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In this paper we analyze an optimal eighth-order family of methods based on Mahesh-
wari’s fourth order method. This family of methods uses a weight function. We analyze
the family using the information on the extraneous fixed points. Two measures of closeness
of an extraneous points set to the imaginary axis are considered and applied to the mem-
bers of the family to find its best performer. The results are compared to a modified version
of Wang–Liu method.
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1. Introduction

‘‘Calculating zeros of a scalar function f ranks among the most significant problems in the theory and practice not only of
applied mathematics, but also of many branches of engineering sciences, physics, computer science, finance, to mention only
some fields’’ [1]. For example, to minimize a function FðxÞ one has to find the points where the derivative vanishes, i.e.
F 0ðxÞ ¼ 0. There are many algorithms for the solution of nonlinear equations, see e.g. Traub [2], Neta [3] and the recent book
by Petković et al. [1]. The methods can be classified as one step and multistep. One step methods are of the form
xnþ1 ¼ /ðxnÞ:
The iteration function / depends on the method used. For example, Newton’s method is given by
xnþ1 ¼ /ðxnÞ ¼ xn �
f ðxnÞ
f 0ðxnÞ

: ð1Þ
Some one point methods allow the use of one or more previously found points, in such a case we have a one step method
with memory. For example, the secant method uses one previous point and is given by
xnþ1 ¼ xn �
xn � xn�1

f ðxnÞ � f ðxn�1Þ
f ðxnÞ:
In order to increase the order of a one step method, one requires higher derivatives. For example, Halley’s method is of third
order and uses second derivatives [4]. In many cases the function is not smooth enough or the higher derivatives are too
complicated. Another way to increase the order is by using multistep. The recent book by Petković et al. [1] is dedicated
to multistep methods. A trivial example of a multistep method is a combination of two Newton steps, i.e.
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yn ¼ xn �
f ðxnÞ
f 0ðxnÞ

;

xnþ1 ¼ yn �
f ðynÞ
f 0ðynÞ

:

ð2Þ
Of course this is too expensive. The cost of a method is defined by the number (‘) of function-evaluations per step. The
method (2) requires four function-evaluations (including derivatives). The efficiency of a method is defined by
I ¼ p1=‘;
where p is the order of the method. Clearly one strives to find the most efficient methods. To this end, Kung and Traub [5]
introduced the idea of optimality. A method using ‘ evaluations is optimal if the order is 2‘�1. They have also developed opti-
mal multistep methods of increasing order. See also Neta [6]. Newton’s method (1) is optimal of order 2. King [7] has devel-
oped an optimal fourth order family of methods depending on a parameter b
wn ¼ xn �
f ðxnÞ
f 0ðxnÞ

;

xnþ1 ¼ wn �
f ðwnÞ
f 0ðxnÞ

1þ brn

1þ ðb� 2Þrn

� �
;

ð3Þ
where
rn ¼
f ðwnÞ
f ðxnÞ

: ð4Þ
Maheshwari [8] has developed the following optimal fourth order method
wn ¼ xn �
f ðxnÞ
f 0ðxnÞ

;

xnþ1 ¼ xn �
f ðxnÞ
f 0ðxnÞ

r2
n �

1
1� rn

� �
;

ð5Þ
Fig. 1. LQ case 1 for the roots of the polynomial z2 � 1.

Table 1
The eight cases for experimentation.

Case Method g a

1 LQ – 0.7
2 LQ - 2.1
3 QQ 0.8 0.6
4 QQ 1.8 2
5 QC �0.3 0.6
6 QC �3.6 2
7 LQ – 2
8 WLN – –
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where rn is given by (4).
There are a number of ways to compare various techniques proposed for solving nonlinear equations. Comparisons of the

various algorithms are based on the number of iterations required for convergence, number of function evaluations, and/or
amount of CPU time. ‘‘The primary flaw in this type of comparison is that the starting point, although it may have been cho-
sen at random, represents only one of an infinite number of other choices’’ [9]. In recent years the Basin of Attraction method
was introduced to visually comprehend how an algorithm behaves as a function of the various starting points. The first com-
parative study using basin of attraction, to the best of our knowledge, is by Vrscay and Gilbert [10]. They analyzed Schröder
and König rational iteration functions. Other work was done by Stewart [11], Amat et al. [12–16], Chicharro et al. [17], Mag-
reñán [18], Chun et al. [19–21], Cordero et al. [22], Neta et al. [23,24] and Scott et al. [9]. There are also similar results for
methods to find roots with multiplicity, see e.g. [25–28].

In this paper we analyze a family of optimal eighth order methods based on Maheshwari’s fourth order method (5). We
will examine 3 families of weight functions and show how to choose the parameters involved in each family.

2. Optimal eighth-order family of methods

We analyze here the three-step method based on Maheshwari fourth order method ([1], p. 135) given by
Fig. 3. QQ case 3 for the roots of the polynomial z2 � 1.

Fig. 2. LQ case 2 for the roots of the polynomial z2 � 1.
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wn ¼ xn � f ðxnÞ
f 0 ðxnÞ

;

sn ¼ xn � f ðxnÞ
f 0 ðxnÞ

r2
n � 1

rn�1

h i
;

xnþ1 ¼ sn � f ðsnÞ
f 0 ðxnÞ

/ðrnÞ þ f ðsnÞ
f ðwnÞ�af ðsnÞ þ

4f ðsnÞ
f ðxnÞ

h i
;

8>>>><
>>>>:

ð6Þ
where rn is given by (4) and /ðrÞ is a real-valued weight function satisfying the conditions
/ð0Þ ¼ 1; /0ð0Þ ¼ 2; /00ð0Þ ¼ 4; /000ð0Þ ¼ �6; /ð4Þð0Þ ¼ p: ð7Þ
The method defined by (6) has the error equation
enþ1 ¼ c2ð4c2
2 � c3Þð39c4

2 � 18c2
2c3 þ c2

3 þ c2c4 þ
1
6

pC1 þ aC2

� �
e8

n þ Oðe9
nÞ; ð8Þ
where en ¼ xn � n; n is a simple zero of f ðxÞ; ci are given by
ci ¼
f ðiÞðnÞ
i!f 0ðnÞ

; i P 1; ð9Þ
Fig. 5. QC case 5 for the roots of the polynomial z2 � 1.

Fig. 4. QQ case 4 for the roots of the polynomial z2 � 1.
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C1 ¼
1
4

c5
2c3 � c7

2;
and
C2 ¼ 241920c7
2 � 120960c5

2c3c1 þ 20160c3
2c2

3c2
1 � 1120c2c3

3c3
1:
We consider the three cases for the weight function /ðtÞ:

� (LQ) Linear polynomial over quadratic
/ðtÞ ¼ aþ bt
1þ dt þ gt2 ð10Þ

� (QQ) Quadratic polynomial over quadratic
/ðtÞ ¼ aþ bt þ ct2

1þ dt þ gt2 ð11Þ
Fig. 7. LQ case 7 for the roots of the polynomial z2 � 1.

Fig. 6. QC case 6 for the roots of the polynomial z2 � 1.



Fig. 8. WLN for the roots of the polynomial z2 � 1.

Table 2
Average number of iterations per point for each example (1–5) and each case.

Case Ex1 Ex2 Ex3 Ex4 Ex5 Average

1 3.7846 7.6753 5.508 13.5639 16.1492 9.3362
2 2.8003 5.8498 4.5572 9.2212 11.6864 6.82298
3 3.7570 7.7573 5.4770 13.6376 16.0767 9.34112
4 2.8166 6.0908 4.2825 9.0854 10.8273 6.62052
5 3.7468 7.6661 5.4823 13.536 16.0151 9.28926
6 2.7996 6.076 4.2564 8.9523 10.6627 6.5494
7 2.8466 6.0881 4.3114 9.0903 10.8122 6.62972
8 2.2676 2.7084 2.5306 3.7191 4.7871 3.20256

Fig. 9. LQ case 1 for the roots of the polynomial z3 � 1.
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� (QC) Quadratic polynomial over cubic
/ðtÞ ¼ aþ bt þ ct2

1þ dt þ gt2 þ ht3 : ð12Þ

In order for the conditions (7) to be satisfied, these functions are given by

� (LQ) Linear polynomial over quadratic
/ðtÞ ¼ �t þ 2
6t2 � 5t þ 2

ð13Þ

� (QQ) Quadratic polynomial over quadratic
/ðtÞ ¼ 2ð3� gÞt2 þ ð5� 2gÞt þ 2
2gt2 þ ð1� 2gÞt þ 2

ð14Þ
Fig. 11. QQ case 3 for the roots of the polynomial z3 � 1.

Fig. 10. LQ case 2 for the roots of the polynomial z3 � 1.
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� (QC) Quadratic polynomial over cubic
/ðtÞ ¼ 2ð12g þ 168þ pÞt2 þ ð288� 48g þ pÞt þ 120
2ð12� 72g � pÞt3 þ 120gt2 � ð48g � 48� pÞt þ 120

ð15Þ

Particularly when p ¼ 0 (15) becomes
/ðtÞ ¼ ðg þ 14Þt2 þ 2ð6� gÞt þ 5
ð1� 6gÞt3 þ 5gt2 þ 2ð1� gÞt þ 5

: ð16Þ
3. Extraneous fixed points

In solving a nonlinear equation iteratively we are looking for fixed points which are zeros of the given nonlinear function.
Many multipoint iterative methods have fixed points that are not zeros of the function of interest. Thus, it is imperative to
Fig. 13. QC case 5 for the roots of the polynomial z3 � 1.

Fig. 12. QQ case 4 for the roots of the polynomial z3 � 1.



302 C. Chun, B. Neta / Applied Mathematics and Computation 253 (2015) 294–307
investigate the number of extraneous fixed points, their location and their properties. In the family of methods studied in
this paper, the parameters a and g can be chosen to position the extraneous points on the imaginary axis or, at least, close
to that axis.

In order to find the extraneous fixed point, we rewrite the methods of interest in the form
xnþ1 ¼ xn �
f ðxnÞ
f 0ðxnÞ

Hf ðxn;wn; snÞ; ð17Þ
where the function Hf for Maheshwari-based method is given by
Hf ðxn;wn; snÞ ¼ r2
n �

1
rn � 1

þ f ðsnÞ
f ðxnÞ

/ðrnÞ þ
f ðsnÞ

f ðwnÞ � af ðsnÞ
þ 4f ðsnÞ

f ðxnÞ

� �
: ð18Þ
We have searched the parameter spaces (a in the case of LQ, g; a in the cases of QQ and QC) and found that the extraneous
fixed points are not on the imaginary axis. We have considered two measures of closeness to the imaginary axis and exper-
imented with those members from the parameter space.

Let E ¼ fz1; z2; . . . ; zng;ag be the set of the extraneous fixed points corresponding to the values given to g and a. We
define
Fig. 15. LQ case 7 for the roots of the polynomial z3 � 1.

Fig. 14. QC case 6 for the roots of the polynomial z3 � 1.
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dðg; aÞ ¼max
zi2E
jReðziÞj: ð19Þ
We look for the parameters g and a which attain the minimum of dðg; aÞ. For the family LQ, the minimum of dðaÞ occurs at
a ¼ 0:7. For the QQ family, the minimum of dðg; aÞ occurs at g ¼ 0:8 and a ¼ 0:6. For the QC family, the minimum of dðg; aÞ
occurs at g ¼ �0:3 and a ¼ 0:6.

Another method to choose the parameters is by considering the stability of z 2 E defined by
dqðzÞ ¼ dq
dz
ðzÞ; ð20Þ
where q is the iteration function of (17). We define a function called the averaged stability value of the set E by
Aðg; aÞ ¼
P

zi2EjdqðziÞj
ng;a

: ð21Þ
The smaller A becomes, the less chaotic the basin of attraction tends to.
For the family LQ, the minimum of AðaÞ occurs at a ¼ 2:1. For the family QQ, the minimum of Aðg; aÞ occurs at g ¼ 1:8 and

a ¼ 2. For the family QC, the minimum of Aðg; aÞ occurs at g ¼ �3:6 and a ¼ 2.
In the next section we plot the basins of attraction for these seven cases to find the best performer.
Fig. 17. LQ case 2 for the roots of the polynomial z4 � 10z2 þ 9.

Fig. 16. WLN for the roots of the polynomial z3 � 1.
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4. Numerical experiments

In this section, we give the results of using the 8 cases described in Table 1 on five different polynomial equations.
The first two cases are of type LQ. For case 1 the parameter a is obtained using the first measure of closeness and the sec-

ond case is using the second measure. The next two cases are of QQ type, the first of which when using the first measure of
closeness and the second when using the second measure. Cases 5 and 6 are of type QC using the first measure of closeness to
get the parameters for case 5 and the second measure to get the parameters for case 6. Case 7 is of type LQ with a ¼ 2, since
the second measure always gave this parameter as best. The last case (WLN) is the best eighth order method as modified by
Neta et al. [23] and given by
wn ¼ xn �
f ðxnÞ
f 0ðxnÞ

;

sn ¼ wn �
f ðwnÞ
f 0ðxnÞ

f ðxnÞ
f ðxnÞ � 2f ðwnÞ

;

xnþ1 ¼ sn �
H3ðsnÞ
f 0ðsnÞ

;

ð22Þ
Fig. 19. QC case 5 for the roots of the polynomial z4 � 10z2 þ 9.

Fig. 18. QQ case 4 for the roots of the polynomial z4 � 10z2 þ 9.
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where
H3ðsnÞ ¼ f ðxnÞ þ f 0ðxnÞ
ðsn �wnÞ2ðsn � xnÞ

ðwn � xnÞðxn þ 2wn � 3snÞ
þ f 0ðsnÞ

ðsn �wnÞðxn � snÞ
xn þ 2wn � 3sn

� f ðxnÞ � f ðwnÞ
xn �wn

ðsn � xnÞ3

ðwn � xnÞðxn þ 2wn � 3snÞ
:

ð23Þ
We have ran our code for each case and each example on a 6 by 6 square centered at the origin. We have taken 360,000
equally spaced points in the square as initial points for the algorithms. We have recorded the root the method converged
to and the number of iterations it took. We chose a color for each root and the intensity of the color gives information on
the number of iterations. The slower the convergence the darker the shade. If the scheme did not converge in 40 iterations
to one of the roots, we color the point black.

Example 1. In our first example, we have taken the polynomial to be
p1ðzÞ ¼ z2 � 1; ð24Þ
whose roots z ¼ �1 are both real. The results are presented in Figs. 1–8. It is clear that WLN outperforms all the others. There
are no black points in Fig. 8. To get a more quantitative comparison, we have computed the average number of iterations
Fig. 21. LQ case 7 for the roots of the polynomial z4 � 10z2 þ 9.

Fig. 20. QC case 6 for the roots of the polynomial z4 � 10z2 þ 9.



Fig. 22. WLN for the roots of the polynomial z4 � 10z2 þ 9.
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used when starting at each of the 360,000 initial points in the 6 by 6 square. These results are presented in Table 2. It can be
seen that case 6 is the closest to case 8. The worst are cases 1 and 3.
Example 2. In the second example we have taken a cubic polynomial with the 3 roots of unity, i.e.
p2ðzÞ ¼ z3 � 1: ð25Þ

The results are presented in Figs. 9–16. Again cases 1 and 3 are worst, followed by cases 5, 4, and 7. Case 2 requires more

than double the number used by case 8. As a result of this, we will not show the plots for cases 1 and 3 for the rest of the
examples.
Example 3. In the third example we have taken a polynomial of degree 4 with 4 real roots at �1;�3, i.e.
p3ðzÞ ¼ z4 � 10z2 þ 9: ð26Þ

The results are displayed in Figs. 17–22. Again, the only Figure without black points is Fig. 22 (WLN). One can conclude

that getting the extraneous fixed point close to the imaginary axis in some sense is not enough. Methods that have extra-
neous fixed points on the imaginary axis (such as WLN) can perform better. The results of the last two experiments are
not presented graphically.
Example 4. In the next example we have taken a polynomial of degree 5 with the 5 roots of unity, i.e.
p4ðzÞ ¼ z5 � 1: ð27Þ

The average number of iterations per initial point is the smallest for case 8 (WLN), followed by cases 6, 4, and 7. Notice

that a ¼ 2 for cases 6, 4 and 7, see Table 1. If we take a different value of a, the results are even worse.
Example 5. In the last example we took a polynomial of degree 7 having the 7 roots of unity, i.e.
p5ðzÞ ¼ z7 � 1: ð28Þ

The conclusion from Table 2 is almost the same as before. The best cases are 8 and 6 as before and the worst are cases 1, 3,

and 5.

In the last column of the table, we have averaged those results and it is not surprising that case 8 (WLN) has the smallest
average. The next best are cases 6, 4, and 7 (all with a ¼ 2). Notice that the parameter for cases 1, 3, and 5 are almost the
same and the averages are close. Cases 4 and 6 performed better than cases 3 and 5. Notice that except for LQ, the methods
based on the measure Aðg; aÞ performed better than those based on the measure d.

5. Conclusion

We have analyzed the Maheshwari-based eighth order family of methods. We have discussed 3 possible families of
weight functions as rational functions and chose the parameters of the families (denoted LQ, QQ, QC) to get the best basins
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of attraction. We have compared our results to the basin of the modified Wang–Liu method ([23]). The best Maheshwari-
based method is case 6 which using QC and the choice of the parameters is based on the measure Aðg; aÞ. In fact all QQ
and QC methods based on this measure performed better than those based on the measure d. But close to the imaginary axis
is not as good as being on the imaginary axis (as in the case WLN). We can conclude that WLN performed better than any of
the possible version of Maheshwari-based eighth order method.
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[21] C. Chun, M.Y. Lee, B. Neta, J. Dz̆unić, On optimal fourth-order iterative methods free from second derivative and their dynamics, Appl. Math. Comput.

218 (2012) 6427–6438.
[22] A. Cordero, J. García-Maimó, J.R. Torregrosa, M.P. Vassileva, P. Vindel, Chaos in King’s iterative family, Appl. Math. Lett. 26 (2013) 842–848.
[23] B. Neta, C. Chun, M. Scott, Basins of attraction for optimal eighth order methods to find simple roots of nonlinear equations, Appl. Math. Comput. 227

(2014) 567–592.
[24] B. Neta, M. Scott, C. Chun, Basin of attractions for several methods to find simple roots of nonlinear equations, Appl. Math. Comput. 218 (2012) 10548–

10556.
[25] C. Chun, B. Neta, Basins of attraction for Zhou-Chen-Song fourth order family of methods for multiple roots, Math. Comput. Simulat. 109 (2015) 74–91.
[26] B. Neta, C. Chun, Basins of attraction for several optimal fourth order methods for multiple roots, Math. Comput. Simulat. 103 (2014) 39–59.
[27] B. Neta, C. Chun, On a family of Laguerre methods to find multiple roots of nonlinear equations, Appl. Math. Comput. 219 (2013) 10987–11004.
[28] B. Neta, M. Scott, C. Chun, Basin attractors for various methods for multiple roots, Appl. Math. Comput. 218 (2012) 5043–5066.

http://refhub.elsevier.com/S0096-3003(14)01718-4/h0005
http://refhub.elsevier.com/S0096-3003(14)01718-4/h0005
http://refhub.elsevier.com/S0096-3003(14)01718-4/h0010
http://refhub.elsevier.com/S0096-3003(14)01718-4/h0010
http://refhub.elsevier.com/S0096-3003(14)01718-4/h0020
http://refhub.elsevier.com/S0096-3003(14)01718-4/h0020
http://refhub.elsevier.com/S0096-3003(14)01718-4/h0025
http://refhub.elsevier.com/S0096-3003(14)01718-4/h0030
http://refhub.elsevier.com/S0096-3003(14)01718-4/h0035
http://refhub.elsevier.com/S0096-3003(14)01718-4/h0040
http://refhub.elsevier.com/S0096-3003(14)01718-4/h0045
http://refhub.elsevier.com/S0096-3003(14)01718-4/h0050
http://refhub.elsevier.com/S0096-3003(14)01718-4/h0050
http://refhub.elsevier.com/S0096-3003(14)01718-4/h0065
http://refhub.elsevier.com/S0096-3003(14)01718-4/h0070
http://refhub.elsevier.com/S0096-3003(14)01718-4/h0070
http://refhub.elsevier.com/S0096-3003(14)01718-4/h0075
http://refhub.elsevier.com/S0096-3003(14)01718-4/h0080
http://refhub.elsevier.com/S0096-3003(14)01718-4/h0085
http://refhub.elsevier.com/S0096-3003(14)01718-4/h0085
http://refhub.elsevier.com/S0096-3003(14)01718-4/h0090
http://refhub.elsevier.com/S0096-3003(14)01718-4/h0095
http://refhub.elsevier.com/S0096-3003(14)01718-4/h0095
http://dx.doi.org/10.1142/S0218348X14500133
http://dx.doi.org/10.1142/S0218348X14500133
http://refhub.elsevier.com/S0096-3003(14)01718-4/h0105
http://refhub.elsevier.com/S0096-3003(14)01718-4/h0105
http://refhub.elsevier.com/S0096-3003(14)01718-4/h0110
http://refhub.elsevier.com/S0096-3003(14)01718-4/h0115
http://refhub.elsevier.com/S0096-3003(14)01718-4/h0115
http://refhub.elsevier.com/S0096-3003(14)01718-4/h0120
http://refhub.elsevier.com/S0096-3003(14)01718-4/h0120
http://refhub.elsevier.com/S0096-3003(14)01718-4/h0145
http://refhub.elsevier.com/S0096-3003(14)01718-4/h0130
http://refhub.elsevier.com/S0096-3003(14)01718-4/h0135
http://refhub.elsevier.com/S0096-3003(14)01718-4/h0140

	An analysis of a family of Maheshwari-based optimal eighth order methods
	1 Introduction
	2 Optimal eighth-order family of methods
	3 Extraneous fixed points
	4 Numerical experiments
	5 Conclusion
	Acknowledgements
	References


