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1. Introduction

Solving nonlinear equations is one of the most important problems in numerical analysis. To solve nonlinear equations,
iterative methods such as Newton’s method are usually used. Throughout this paper we consider iterative methods to find a
simple root ¢, i.e., f(¢) = 0 and f'(¢)#0, of a nonlinear equation f(x) = 0, where f : D C R — R for an open interval D.

Newton’s method for the calculation of ¢ is probably the most widely used iterative scheme defined by

 f(xn)
fr(x%n)”
It is well known (see e.g. Traub [1]) that this method is quadratically convergent.
Some modifications of Newton’s method to achieve higher order and better efficiency have been suggested and analyzed
using several different techniques such as quadrature rules [2-13], decomposition [14,15] and homotopy techniques [16,17].
A third-order variant of Newton’s method appeared in Weerakoon and Fernando [2] where trapezoidal approximation to
the integral in Newton’s theorem

£ = Flon) + /jf'(t)dr 2)

(1)

Xn+1 = Xp

was considered to obtain the cubically convergent method

(%)
Flo) +F )’

where from here on

Xn+1 = Xp
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. f(xn)
=0~ @)

Another improvement of Newton’s method was suggested in [3], where the authors considered the midpoint rule for the
integral of (2) and obtained the third-order method

f(Xn)
Xt = 2y — A1) (5)
n+ n f/ (x ;yn)
In [4], Homeier derived the following cubically convergent iteration scheme
f(xn) (f 1 1 >
Xpi1 = Xp — + 6
=T P RO ©

by applying Newton'’s theorem (2) to the inverse function x = f(y) instead of y = f(x). It should be pointed out that this meth-
od has also been derived in [5] independently and it is now known as harmonic mean Newton method. It should also be
noted that many of the known iterative methods developed in recent years including the third-order methods given above
can be regarded as rediscovered methods, see [18] for more details.

To further improve the order of convergence, some fourth-order iterative methods have been proposed and analyzed. The
Traub-Ostrowski method [1,19], which has fourth-order convergence, is given by

_ S —f(Xn) f(xn)
2f(¥n) = f(xa) f'(xn)’

where y, is defined by (4). This method is widely used and extended in more general setting for applications. The fourth-
order methods in the literatute usually require three evaluations of the given function and its first derivative per iteration,
and it was shown that they can compete with Newton’s method, see [1,9,13,16,20] and the references therein.

Other than the above-mentioned methods, various types of improvements of Newton’s method are available in the liter-
ature [6-15] and the references therein. Among these methods it is noteworthy to mention that the method of undetermined
coefficients was successfully applied in [11] to show that many methods in the literature can be derived from each other, and
so proving their equivalence. The method was also used to develop new schemes. Most of the above-mentioned methods
improve the order of convergence and computational efficiency of Newton’s method with an additional evaluation of the
function or its first derivative. To be more precise, we define informational efficiency E by

P
E= a
where p is the order of the method and d is the number of function- (and derivative-) evaluations per step. We also mention
another measure, the efficiency index I

[=p'/e

(7)

Xnt1 = Xp

Here we apply the method of undetermined coefficients to present two new improvements of Newton’s method, one
third-order and the other is fourth-order. These methods are analyzed in detail and their efficiency as well as their practical
utility is compared with other methods.

2. Development of methods and convergence analysis
2.1. A new fourth-order method

Let u,,1 = g,(x,) stands for any second-order iterative method. It is well known [1] that the iteration scheme of the form

f(unH)

Xn+1 = Unt1 _f/(unJrl) (8)

and a variant of (8)

_ f(un+l)
Xni1 = Upy1 — f/(xn) (9)

are of orders four and three, respectively. The order of the method (8) is higher than that of (9), but the computation involved
is more costly and thus less efficient.

The informational efficiency of the above methods is unity. The efficiency index of those methods is 1.4142 for (1) and (8)
but I = 1.442 for (34) and (9).

To derive the new fourth-order scheme, we consider the expression

f'(tns1) = Af' (xn) + Bf (xn) + Cf (Uns1).- (10)
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Expand the terms f'(un.1), f'(x,) and f(u,,1) about the point x, up to second derivatives and collect terms. Upon comparing
the coefficients of the derivatives of f at x,, we have the following system of equations for the unknowns A,...,D

B+C=0, (11)
A+aC=1, (12)
%OCZC =a, (13)
where o = u,.1 — X,. Solving the equations (11)-(13), we get
A=-1, (14)
2
B=-*, (15)
2
C==. (16)

The method is now

_ _ of (Uny1)
Xt = Unst = e ) — f ()] = of (%) (17)

where u,,; is computed by any second-order method. This is a generalization of Traub-Ostrowski scheme.
For the method defined by (17), we have the following analysis of convergence.

Theorem 2.1. Let ¢ € I be a simple zero of a sufficiently differentiable function f : I — R for an open interval I. Let u,,1 = g,(xn) be
any second-order method and assume that it satisfies

Uny1 — &= Ke? +0(ed), (18)

for some K#0, and e, = x, — &. Then the new method defined by (17) is of fourth-order. The error at the nth step, e,, satisfies the
relation

ens1 = K[Kc, — cs]ed +0(ed), (19)
where
¢ = (1/n)f ™ (&) /f'(©). (20)

Proof. For later use, we assume that

Un.1 — & = Kei. + Me, + O(el). 1)
Using the Taylor expansion and taking into account f(¢) = 0, we easily obtain
%= Ups1 — Xq = —q + Ke2 + Me2 + 0(e?), (22)
Flttnir) = £1&) [ = &) + ea(tner — 7 +0(e5)], 23)
f(xa) = f/(&)[en + 262 + c3€2 + O(e})], (24)
/(%) =f(&)[1 + 2c2en + 3362 + 0(e)] (25)

from which it follows that

20f (tni1) — Fxa)] = 2 (&) [~en + (Un1 — &) — €262 — c3€3 + O(ef)]. (26)
Using (24)-(26) we find
OCf(Un+1) _ _ _ oz g _on2 _ _ Y
z[f(un+1) _f(xn)} — OCf'(Xn) = (un+1 é) 2K(un+l C)en + e (un+1 C) (6K CZ)(un+l C)
- (21\/1 +2Kc, — 3 — 21<2) (Uns1 — )2 + :—2 (U1 — &) +0(€). (27)

n

Hence we obtain

2
et = Uy — &= [(Un+1 = &) = 2K (uns1 = &)en + (U1 — &) = (6K =€) (Uns — &)
~(2M 4+ 2Kes €5~ 2 ) (i — € + o (i — 9 + o(eg)} = 2K(tror — E)en — = (s — &)

n n
4
4 (6K — ) (Unsy — ) + (21\/1 +2Ke, — 5 — 21<2) (tnir = £)€} = = (Unir = O)° + 0(€})- (28)

n
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Substituting (21) into (28), we have the error equation

en:1 = K[Kcy — cslen +0(e)). (29)
This means that the method defined by (17) is fourth order. This completes the proof. O
Remark 1. With iterative methods u,,; = g,(x,) that require the computation of f(x,) and f’(x,), our method requires 2 func-
tion- and one derivative-evaluation per step, the informational efficiency is E = 4/3 and the efficiency index is [ = 1.5874.

The fifth-order method due to Kou et al. [10] has informational efficiency E = 5/4 and efficiency index I = 1.495. Both of
these measures are lower than the corresponding ones for our method (17).

If we take the Newton iteration as first step, that is,

f(xn)
—m7 (30)

then our method (17) reduces to the well known Traub-Ostrowski fourth-order method (7).

Upi1 = Xy

2.2. A new third-order method

The method (6) can be rewritten

f(%n)
Tl )’ (31)
J' %)+ (Vn)

Xnt1 = Xn —

where y, is given by (4).
Let us consider the application of the method of undetermined coefficients to (31) with the form

of (%) + bf (y,) = % (32)
or

2f' (%n)f (Va) = [f'(xa) + ' (v [af (xn) + S (v)] (33)

to determine the unknown constants a and b in a specific manner. By doing the same as before, we found that the resulting
method will not be of order three, and therefore to improve the order, we obtain the new method

f(Xn 1 1+y, _Xn)zf(xn) 34
lif :| 2f yn) (yn—Xn)zf’(Xn). ( )

This method turns out to be third-order as we ascertain in the following theorem.

Xny1 =

Theorem 2.2. Let ¢ € I be a simple zero of a sufficiently differentiable function f : I — R for an open interval I. If xq is sufficiently
close to ¢, then the method defined by (34) is of third-order, and satisfies the error equation

1
eniq = (2(‘2 + i@)eﬁ +0(e}), (35)
where e, = x, — & and c, is given by (20).

Proof. By using (24) and (25), we obtain

j:,(();’;)) = ey — o€} +2(c5 — c3)ey + O(e}) (36)
and

YV, =X —f(x”):g“+ce2—2(cz—c)e3+0(e4) (37)

n n fl(xn) 26h 2 3)%n n)»
whence

F ) = (&) +F 0 — &) + 07— 97) =F(O)[1+2cke2 + 0(e2)]. (38)
We then easily find

(14 Y, —X0)*f(xa) = /(&) [en + (c2 — 2)€2 + (1 + c3)e; + O(en)], (39)

F'a) + 0 = %)% () = /() [1 + (1+263)e; + O(e7)], (40)
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so that

(14 Y, — %) *f (%)
FOn) + W — X)*f (Xa)
It then follows from (37) and (41) that

1 fn)  [f(Xn T (14y,—x)*f (%) o 1 3 4
Xni1 = 2f' b ] 2 yn) 0% ) ¢+ <2C2 + 263>en +0(ey). (42)

This shows that the method defined by (34) has third-order convergence. This completes the proof. O

=e,+(c; —2)es + (c3 — 2¢5)e; + O(e}). (41)

It should be mentioned that Theorems 2.1 and 2.2 can also be proven by Taylor expansions using Maple (see [15] for de-
tails). The method (34) requires one evaluation of the function and two of its first derivative per iteration, so it has the same
efficiency as the third-order methods given in Weerakoon-Fernando [2], Frontini-Sormani [3], Homeier [4] and others in the
literature. Note that not all third-order methods in the lietrature are as efficient. For example, Nedzhibov’s third-order meth-
od (see [21] or [22]) defined by

f(xn)
_ 43
"I + 2 (51 + f () (43)
and Hasanov’s third-order method (see [23] or [22]) defined by

Xny1 = X

fx)
5 + 47 B5) + ) @

are both third-order but have informational efficiency E = 3/4 and efficiency index I = 3% = 1.316.

Xnt1 = Xn —

3. Numerical examples

In this section we present some numerical experiments using our new methods and compare these results to well known
third and fourth-order schemes. All computations were done using MAPLE using 128 digit floating point arithmetics (Dig-
its := 128). We accept an approximate solution rather than the exact root, depending on the precision (€) of the computer.
We use the following stopping criteria for computer programs: (i) |xn.1 — Xx| < €, (ii) |[f(Xa11)| < €, and so, when the stopping
criterion is satisfied, x,, is taken as the exact root ¢ computed. For numerical illustrations in this section we used the fixed
stopping criterion € = 107**. We used the test functions in Weerakoon and Fernando [2] and in Neta [12]

Testfunction Xo X,

fix) =x* +4x> - 10 1.6 1.3652300134140968457608068290
fo(x) =sin’*(x) —x2 +1 1.0 1.4044916482153412260350868178
) =x-17%-1 35 20

fax)=x>-10 40  2.1544346900318837217592935665
fs(x) = xe*’ —sin®(x) + 3cos(x) +5 —1.0 —1.2076478271309189270094167584
fo(x) = e +7x30 _1q 40 3.0

fr(x) = sin(x) — % 20 1.8954942670339809471440357381
fe(x) = x* +x — 10000 40  6.3087771299726890947675717718
fox)=vx—-1-3 9.0 9.6335955628326951924063127092
fio(x) =€ +x—-20 0.0 2.8424389537844470678165859402
ful(x) =In(x) + vVx -5 10.0 8.3094326942315717953469556827
fax) =x —x2 -1 0.5 1.4655712318767680266567312252

We present some numerical test results for various cubically convergent iterative schemes in Table 1. Compared were
Newton method(NM), the method of Weerakoon and Fernando (WF) defined by (3), Halley’s method [24,25] (HalleyM) de-
fined by

f(xn)f" (%n) f(xn)
2 "X (45)
2f'(xa)* = f(ta)f" (xa) [ (Xn)
where y, is given by (4), Homeier's method (HM) defined by (6), and the method (34) introduced in the present contribution.

We also present some numerical test results for various fourth-order iterative schemes in Table 2. The following methods
were compared: Newton method(NM), Jarratt’s method [20] (JM) defined by

Xnt1 =Yn —
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2 = Xy — 2 L C0) (46)
n n 3 f, (Xn) bl
X 1= X _1 3f/(z1'l) +f,(xn) f(xﬂ) (47)
" " 213f(z0) — (%)) f1(xn)”
King’s method with g = 3 [13] (KM) defined by
X 1_y _ f(xn)+ﬁf( n) f(.Vn) (48)
n+l =
" fxa) + (B=2)f (Vo) f'(Xn)
where y, is defined by (4), Kou’s method [9] (KouM) defined by
Table 1
Comparison of various third-order iterative schemes and the Newton method.
f NM WF HM HalleyM (34)
fi IT 6 4 4 4 5
NFE 12 12 12 12 15
fx) 1.29e-61 3.01e-76 1.55e-107 6.58e—83 —1.90e—-126
o 1.26e—-31 4.07e26 3.14e-36 2.81e-28 1.00e—-56
f IT 7 5 5 5 6
NFE 14 15 15 15 18
fx.) —1.04e-50 8.90e—89 —1.0e-127 1.38e-114 1.20e-99
d 7.33e—26 3.79e-30 2.18e—-62 1.02e-38 6.69e—34
B IT 9 6 6 6 7
NFE 18 18 18 18 21
fx) 1.41e-84 1.23e-109 0 0 0
d 6.86e—43 3.28e-37 5.22e-73 1.45e—49 3.57e-74
fa IT 8 6 5 5 5
NFE 16 18 15 15 15
fx.) 5.44e-72 0 5.90e-113 2.47e—-80 0
) 9.17e-37 1.35e—-64 491e-38 2.31e-27 2.18e-52
fs IT 7 5 5 4 5
NFE 14 15 15 12 15
f(x.) —2.27e-63 4.62e-98 —1.10e—-129 8.57e-91 —1.01e-104
1 8.63e—33 8.87e—34 1.80e—-60 5.50e—31 6.29e—36
fe IT 21 15 12 12 13
NFE 42 45 36 36 39
fx) 9.09e-78 —2.0e-126 5.00e—105 0 0
d 3.26e—40 3.75e-73 2.98e-36 6.95e—68 1.73e-50
f IT 6 4 4 12 4
NFE 12 12 12 36 12
fx) —1.54e-80 —-8.21e-104 —2.0e—128 —3.64e-98 —5.71e-81
) 1.81e-40 6.92e-35 3.55e—49 4.81e-33 1.84e-27
fs IT 10 8 6 18
NFE 20 24 18 54
fx) 1.74e—62 —4.42e-89 0 0 div
o 2.63e-33 3.54e-31 1.33e-55 6.13e—61
fo IT 5 4 4 4 5
NFE 10 12 12 12 15
fx) —2.21e-54 —1.35e-125 0 0 0
) 2.05e-26 3.44e-41 5.18e—45 1.15e-44 1.95e-44
Voo IT 14 89 21 15
NFE 28 267 63 45
fx) 6.08e—-54 -9.97e-79 0 2.0e-126 div
) 8.42e—28 5.67e—-27 4.59e—-70 3.36e—58
fin IT 6 4 4 4
NFE 12 12 12 12
f(x) —2.21e-74 3.79e-83 3.63e-97 2.89e—-102 div
) 1.33e-36 3.39e-27 9.33e—-32 1.99e—33
fiz IT 10 7 6 6 7
NFE 20 21 18 18 21
fx) 8.30e—99 —1.0e-127 —1.0e—127 2.71e—88 —1.0e-127
o 4.94e-50 1.01e-63 1.20e—-47 491e-30 2.72e-67
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Table 2
Comparison of various fourth-order iterative schemes and the Newton method.
f NM M KM KouM oM
fi IT 6 4 4 4 4
NFE 12 12 12 12 12
fx) 1.29e—-61 —6.0e—127 —6.0e—127 —6.0e—127 —6.0e—127
1) 1.26e—31 2.42e—65 4.94e—48 7.83e—-55 1.64e—45
f IT 7 4 9 5 6
NFE 14 12 27 15 18
f(x) —1.04e-50 —1.34e-110 —1.0e—127 2.10e-127 —1.0e—-127
o 7.33e—26 3.41e-28 5.27e-76 1.71e—42 1.15e-94
B IT 9 5 6 5 6
NFE 18 15 18 15 18
fx.) 1.41e—84 0 0 1.11e—120 0
1) 6.86e—43 2.21e-49 4.28e—85 6.10e—-31 1.10e—88
fa IT 8 5 5 5 5
NFE 16 15 15 15 15
fx.) 5.44e—72 0 0 0 0
1) 9.17e-37 5.82e—-82 3.78e—42 7.40e—56 1.23e—-32
B IT 7 4 5 5 4
NFE 14 12 15 15 12
f(x.) —2.27e—63 —1.10e—-126 —1.94e-101 1.20e—126 —1.10e—-126
5 8.63e-33 2.40e-50 1.46e-26 9.01e-90 1.04e-55
fe IT 21 10 13 12 10
NFE 42 30 52 36 30
f(x) 9.09e-78 0 9.22e-118 0 0
) 3.26e—40 1.75e—51 4.46e—31 7.87e—46 2.63e-33
f IT 6 4 4 4 4
NFE 12 12 12 12 12
f(x) —1.54e—-80 —2.0e—128 —2.0e—128 6.0e—128 —2.0e—128
0 1.81e—40 7.49e—79 4.59e—64 1.40e—70 3.84e—62
fs IT 10 5 48 12 14
NFE 20 15 144 36 42
fx.) 1.74e—62 —7.0e—124 0 5.93e—102 0
o 2.63e-33 2.46e-35 1.12e-63 9.85e-27 2.12e-40
fo IT 5 3 4 3 4
NFE 10 9 12 9 12
f(x) —2.22e-54 1.96e—115 0 —3.98e—109 —3.10e—-126
1) 2.05e-26 5.39e-28 1.28e-93 1.69e—26 1.55e—31
fio IT 14 6 14
NFE 28 18 42
f(x.) 6.08e—54 0 div div 0
0 8.42e-28 1.56e—69 2.72e-57
fin IT 6 4 4 4 4
NFE 12 12 12 12 12
f(x.) —2.21e-74 1.0e—-127 1.0e—127 —1.0e-127 —7.17e-116
5 1.33e-36 2.62e-85 1.23e-57 2.62e-71 4.92e-29
fi2 IT 10 5 6 6 6
NFE 20 15 18 18 18
fx) 8.30e—99 2.09e-116 —1.0e—127 —1.0e—127 —1.0e-127
1) 4.94e—50 9.86e—30 4.78e—44 9.80e—67 3.75e—40
2 2
_ f(xﬂ) +f( n) 49
Xni1 = Xn — . y ( )
S xn)(f(xn) = f(¥n))
where y, is defined by (4), and our new method (17) with u,,; given by
f(xn)
Upsg =Xp — ————— 50
M )+ ) >0

which is of order two [17]. It is well-known that Newton’s method may fail to converge in case the initial guess is far from
zero or the derivative is small in the vicinity of the required root. In cases that Newton’s method is not successful, several
second-order alternative methods were developed and tested to be robust and reliable. Some of these as well as Wu’s meth-

od (50) are Stiring’s method [26] given by
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f(xa)
TP —f %) G

Steffensen’s method [27] given by

fz(xn)
[0+ F(%n)) — F(Xn) (52)

and Mamta’s method [28] given by

S xa)f' (xn)
f2(Xn + 2 (xn)) — f(%n) (53)

Also displayed are the number of iterations to approximate the zero (IT), the number of functional evaluations (NFE)
counted as the sum of the number of evaluations of the function itself plus the number of evaluations of the derivative,
the value f(x,) and the distance ¢ of two consecutive approximations for the zero.

The test results in Table 2 show that for most of the functions we tested, the method (17) introduced in the present work
have equal or better performance as compared to the other methods of the same order. However, it is observed that the other
third order methods in comparison outperformed the proposed method (34).

Uni1 = Xp

Upi1 =Xy

Upi1 = Xn —

Acknowledgement
The authors thank the referees for their helpful comments.

References

[1] J.F. Traub, Iterative Methods for the Solution of Equations, Chelsea Publishing Company, New York, 1977.
[2] S. Weerakoon, G.I. Fernando, A variant of Newton’s method with accelerated third-order convergence, Appl. Math. Lett. 17 (2000) 87-93.
[3] M. Frontini, E. Sormani, Some variants of Newton’s method with third-order convergence, Appl. Math. Comput. 140 (2003) 419-426.
[4] H.H.H. Homeier, On Newton-type methods with cubic convergence, ]. Comput. Appl. Math. 176 (2005) 425-432.
[5] AY. Ozban, Some new variants of Newton’s method, Appl. Math. Lett. 17 (2004) 677-682.
[6] J. Kou, Y. Li, X. Wang, Third-order modification of Newton’s method, J. Comput. Appl. Math. 205 (2007) 1-5.
[7] C. Chun, A geometric construction of iterative functions of order three to solve nonlinear equations, Comput. Math. Appl. 53 (2007) 972-976.
[8] Y. Ham, C. Chun, A fifth-order iterative method for solving nonlinear equations, Appl. Math. Comput. 194 (2007) 287-290.
[9] J. Kou, L. Yitian, X. Wang, A composite fourth-order iterative method for solving non-linear equations, Appl. Math. Comput. 184 (2007) 471-475.
[10] J. Kou, Y. Li, X. Wang, Some modifications of newton’s method with fifth-order convergence, J. Comput. Appl. Math. 209 (2007) 146-152.
[11] C. Chun, B. Neta, Some modification of Newton’s method by the method of undetermined coefficients, Comput. Math. Appl. 56 (2008) 2528-2538.
[12] B. Neta, Several new schemes for solving equations, Int. J. Comput. Math. 23 (1987) 265-282.
[13] R. King, A family of fourth-order methods for nonlinear equations, SIAM ]. Numer. Anal. 10 (5) (1973) 876-879.
[14] S. Abbasbandy, Improving Newton-Raphson method for solving nonlinear equations by modified Aomian decomposition method, Appl. Math. Comput.
145 (2003) 887-893.
[15] C. Chun, Iterative methods improving Newton’s method by the decomposition method, Comput. Math. Appl. 50 (2005) 450-456.
[16] C. Chun, Construction of Newton-like iteration methods for solving nonlinear equations, Numer. Math. 104 (3) (2006) 297-315.
[17] X.-Y. Wu, A new continuation Newton-like method and its deformation, Appl. Math. Comput. 112 (2000) 75-78.
[18] L.D. Petkovi¢, M.S. Petkovi¢, A note on some recent methods for solving nonlinear equations, Appl. Math. Comput. 185 (2007) 368-374.
[19] A.M. Ostrowski, Solution of Equations and Systems of Equations, Academic Press, New York, London, 1966.
[20] LK. Argyros, D. Chen, Q. Qian, The Jarratt method in Banach space setting, J. Comput. Appl. Math. 51 (1994) 103-106.
[21] G. Nedzhibov, On a few iterative methods for solving nonlinear equations, in: Proceedings of the XXVIII Summer School Sozopol, Application of
Mathematics in Engineering and Economics, vol. 28, Heron Press, Sofia, 2002.
[22] D.K.R. Babajee, M.Z. Dauhoo, An analysis of the properties of the variants of Newton’s method with third order convergence, Appl. Math. Comput. 183
(2006) 659-684.
[23] V.I. Hasanov, L.G. Ivanov, G. Nedzhibov, A new modification of Newton method, Appl. Math. Eng. 27 (2002) 278-286.
[24] E. Halley, A new, exact and easy method of finding the roots of equations generally and that without any previous reduction, Phil. Trans. Roy. Soc.
London 18 (1694) 136-148.
[25] J.M. Gutiérrez, M.A. Hernandez, A family of Chebyshev-Halley type methods in Banach spaces, Bull. Aust. Math. Soc. 55 (4) (1997) 113-130.
[26] LW. Johnson, R.D. Riess, Numerical Analysis, Addison-Wesley, Reading, MA, 1977.
[27] LF. Steffensen, Remarks on iteration, Skand. Aktuar. Tidskr. 16 (1934) 64-72.
[28] V.K. Mamta, V.K. Kukreja, S. Singh, On a class of quadratically convergent iteration formulae, Appl. Math. Comput. 166 (2005) 633-637.



