.025 4.026 5.014 4.24 div
7 2 4 7 4.998 5.0 5.0
8 2 4 3.993 5.001 5.003 5.003
9 div 4 div 4.997 5.0 4.996
10 2 div 4.04 2.339 div div
1 2.02 4 4.065 4.952 4.252 5.039
12 1.993 3.965 3.982 2.897 5.024 5.024
13 2 4 7 4.998 5.0 5.0
14 2 4 7 4.998 5.0 5.0
Note that, for example 10, the method Neta4 converged to the second solution listed there.
Table 3
Computational order of convergence.
Example HMT1 HMT2 MSSM ABCTL CN1 CN2
(bs = -53/4 ) (bs =-1/4)
1 6.073 6.069 3.905 5.994 5.957 5.997
2 6.163 6.141 6.146 2.807 5.986 5.981
3 6.046 6.041 1.634 6.103 2.659 5.992
4 5.928 6.015 2.366 6.002 5.842 1.342
5 6.021 6.012 5.981 5.997 5.915 6.023
6 2.866 4.25 div div div 5.992
7 6.999 6.999 5.995 5.993 3.999 7.0
8 6.431 6.375 6.0 6.001 6.0 6.474
9 5.847 5.947 5.964 div 6.0 5.99
10 2.475 6.992 div div div div
1 6.481 6.557 6.308 3.864 5.788 6.210
12 6.009 5.930 2.360 3.008 6.035 6.002
13 6.999 6.999 5.995 5.993 3.999 7.0
14 6.999 6.999 5.995 5.993 3.999 7.0
Note that, for example 10, the method HMT2 converged to the second solution listed there.
- Example 12
X2X3 +X4(X3 +x3) =0
X1X3 +X4(X1 +x3) =0
X1X2 +X4(X1 +%) =0
X1X2 +X1X3 +XX3—1=0 (52)

xo=(1.7,.7,18,.8)T
o= (1/v/3,1/v/3,1/¥3,-1/2V3)"
o= (=1/v/3,-1/4/3,-1/v/3,1/2V3)T

» Example 13

This is the same as Example 7 with n = 5.

- Example 14

This is the same as Example 7 with n = 9.

In Tables 2 and 3, we have listed the computational order of convergence (COC) and in Tables 4 and 5 the number of
iterations required for convergence.

In(|1xi 1 — Xill/11% — xi_11])

coC =

In(|lxi — xi_1[1/11xi-1 = xi_2])”
We separated the sixth order methods HMT1, HMT2, MSSM, ABCTL, CN1, and CN2 from the lower order schemes Table 3.

(53)
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Table 4
Number of iterations.
Example Newton MN Neta4 CHMT SSK SSK
=1 (6 =2/3)
1 9 5 5 5 5 5
2 8 5 5 5 5 5
3 9 5 5 5 5 5
4 9 6 5 5 5 5
5 8 5 5 4 5 5
6 10 6 7 5 8 -
7 9 6 4 5 5 5
8 1 6 5 6 6 6
9 - 18 - 20 16 16
10 19 - 8 8 - -
11 9 5 5 5 5 5
12 1 7 6 6 6 6
13 9 6 4 5 5 5
14 9 6 4 5 5 5
Average 10 6.615 523 6.35 6.23 5.615
Table 5
Number of iterations.
Example HMT1 HMT2 MSSM ABCTL CN1 CN2
(bs =-53/4) (bs =-1/4)
1 4 4 5 5 5 4
2 4 4 5 5 5 4
3 4 4 5 5 5 4
4 4 5 5 5 5 5
5 4 4 4 4 4 4
6 6 5 - - - 5
7 4 4 5 5 5 4
8 5 5 5 5 6 5
9 19 19 20 - 18 13
10 19 19 - - - -
1 4 4 5 5 5 4
12 5 5 6 6 6 5
13 4 4 5 5 5 4
14 4 4 5 5 5 4
Average 6.43 6.43 6.25 5.0 6.17 5.0

Notice that examples 6, 9 and 10 were the most demanding (see Tables 4 and 5). For example 6, the methods SSK
(6 =2/3) , MSSM, ABCTL and CN1 did not converge within 21 iterations. For example 9, Newton’s method Table 4, Neta4
and ABCTL (Table 5) did not converge. For example 10, modified Newton’s method, SSK (with both values of 6), MSSM,
ABCTL, CN1 and CN2 did not converge. In summary, Newton’s method, modified Newton, Neta4, SSK (# =1) and CN2
had diverged for one example, SSK (6 =2/3) , MSSM, and CN1 had diverged for two examples and ABCTL diverged for
3 examples. The only methods that performed well in all examples are CHMT, HMT1 and HMT2. We have computed the
average number of iterations over the convergent examples and found that ABCTL and CN2 have the lowest average (5.0)
followed by Netad (5.23). The difference, of course, is that CN2 has only one divergent case and ABCTL has 3 of those.
Amongst the three methods that always converged, CHMT has a slightly lower average (6.35 iterations versus 6.43).

As can be seen in Tables 6 and 7, the most expensive method is CHMT for which the total cost is n® (not including lower
powers of the dimension n of the system). Three methods (namely, HMT1, HMT2 and CN2) cost 2n3/3. All other methods
cost n3/3.

Where n is the system dimension, o = %, B=n(n-1), po and py are relative cost of evaluation of F and
Jacobian, respectively, in terms of multiplications and ¢ is the relative cost of division in terms of multiplications.

4. Conclusions

We have developed two families of order six and one can create even more in the same fashion. Two methods, one from
each family, were experimented with and compared their performance to existing methods. One of the methods is cheapest
but did not converge in two examples, the other one costs more but diverged only in one example.



C. Chun, B. Neta/Applied Mathematics and Computation 342 (2019) 178-190 189

Table 6
The cost of each iteration.
Method Evaluation of Scalar vector Matrix vector Linear solve Total
F and Jacobian multiply multiply
Newton no + n% g n 0 a+ B n3/3
+(4 +n)e (i1 + 15 )n?
+(Ho + 14%)“
MN 3no + iy 3n 0 o+38 n3/3
+(5 +3n)e +(p + 354 )n?
+Gpo+ HE)n
Netad 3njwo +n? iy 3n 0 a+38 n3/3
+(4 +3n)¢ (1 + 2 )n?
+Bpo + Hg2)n
CHMT 2npg + 2n? 3n 0 3a+38 n3
+(% +3n)e +(2m + )
+Q2po + 40
SSK 2nfuo + 202 1y 5n 2n? a+48 n3/3
(4 e o + 15

+Q2uo + =)0

Table 7
The cost of each iteration.
Method Evaluation of Scalar vector Matrix vector Linear solve Total
F and Jacobian multiply multiply
HMT1 2npuo + 202ty 7n 2n? 2a + 68 2n%[3
+(B +6n)e +Q2uq + 7+ On?
+(2H0 + 4+315£ )n
HMT2 2njuo +2n% 14 6n 2n? 20+ 68 2n%[3
+(B +6n)t +Q2uq + 7+ )n?
+(2n0 + 240
MSSM 2nug + 2n? 6n 3n? a+58 n3/3
+(4 +5n)e +(20 + 5502
+ 2!‘«0 + 7+§74’,)n
ABCTL 2njuo +2n% 4 8n 5n2 a+7B n3/3
+(4 +7n)e +(2m + B2
+(200 + Z)n
CN1 2njuo + 2% (4 7n 4n? o +68 n3/3
+(4 +é6n)e +(2p01 + &£ )n?
+ 2/“0 + 7+6331)n
CN2 2njuo + 2% 1ty 9n 4n? 2a + 88 2n%[3
+(B +8n)t +2u1 + 11+ On?

+(210 + £ )n
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