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a b s t r a c t

In this paper we present two new schemes, one is third-order and the other is fourth-order.
These are improvements of second-order methods for solving nonlinear equations and are
based on the method of undetermined coefficients. We show that the fourth-order method
is more efficient than the fifth-order method due to Kou et al. [J. Kou, Y. Li, X. Wang, Some
modifications of Newton’s method with fifth-order covergence, J. Comput. Appl. Math., 209
(2007) 146–152]. Numerical examples are given to support that the methods thus obtained
can compete with other iterative methods.

Published by Elsevier Inc.

1. Introduction

Solving nonlinear equations is one of the most important problems in numerical analysis. To solve nonlinear equations,
iterative methods such as Newton’s method are usually used. Throughout this paper we consider iterative methods to find a
simple root n, i.e., f ðnÞ ¼ 0 and f 0ðnÞ–0, of a nonlinear equation f ðxÞ ¼ 0, where f : D � R! R for an open interval D.

Newton’s method for the calculation of n is probably the most widely used iterative scheme defined by

xnþ1 ¼ xn �
f ðxnÞ
f 0ðxnÞ

: ð1Þ

It is well known (see e.g. Traub [1]) that this method is quadratically convergent.
Some modifications of Newton’s method to achieve higher order and better efficiency have been suggested and analyzed

using several different techniques such as quadrature rules [2–13], decomposition [14,15] and homotopy techniques [16,17].
A third-order variant of Newton’s method appeared in Weerakoon and Fernando [2] where trapezoidal approximation to

the integral in Newton’s theorem

f ðxÞ ¼ f ðxnÞ þ
Z x

xn

f 0ðtÞdt ð2Þ

was considered to obtain the cubically convergent method

xnþ1 ¼ xn �
2f ðxnÞ

f 0ðxnÞ þ f 0ðynÞ
; ð3Þ

where from here on
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yn ¼ xn �
f ðxnÞ
f 0ðxnÞ

: ð4Þ

Another improvement of Newton’s method was suggested in [3], where the authors considered the midpoint rule for the
integral of (2) and obtained the third-order method

xnþ1 ¼ xn �
f ðxnÞ

f 0 xnþyn
2

� � : ð5Þ

In [4], Homeier derived the following cubically convergent iteration scheme

xnþ1 ¼ xn �
f ðxnÞ

2
1

f 0ðxnÞ
þ 1

f 0ðynÞ

� �
ð6Þ

by applying Newton’s theorem (2) to the inverse function x ¼ f ðyÞ instead of y ¼ f ðxÞ. It should be pointed out that this meth-
od has also been derived in [5] independently and it is now known as harmonic mean Newton method. It should also be
noted that many of the known iterative methods developed in recent years including the third-order methods given above
can be regarded as rediscovered methods, see [18] for more details.

To further improve the order of convergence, some fourth-order iterative methods have been proposed and analyzed. The
Traub–Ostrowski method [1,19], which has fourth-order convergence, is given by

xnþ1 ¼ xn �
f ðynÞ � f ðxnÞ

2f ðynÞ � f ðxnÞ
f ðxnÞ
f 0ðxnÞ

; ð7Þ

where yn is defined by (4). This method is widely used and extended in more general setting for applications. The fourth-
order methods in the literatute usually require three evaluations of the given function and its first derivative per iteration,
and it was shown that they can compete with Newton’s method, see [1,9,13,16,20] and the references therein.

Other than the above-mentioned methods, various types of improvements of Newton’s method are available in the liter-
ature [6–15] and the references therein. Among these methods it is noteworthy to mention that the method of undetermined
coefficients was successfully applied in [11] to show that many methods in the literature can be derived from each other, and
so proving their equivalence. The method was also used to develop new schemes. Most of the above-mentioned methods
improve the order of convergence and computational efficiency of Newton’s method with an additional evaluation of the
function or its first derivative. To be more precise, we define informational efficiency E by

E ¼ p
d
;

where p is the order of the method and d is the number of function- (and derivative-) evaluations per step. We also mention
another measure, the efficiency index I

I ¼ p1=d:

Here we apply the method of undetermined coefficients to present two new improvements of Newton’s method, one
third-order and the other is fourth-order. These methods are analyzed in detail and their efficiency as well as their practical
utility is compared with other methods.

2. Development of methods and convergence analysis

2.1. A new fourth-order method

Let unþ1 ¼ g2ðxnÞ stands for any second-order iterative method. It is well known [1] that the iteration scheme of the form

xnþ1 ¼ unþ1 �
f ðunþ1Þ
f 0ðunþ1Þ

ð8Þ

and a variant of (8)

xnþ1 ¼ unþ1 �
f ðunþ1Þ
f 0ðxnÞ

ð9Þ

are of orders four and three, respectively. The order of the method (8) is higher than that of (9), but the computation involved
is more costly and thus less efficient.

The informational efficiency of the above methods is unity. The efficiency index of those methods is 1.4142 for (1) and (8)
but I ¼ 1:442 for (34) and (9).

To derive the new fourth-order scheme, we consider the expression

f 0ðunþ1Þ ¼ Af 0ðxnÞ þ Bf ðxnÞ þ Cf ðunþ1Þ: ð10Þ
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Expand the terms f 0ðunþ1Þ, f 0ðxnÞ and f ðunþ1Þ about the point xn up to second derivatives and collect terms. Upon comparing
the coefficients of the derivatives of f at xn, we have the following system of equations for the unknowns A; . . . ;D

Bþ C ¼ 0; ð11Þ
Aþ aC ¼ 1; ð12Þ
1
2
a2C ¼ a; ð13Þ

where a ¼ unþ1 � xn. Solving the equations (11)–(13), we get

A ¼ �1; ð14Þ

B ¼ �2
a
; ð15Þ

C ¼ 2
a
: ð16Þ

The method is now

xnþ1 ¼ unþ1 �
af ðunþ1Þ

2½f ðunþ1Þ � f ðxnÞ� � af 0ðxnÞ
; ð17Þ

where unþ1 is computed by any second-order method. This is a generalization of Traub–Ostrowski scheme.
For the method defined by (17), we have the following analysis of convergence.

Theorem 2.1. Let n 2 I be a simple zero of a sufficiently differentiable function f : I! R for an open interval I. Let unþ1 ¼ g2ðxnÞ be
any second-order method and assume that it satisfies

unþ1 � n ¼ Ke2
n þ O e3

n

� �
; ð18Þ

for some K–0, and en ¼ xn � n. Then the new method defined by (17) is of fourth-order. The error at the nth step, en, satisfies the
relation

enþ1 ¼ K½Kc2 � c3�e4
n þ O e5

n

� �
; ð19Þ

where

cn ¼ ð1=n!Þf ðnÞðnÞ=f 0ðnÞ: ð20Þ

Proof. For later use, we assume that

unþ1 � n ¼ Ke2
n þMe3

n þ O e4
n

� �
: ð21Þ

Using the Taylor expansion and taking into account f ðnÞ ¼ 0, we easily obtain

a ¼ unþ1 � xn ¼ �en þ Ke2
n þMe3

n þ O e4
n

� �
; ð22Þ

f ðunþ1Þ ¼ f 0ðnÞ ðunþ1 � nÞ þ c2ðunþ1 � nÞ2 þ O e6
n

� �h i
; ð23Þ

f ðxnÞ ¼ f 0ðnÞ en þ c2e2
n þ c3e3

n þ O e4
n

� �� �
; ð24Þ

f 0ðxnÞ ¼ f 0ðnÞ 1þ 2c2en þ 3c3e2
n þ O e3

n

� �� �
ð25Þ

from which it follows that

2½f ðunþ1Þ � f ðxnÞ� ¼ 2f 0ðnÞ �en þ ðunþ1 � nÞ � c2e2
n � c3e3

n þ O e4
n

� �� �
: ð26Þ

Using (24)–(26) we find

af ðunþ1Þ
2½f ðunþ1Þ � f ðxnÞ� � af 0ðxnÞ

¼ ðunþ1 � nÞ � 2Kðunþ1 � nÞen þ
2
en
ðunþ1 � nÞ2 � ð6K � c2Þðunþ1 � nÞ2

� 2M þ 2Kc2 � c3 � 2K2
� 	

ðunþ1 � nÞe2
n þ

4
e2

n
ðunþ1 � nÞ3 þ O e5

n

� �
: ð27Þ

Hence we obtain

enþ1 ¼ unþ1 � n� ðunþ1 � nÞ � 2Kðunþ1 � nÞen þ
2
en
ðunþ1 � nÞ2 � ð6K � c2Þðunþ1 � nÞ2




� 2M þ 2Kc2 � c3 � 2K2
� 	

ðunþ1 � nÞe2
n þ

4
e2

n
ðunþ1 � nÞ3 þ O e5

n

� ��
¼ 2Kðunþ1 � nÞen �

2
en
ðunþ1 � nÞ2

þ ð6K � c2Þðunþ1 � nÞ2 þ 2M þ 2Kc2 � c3 � 2K2
� 	

ðunþ1 � nÞe2
n �

4
e2

n
ðunþ1 � nÞ3 þ O e5

n

� �
: ð28Þ
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Substituting (21) into (28), we have the error equation

enþ1 ¼ K½Kc2 � c3�e4
n þ O e5

n

� �
: ð29Þ

This means that the method defined by (17) is fourth order. This completes the proof. h

Remark 1. With iterative methods unþ1 ¼ g2ðxnÞ that require the computation of f ðxnÞ and f 0ðxnÞ, our method requires 2 func-
tion- and one derivative-evaluation per step, the informational efficiency is E ¼ 4=3 and the efficiency index is I ¼ 1:5874.
The fifth-order method due to Kou et al. [10] has informational efficiency E ¼ 5=4 and efficiency index I ¼ 1:495. Both of
these measures are lower than the corresponding ones for our method (17).

If we take the Newton iteration as first step, that is,

unþ1 ¼ xn �
f ðxnÞ
f 0ðxnÞ

; ð30Þ

then our method (17) reduces to the well known Traub–Ostrowski fourth-order method (7).

2.2. A new third-order method

The method (6) can be rewritten

xnþ1 ¼ xn �
f ðxnÞ

2f 0 ðxnÞf 0 ðynÞ
f 0 ðxnÞþf 0ðynÞ

; ð31Þ

where yn is given by (4).
Let us consider the application of the method of undetermined coefficients to (31) with the form

af 0ðxnÞ þ bf 0ðynÞ ¼
2f 0ðxnÞf 0ðynÞ

f 0ðxnÞ þ f 0ðynÞ
ð32Þ

or

2f 0ðxnÞf 0ðynÞ ¼ f 0ðxnÞ þ f 0ðynÞ½ � af 0ðxnÞ þ bf 0ðynÞ
� �

ð33Þ

to determine the unknown constants a and b in a specific manner. By doing the same as before, we found that the resulting
method will not be of order three, and therefore to improve the order, we obtain the new method

xnþ1 ¼ yn þ
1
2

f ðxnÞ
f 0ðxnÞ

� f ðxnÞ
f 0ðxnÞ


 �2

� 1
2
ð1þ yn � xnÞ2f ðxnÞ

f 0ðynÞ þ ðyn � xnÞ2f 0ðxnÞ
: ð34Þ

This method turns out to be third-order as we ascertain in the following theorem.

Theorem 2.2. Let n 2 I be a simple zero of a sufficiently differentiable function f : I ! R for an open interval I. If x0 is sufficiently
close to n, then the method defined by (34) is of third-order, and satisfies the error equation

enþ1 ¼ 2c2 þ
1
2

c3

� �
e3

n þ O e4
n

� �
; ð35Þ

where en ¼ xn � n and cn is given by (20).

Proof. By using (24) and (25), we obtain

f ðxnÞ
f 0ðxnÞ

¼ en � c2e2
n þ 2 c2

2 � c3
� �

e3
n þ O e4

n

� �
ð36Þ

and

yn ¼ xn �
f ðxnÞ
f 0ðxnÞ

¼ nþ c2e2
n � 2 c2

2 � c3
� �

e3
n þ O e4

n

� �
; ð37Þ

whence

f 0ðynÞ ¼ f 0ðnÞ þ f 00ðnÞðyn � nÞ þ O ðyn � nÞ2
� 	

¼ f 0ðnÞ 1þ 2c2
2e2

n þ O e3
n

� �� �
: ð38Þ

We then easily find

ð1þ yn � xnÞ2f ðxnÞ ¼ f 0ðnÞ en þ ðc2 � 2Þe2
n þ ð1þ c3Þe3

n þ O e4
n

� �� �
; ð39Þ

f 0ðynÞ þ ðyn � xnÞ2f 0ðxnÞ ¼ f 0ðnÞ 1þ 1þ 2c2
2

� �
e2

n þ O e3
n

� �� �
; ð40Þ
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so that

ð1þ yn � xnÞ2f ðxnÞ
f 0ðynÞ þ ðyn � xnÞ2f 0ðxnÞ

¼ en þ ðc2 � 2Þe2
n þ c3 � 2c2

2

� �
e3

n þ O e4
n

� �
: ð41Þ

It then follows from (37) and (41) that

xnþ1 ¼ yn þ
1
2

f ðxnÞ
f 0ðxnÞ

� f ðxnÞ
f 0ðxnÞ


 �2

� 1
2
ð1þ yn � xnÞ2f ðxnÞ

f 0ðynÞ þ ðyn � xnÞ2f 0ðxnÞ
¼ nþ 2c2 þ

1
2

c3

� �
e3

n þ O e4
n

� �
: ð42Þ

This shows that the method defined by (34) has third-order convergence. This completes the proof. h

It should be mentioned that Theorems 2.1 and 2.2 can also be proven by Taylor expansions using Maple (see [15] for de-
tails). The method (34) requires one evaluation of the function and two of its first derivative per iteration, so it has the same
efficiency as the third-order methods given in Weerakoon–Fernando [2], Frontini–Sormani [3], Homeier [4] and others in the
literature. Note that not all third-order methods in the lietrature are as efficient. For example, Nedzhibov’s third-order meth-
od (see [21] or [22]) defined by

xnþ1 ¼ xn �
f ðxnÞ

1
4 f 0ðynÞ þ 2f 0 xnþyn

2

� �
þ f 0ðxnÞ

� � ð43Þ

and Hasanov’s third-order method (see [23] or [22]) defined by

xnþ1 ¼ xn �
f ðxnÞ

1
6 f 0ðynÞ þ 4f 0 xnþyn

2

� �
þ f 0ðxnÞ

� � ð44Þ

are both third-order but have informational efficiency E ¼ 3=4 and efficiency index I ¼ 31=4 ¼ 1:316.

3. Numerical examples

In this section we present some numerical experiments using our new methods and compare these results to well known
third and fourth-order schemes. All computations were done using MAPLE using 128 digit floating point arithmetics (Dig-
its := 128). We accept an approximate solution rather than the exact root, depending on the precision ð�Þ of the computer.
We use the following stopping criteria for computer programs: ðiÞ jxnþ1 � xnj < �; ðiiÞ jf ðxnþ1Þj < �, and so, when the stopping
criterion is satisfied, xnþ1 is taken as the exact root n computed. For numerical illustrations in this section we used the fixed
stopping criterion � ¼ 10�25. We used the test functions in Weerakoon and Fernando [2] and in Neta [12]

Testfunction x0 x�
f1ðxÞ ¼ x3 þ 4x2 � 10 1:6 1:3652300134140968457608068290

f2ðxÞ ¼ sin2ðxÞ � x2 þ 1 1:0 1:4044916482153412260350868178

f3ðxÞ ¼ ðx� 1Þ3 � 1 3:5 2:0
f4ðxÞ ¼ x3 � 10 4:0 2:1544346900318837217592935665

f5ðxÞ ¼ xex2 � sin2ðxÞ þ 3 cosðxÞ þ 5 �1:0 �1:2076478271309189270094167584

f6ðxÞ ¼ ex2þ7x�30 � 1 4:0 3:0
f7ðxÞ ¼ sinðxÞ � x

2 2:0 1:8954942670339809471440357381
f8ðxÞ ¼ x5 þ x� 10000 4:0 6:3087771299726890947675717718
f9ðxÞ ¼

ffiffiffi
x
p
� 1

x � 3 9:0 9:6335955628326951924063127092
f10ðxÞ ¼ ex þ x� 20 0:0 2:8424389537844470678165859402
f11ðxÞ ¼ lnðxÞ þ

ffiffiffi
x
p
� 5 10:0 8:3094326942315717953469556827

f12ðxÞ ¼ x3 � x2 � 1 0:5 1:4655712318767680266567312252

We present some numerical test results for various cubically convergent iterative schemes in Table 1. Compared were
Newton method(NM), the method of Weerakoon and Fernando (WF) defined by (3), Halley’s method [24,25] (HalleyM) de-
fined by

xnþ1 ¼ yn �
f ðxnÞf 00ðxnÞ

2f 0ðxnÞ2 � f ðxnÞf 00ðxnÞ
f ðxnÞ
f 0ðxnÞ

; ð45Þ

where yn is given by (4), Homeier’s method (HM) defined by (6), and the method (34) introduced in the present contribution.
We also present some numerical test results for various fourth-order iterative schemes in Table 2. The following methods

were compared: Newton method(NM), Jarratt’s method [20] (JM) defined by

C. Chun, B. Neta / Applied Mathematics and Computation 215 (2009) 821–828 825
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zn ¼ xn �
2
3

f ðxnÞ
f 0ðxnÞ

; ð46Þ

xnþ1 ¼ xn �
1
2

3f 0ðznÞ þ f 0ðxnÞ
3f 0ðznÞ � f 0ðxnÞ


 �
f ðxnÞ
f 0ðxnÞ

; ð47Þ

King’s method with b ¼ 3 [13] (KM) defined by

xnþ1 ¼ yn �
f ðxnÞ þ bf ðynÞ

f ðxnÞ þ ðb� 2Þf ðynÞ
f ðynÞ
f 0ðxnÞ

; ð48Þ

where yn is defined by (4), Kou’s method [9] (KouM) defined by

Table 1
Comparison of various third-order iterative schemes and the Newton method.

f NM WF HM HalleyM (34)

f1 IT 6 4 4 4 5
NFE 12 12 12 12 15
f ðx�Þ 1.29e�61 3.01e�76 1.55e�107 6.58e�83 �1.90e�126
d 1.26e�31 4.07e26 3.14e�36 2.81e�28 1.00e�56

f2 IT 7 5 5 5 6
NFE 14 15 15 15 18
f ðx�Þ �1.04e�50 8.90e�89 �1.0e�127 1.38e�114 1.20e�99
d 7.33e�26 3.79e�30 2.18e�62 1.02e�38 6.69e�34

f3 IT 9 6 6 6 7
NFE 18 18 18 18 21
f ðx�Þ 1.41e�84 1.23e�109 0 0 0
d 6.86e�43 3.28e�37 5.22e�73 1.45e�49 3.57e�74

f4 IT 8 6 5 5 5
NFE 16 18 15 15 15
f ðx�Þ 5.44e�72 0 5.90e�113 2.47e�80 0
d 9.17e�37 1.35e�64 4.91e�38 2.31e�27 2.18e�52

f5 IT 7 5 5 4 5
NFE 14 15 15 12 15
f ðx�Þ �2.27e�63 4.62e�98 �1.10e�129 8.57e�91 �1.01e�104
d 8.63e�33 8.87e�34 1.80e�60 5.50e�31 6.29e�36

f6 IT 21 15 12 12 13
NFE 42 45 36 36 39
f ðx�Þ 9.09e�78 �2.0e�126 5.00e�105 0 0
d 3.26e�40 3.75e�73 2.98e�36 6.95e�68 1.73e�50

f7 IT 6 4 4 12 4
NFE 12 12 12 36 12
f ðx�Þ �1.54e�80 �8.21e�104 �2.0e�128 �3.64e�98 �5.71e�81
d 1.81e�40 6.92e�35 3.55e�49 4.81e�33 1.84e�27

f8 IT 10 8 6 18
NFE 20 24 18 54
f ðx�Þ 1.74e�62 �4.42e�89 0 0 div
d 2.63e�33 3.54e�31 1.33e�55 6.13e�61

f9 IT 5 4 4 4 5
NFE 10 12 12 12 15
f ðx�Þ �2.21e�54 �1.35e�125 0 0 0
d 2.05e�26 3.44e�41 5.18e�45 1.15e�44 1.95e�44

f10 IT 14 89 21 15
NFE 28 267 63 45
f ðx�Þ 6.08e�54 �9.97e�79 0 2.0e�126 div
d 8.42e�28 5.67e�27 4.59e�70 3.36e�58

f11 IT 6 4 4 4
NFE 12 12 12 12
f ðx�Þ �2.21e�74 3.79e�83 3.63e�97 2.89e�102 div
d 1.33e�36 3.39e�27 9.33e�32 1.99e�33

f12 IT 10 7 6 6 7
NFE 20 21 18 18 21
f ðx�Þ 8.30e�99 �1.0e�127 �1.0e�127 2.71e�88 �1.0e�127
d 4.94e�50 1.01e�63 1.20e�47 4.91e�30 2.72e�67

826 C. Chun, B. Neta / Applied Mathematics and Computation 215 (2009) 821–828
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xnþ1 ¼ xn �
f ðxnÞ2 þ f ðynÞ

2

f 0ðxnÞðf ðxnÞ � f ðynÞÞ
; ð49Þ

where yn is defined by (4), and our new method (17) with unþ1 given by

unþ1 ¼ xn �
f ðxnÞ

f ðxnÞ þ f 0ðxnÞ
; ð50Þ

which is of order two [17]. It is well-known that Newton’s method may fail to converge in case the initial guess is far from
zero or the derivative is small in the vicinity of the required root. In cases that Newton’s method is not successful, several
second-order alternative methods were developed and tested to be robust and reliable. Some of these as well as Wu’s meth-
od (50) are Stiring’s method [26] given by

Table 2
Comparison of various fourth-order iterative schemes and the Newton method.

f NM JM KM KouM OM

f1 IT 6 4 4 4 4
NFE 12 12 12 12 12
f ðx�Þ 1.29e�61 �6.0e�127 �6.0e�127 �6.0e�127 �6.0e�127
d 1.26e�31 2.42e�65 4.94e�48 7.83e�55 1.64e�45

f2 IT 7 4 9 5 6
NFE 14 12 27 15 18
f ðx�Þ �1.04e�50 �1.34e�110 �1.0e�127 2.10e�127 �1.0e�127
d 7.33e�26 3.41e�28 5.27e�76 1.71e�42 1.15e�94

f3 IT 9 5 6 5 6
NFE 18 15 18 15 18
f ðx�Þ 1.41e�84 0 0 1.11e�120 0
d 6.86e�43 2.21e�49 4.28e�85 6.10e�31 1.10e�88

f4 IT 8 5 5 5 5
NFE 16 15 15 15 15
f ðx�Þ 5.44e�72 0 0 0 0
d 9.17e�37 5.82e�82 3.78e�42 7.40e�56 1.23e�32

f5 IT 7 4 5 5 4
NFE 14 12 15 15 12
f ðx�Þ �2.27e�63 �1.10e�126 �1.94e�101 1.20e�126 �1.10e�126
d 8.63e�33 2.40e�50 1.46e�26 9.01e�90 1.04e�55

f6 IT 21 10 13 12 10
NFE 42 30 52 36 30
f ðx�Þ 9.09e�78 0 9.22e�118 0 0
d 3.26e�40 1.75e�51 4.46e�31 7.87e�46 2.63e�33

f7 IT 6 4 4 4 4
NFE 12 12 12 12 12
f ðx�Þ �1.54e�80 �2.0e�128 �2.0e�128 6.0e�128 �2.0e�128
d 1.81e�40 7.49e�79 4.59e�64 1.40e�70 3.84e�62

f8 IT 10 5 48 12 14
NFE 20 15 144 36 42
f ðx�Þ 1.74e�62 �7.0e�124 0 5.93e�102 0
d 2.63e�33 2.46e�35 1.12e�63 9.85e�27 2.12e�40

f9 IT 5 3 4 3 4
NFE 10 9 12 9 12
f ðx�Þ �2.22e�54 1.96e�115 0 �3.98e�109 �3.10e�126
d 2.05e�26 5.39e�28 1.28e�93 1.69e�26 1.55e�31

f10 IT 14 6 14
NFE 28 18 42
f ðx�Þ 6.08e�54 0 div div 0
d 8.42e�28 1.56e�69 2.72e�57

f11 IT 6 4 4 4 4
NFE 12 12 12 12 12
f ðx�Þ �2.21e�74 1.0e�127 1.0e�127 �1.0e�127 �7.17e�116
d 1.33e�36 2.62e�85 1.23e�57 2.62e�71 4.92e�29

f12 IT 10 5 6 6 6
NFE 20 15 18 18 18
f ðx�Þ 8.30e�99 2.09e�116 �1.0e�127 �1.0e�127 �1.0e�127
d 4.94e�50 9.86e�30 4.78e�44 9.80e�67 3.75e�40
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unþ1 ¼ xn �
f ðxnÞ

f 0ðxn � f ðxnÞÞ
; ð51Þ

Steffensen’s method [27] given by

unþ1 ¼ xn �
f 2ðxnÞ

f 0ðxn þ f ðxnÞÞ � f ðxnÞ
ð52Þ

and Mamta’s method [28] given by

unþ1 ¼ xn �
f ðxnÞf 0ðxnÞ

f 02 xn þ f 2ðxnÞð Þ � f ðxnÞ
: ð53Þ

Also displayed are the number of iterations to approximate the zero (IT), the number of functional evaluations (NFE)
counted as the sum of the number of evaluations of the function itself plus the number of evaluations of the derivative,
the value f ðx�Þ and the distance d of two consecutive approximations for the zero.

The test results in Table 2 show that for most of the functions we tested, the method (17) introduced in the present work
have equal or better performance as compared to the other methods of the same order. However, it is observed that the other
third order methods in comparison outperformed the proposed method (34).
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