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Abstract
In this paper we have considered 32 one-point methods of cubic order to obtain simple zeros of a nonlinear function.
These schemes are constructed by decomposition of previously known schemes. We have used the idea of basins of
attractions to compare the performance of these methods with Halley’s method on 4 polynomial functions and one
non-polynomial function. Based on 3 quantitative criteria, namely average number of iterations per point, CPU time
required and the number of points for which the method diverge, we have found 4 methods that performed close to
best. We also show that decomposing good methods does not necessarily lead to a better one or even to a scheme as
good as the original. We found only one example that gave reasonable results and it is the only one with repelling
extraneous fixed points on the imaginary axis.
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1 Introduction

There are many one-point third-order iterative procedure to find the simple roots of a single nonlinear function.
The most famous and most rediscovered is Halley’s method [1], see also [2]. The dynamics of this method can be
found in [3]. Other well known methods are Euler’s [4], Cauchy’s [4], Laguerre’s [5], Ostrowski’s [6], Hansen and
Patrick’s [7], Popovski’s [8, 9, 10], Milovanović and Djordjević’s [11] and Neta [12]. Popovski [13] described a way
to generate one-point iterative methods starting with the quadratics approximation

u+h+A2h2 = 0 (1.1)

where
h = xn+1 − xn

u =
f (xn)

f ′(xn)

Ak =
f (k)(xn)

k! f ′(xn)

∗Corresponding author. Email address: bneta@nps.ed, Tel:+1 (831) 656-2235

111



Communications in Numerical Analysis 2018 No.2 (2018) 111-130
http://www.ispacs.com/journals/cna/2018/cna-00362/ 112

Clearly if we have taken the linear approximation, i.e. neglecting the h2 term, we get Newton’s equation,

h =−u. (1.2)

Solving (1.1) for h we get Cauchy’s method

h =
−2u

1−
√

1−4uA2
. (1.3)

Alternatively, we rewrite (1.1) as
h+u+A2h̄ĥ = 0 (1.4)

where h̄ and ĥ can be chose as some other approximation, say h or −u or from previously found method. For example,
if we choose h̄ = h and ĥ =−u then we get Halley’s method

h =
u

uA2 −1
. (1.5)

If one chooses h̄ = ĥ =−u, we have Euler’s equation

h =−u(uA2 +1). (1.6)

Popovski [13] has developed 9 new methods based on this idea. We list these methods along with the approximation
for h̄ and ĥ. The methods along with the approximations used are:

• h̄ = h and ĥ given by (1.5)

h =−u(uA2 −1)
2uA2 −1

. (1.7)

• h̄ = h and ĥ given by (1.6)
h =

u
(uA2 +1)uA2 −1

. (1.8)

• h̄ = h and ĥ given by (1.7)

h =
u(2uA2 −1)

(uA2 −3)uA2 +1
. (1.9)

• h̄ = h and ĥ given by (1.9)

h =−u[(uA2 −3)uA2 +1]
3[(uA2 −4)uA2 +1]

. (1.10)

• h̄ =−u and ĥ given by (1.7)

h =−u
(uA2 +1)uA2 −1

2uA2 −1
. (1.11)

• h̄ =−u and ĥ given by (1.8)

h = u
(

uA2

(uA2 +1)uA2 −1
−1

)
. (1.12)

• h̄ =−u and ĥ given by (1.9)

h =
u[(uA2 +2)uA2 −1]
(uA2 −3)uA2 +1

. (1.13)

• h̄ and ĥ are both given by (1.5)

h =−u
[

uA2

(uA2 −1)2 +1
]
. (1.14)
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• h̄ given by (1.5) and ĥ given by (1.6)

h = u
(uA2)

2 +1
uA2 −1

. (1.15)

Neta [12] has constructed 21 other methods using a combination for h̄ and ĥ as one of (1.5), (1.6) and

h =−u[(2uA2 +1)uA2 +1]. (1.16)

We itemize those methods here and suggest two more.

• h̄ = h and ĥ given by (1.16)
h =− u

1−uA2(1+uA2(1+2uA2))
(1.17)

• h̄ = h and ĥ given by (1.8)
h =− u

1+uA2/[(1+uA2)uA2 −1]
(1.18)

• h̄ =−u and ĥ given by (1.5)
h =−u−u2A2[(1+2uA2)uA2 +1] (1.19)

• h̄ =−u and ĥ given by (1.6)
h =−u−u2A2(1+uA2) (1.20)

• h̄ =−u and ĥ given by (1.16)
h =−u−u2A2[(1+2uA2)uA2 +1] (1.21)

• h̄ given by (1.5) and ĥ given by (1.16)

h =−u+u2A2
(1+2uA2)uA2 +1

uA2 −1
(1.22)

• h̄ given by (1.5) and ĥ given by (1.8)

h =−u− u2A2

(uA2 −1)[(uA2 +1)uA2 −1]
(1.23)

• h̄ given by (1.5) and ĥ given by (1.9)

h =−u− u2A2

uA2 −1
2uA2 −1

(uA2 −3)uA2 +1
(1.24)

• h̄ given by (1.6) and ĥ given by (1.6)
h =−u−u2A2(1+uA2)

2 (1.25)

• h̄ given by (1.6) and ĥ given by (1.16)

h =−u−u2A2(uA2 +1)[(1+2uA2)uA2 +1] (1.26)

• h̄ given by (1.6) and ĥ given by (1.7)

h =−u− u2A2(uA2 +1)(uA2 −1)
2uA2 −1

(1.27)
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• h̄ given by (1.6) and ĥ given by (1.9)

h =−u+
u2A2(uA2 +1)(2uA2 −1)

(uA2 −3)uA2 +1
(1.28)

• h̄ given by (1.16) and ĥ given by (1.16)

h =−u−u2A2[(2uA2 +1)uA2 +1]2 (1.29)

• h̄ given by (1.16) and ĥ given by (1.7)

h =−u− u2A2(uA2 −1)[(2uA2 +1)uA2 +1]
2uA2 −1

(1.30)

• h̄ given by (1.16) and ĥ given by (1.8)

h =−u+
u2A2[(2uA2 +1)uA2 +1]

(uA2 +1)uA2 −1
(1.31)

• h̄ given by (1.16) and ĥ given by (1.9)

h =−u+
u2A2(2uA2 −1)[(2uA2 +1)uA2 +1]

(uA2 −3)uA2 +1
(1.32)

• h̄ given by (1.7) and ĥ given by (1.7)

h =−u−A2
u2(uA2 −1)2

(2uA2 −1)2 (1.33)

• h̄ given by (1.7) and ĥ given by (1.8)

h =−u+
u2A2(uA2 −1)

(2uA2 −1)[(uA2 +1)uA2 −1]
(1.34)

• h̄ given by (1.8) and ĥ given by (1.8)

h =−u−A2

(
u

(uA2 +1)uA2 −1)

)2

(1.35)

• h̄ given by (1.8) and ĥ given by (1.9)

h =−u− u2A2(2uA2 −1)
[(uA2 +1)uA2 −1][(uA2 −3)uA2 +1]

(1.36)

• h̄ given by (1.9) and ĥ given by (1.9)

h =−u−A2

(
u(2uA2 −1)

(uA2 −3)uA2 +1)

)2

(1.37)

We now list the new methods

• h̄ = h and ĥ given by (1.11)

h =
u(2uA2 −1)

uA2[(uA2 +1)uA2 −3]+1
(1.38)
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• h̄ is given by (1.7) and ĥ given by (1.11)

h =−u− u2A2(uA2 −1)[(uA2 +1)uA2 −1]
(2uA2 −1)2 (1.39)

Until recently methods were compared by using the idea of efficiency index and/or by showing how a method performs
using one or two initial points. We have introduced following the work of Stewart [14] and [15], [16], and [17] a
visual method based on the basin of attraction. Here one take a large number of uniformly distributed points in a
square containg the zeros of the function and showing how fast a method converge and to which zero from any of the
initial points. See [18] – [31]. Chun et al. [32] have shown how to choose a weight function and the parameters of a
method.

2 Extraneous fixed points

Clearly any method can be written as

xn+1 = xn −H f
fn

f ′n
, (2.40)

where the function H f depends on xn and other intermediate values. If f (xn) is a zero then xn is a fixed point of the
iterative method (2.40), but xn is a fixed point if H f vanishes. These latter fixed points are called extraneous fixed
points (EFPs). In order to find the extraneous fixed points, we substitute the quadratic polynomial z2 −1 for f (z) and
then find the zeros of H f . In Table 1 –2 we list the extraneous fixed points for each of the methods discussed here.
Notice that(1.7) is the only method with purely imaginary extraneous fixed points. The other methods have real or
complex extraneous fixed points. We will show that this method performed better than all the others.

3 Numerical experiments

In this section, we give the results for five numerical experiments using each of the methods. All the examples
have zeros within a 6 by 6 square centered at the origin. We use 600 by 600 uniformly distributed points in the square
as initial points for the schemes and listed the total number of iterations required to converge to which zero. We have
also tabulated the number of points for which the iterative procedure did not converge in 40 (the maximum number
allowed) iterations and the CPU time (in seconds) required to run each method on all the points using Dell Optiplex
990 desktop computer.

Example 3.1. The first example is the quadratic polynomial

p1(z) = z2 −1. (3.41)

The best method is the one for which the basins are divided by the imaginary axis. We started with this example,
because the EFPs are computed based on it. We have plotted the basins in Figures 1 - 2. We used a different color
for each basin, so that we can tell if the method converged to the closest root. We have also used lighter shade when
the number of iterations is lower and at the maximum number of iterations (40 in our experiments) we color the point
black. The best methods are (1.7), (1.9), (1.18) and (1.5). The worst is (1.10) haveing most of the domain black.

Based on Table 3 to see the average number of iteration per point (ANIP). The minimum is 2.74 for (1.37) followed
closely by (1.9) (2.84) and (1.18) with 3.01 ANIP. The highest number (37.70) was used by (1.10). All other methods
used 3.09 – 6.26 function evaluations per point on average.

Based on Table 4, we find that the fastest method is (1.9) with 113.772 seconds followed by (1.7) with 115.285
seconds. In terms of the number of black points (see Table 5) we find that most methods have 601 such points. The
highest number of black points are in (1.10) (334379 points), followed by (1.17) with 31121 points, (1.8) with 10289
points and (1.38) with 7113 points. Therefore, we will not experiment with (1.10) and (1.17).
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Example 3.2. The second example is the cubic polynomial

p2(z) = z3 −1. (3.42)

The basins of attraction are displayed in Figures 3 – 4. The best methods seem to be (1.7) and (1.13). The worst are
(1.19), (1.20), (1.21), (1.25), (1.26), (1.29) and (1.37). The last one does not have many black point, but it is more
chaotic and therefore will be excluded from further study. Consulting Table 3, we find that (1.7) uses the least ANIP
(3.78) followed by (1.24) with 3.80. The fastest is (1.7) using 180.04 seconds followed by (1.5) with 180.618 seconds.
and the slowest are (1.21) using 336.79 seconds and (1.19) (336.135 seconds). We will eliminate these slow ones from
further considerations. We will also exclude (1.20) and (1.25) from further consideration. In terms of black points,
there are several method with less than 10 points, namely (1.5), (1.7), (1.9), (1.12)–(1.14), (1.18), (1.23), (1.24),
(1.28), (1.33) – (1.36) and (1.39). The worst are (1.38) and (1.8). We will exclude these two from the comparative
study.

Example 3.3. The third example is a quartic polynomial with roots ±1 and ±i given by:

p3(z) = z4 −1. (3.43)

The basins of attraction are displayed in Figure 5. Based on this figure it is clear that the worst are (1.9), (1.13),
(1.18), (1.23) and (1.28) and should be excluded from further consideration. The fastest method is (1.7) using 235.14
seconds followed by (1.5) using 246.84 seconds and (1.12) (279.695 seconds) and the slowest are (1.30) (1742.858
seconds), (1.36) (1731.689 seconds), (1.24) (1540.156 seconds), (1.28) (1530.142 seconds) and (1.22) (1522.835
seconds). We will exclude all these slow methods. In terms of ANIP, we find that (1.7) is best (4.48 iterations) and
the worst are (1.9) (28.27 iterations), (1.30) 928.09 iterations) and (1.36) (27.80 iterations). These three methods are
also having the highest number of black points. The lowest number of black points is 1201 for the methods (1.5), (1.7),
(1.12), (1.23), (1.32), (1.34) and (1.35).

Example 3.4. The fourth example is a quintic polynomial with 5 roots of unity.

p4(z) = z5 −1. (3.44)

The basins for the remaining 11 methods are displayed in Figure 6. Based on Table 3, (1.7) is best with 4.6 iterations
and (1.33) is the worst with 16.28 iterations. The fastest is (1.7) requiring 283.336 seconds and the slowest is (1.33)
using 1065.393 seconds. There is only one method with 1 black point, namely (1.7). The highest number of black
points, 23400, is for (1.33). Clearly this method will not be used in our last experiment.

Example 3.5. The fifth example is a non-polynomial function with roots ±1

p5(z) = (ez+1 −1)(z−1). (3.45)

The basins for the remaining 10 methods are displayed in Figure 7. Now we can see that most methods prefer the root
z = −1 coming from the first factor with the exponential. From Tables 3 – 4 we find that (1.11) requires the lowest
ANIP (3.93) and is second fastest (300.599 seconds) after (1.5) (263.314 seconds) and (1.35) requires the highest
ANIP (6.26) and is the slowest (455.663 seconds).

In order to find the best method, we have averaged all these results across the 5 examples. Method (1.7) is best
in terms of number of function evaluations and second best in CPU time but in third place in the number of black
points. Halley’s method (1.5) came first in CPU and lowest in the number of black points but in fifth place in the
number of function evaluations per point. The difference between the methods is not vast. If we take a range of 4.1-4.6
ANIP, we find the following methods (1.7), (1.11), (1.12), (1.23), (1.5) and (1.27). The top 5 in CPU time (ranging
222 – 260 seconds) are (1.5), (1.7), (1.14), (1.12) and (1.11). The top 5 is terms of fewer black points (614 – 1564
black points) are (1.5), (1.11), (1.7), (1.12) and (1.27).
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Figure 1: The top row for (1.7) (left), (1.8) (center) and (1.9) (right). The second row for (1.10) (left), (1.11) (center)
and (1.12) (right). The third row for (1.13) (left), (1.14) (center) and (1.15) (right). The fourth row for (1.17) (left),
(1.18) (center) and (1.19) (right).The bottom row for (1.20) (left), (1.21) (center) and (1.22) (right) for the roots of the
polynomial z2 −1.
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Figure 2: The top row for (1.23) (left), (1.24) (center) and (1.25) (right). The second row for (1.26) (left), (1.27)
(center) and (1.28) (right). The third row for (1.29) (left), (1.30) (center) and (1.31) (right). The fourth row for (1.32)
(left), (1.33) (center) and (1.34) (right). The fifth row for (1.35) (left), (1.36) (center) and (1.37) (right). The bottom
row for (1.5) (left), (1.38) (center) and (1.39) (right) for the roots of the polynomial z2 −1.
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Figure 3: The top row for (1.7) (left), (1.8) (center) and (1.9) (right). The second row for (1.11) (left) and (1.12)
(right). The third row for (1.13) (left), (1.14) (center) and (1.15) (right). The fourth row for (1.18) (left) and (1.19)
(right).The bottom row for (1.20) (left), (1.21) (center) and (1.22) (right) for the roots of the polynomial z3 −1.
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Figure 4: The top row for (1.23) (left), (1.24) (center) and (1.25) (right). The second row for (1.26) (left), (1.27)
(center) and (1.28) (right). The third row for (1.29) (left), (1.30) (center) and (1.31) (right). The fourth row for (1.32)
(left), (1.33) (center) and (1.34) (right). The fifth row for (1.35) (left), (1.36) (center) and (1.37) (right). The bottom
row for (1.5) (left), (1.38) (center) and (1.39) (right) for the roots of the polynomial z3 −1.
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Figure 5: The top row for (1.7) (left), (1.9) (center) and (1.11) (right). The second row for (1.12) (left), (1.13) (center)
and (1.14) (right). The third row for (1.15) (left), (1.18) (center) and (1.22) (right). The fourth row for (1.23) (left),
(1.27) (center) and (1.28) (right).The fifth row for (1.33) (left), (1.34) (center) and (1.35) (right). The bottom row for
(1.5) (left) and (1.39) (right) for the roots of the polynomial z4 −1.
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Figure 6: The top row for (1.7) (left), (1.11) (center) and (1.12) (right). The second row for (1.14) (left) and (1.15)
(right). The third row for (1.23) (left), (1.27) (center) and (1.35) (right). The bottom row for (1.5) (left), (1.39) (right)
for the roots of the polynomial z5 −1.
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Figure 7: The top row for (1.7) (left), (1.11) (center) and (1.12) (right). The second row for (1.14) (left) and (1.15)
(right). The third row for (1.23) (left), (1.27) (center) and (1.35) (right). The bottom row for (1.5) (left), (1.39) (right)
for the roots of the nonlinear function (ez+1 −1)(z−1).
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Table 1: The Extrernal fixed points and the type for each of the methods

Method Extraneous Fixed Points Type

(1.5) 0 (double) parabolic

(1.7) ±
√

3
3 i

(1.8) 0 (quadruple) parabolic

(1.9) 0 (double), ±i

(1.10) ±1.376381920i,±0.3249196966i first two attractive

(1.11) ±.8241875313i,±.3658285681

(1.12) ±0.5773502693i,±0.4472135954

(1.13) ±1.233858886i,±.3063271475

(1.14) ±0.3165651760±0.4208759764i

(1.15) ±0.3881746736±0.3030776267i

(1.17) 0 (sextuple) parabolic

(1.18) ±.8241875313i,±.3658285681

(1.19) ±1(double),±
√

3
3 i the real are parabolic,

the other attractive
(1.20) ±0.4248970659±0.1941143315i

(1.21) ±.4191292906± .3572718068i,±0.5027770606

(1.22) ±0.4472135954,±.4347208721±0.4347208721i

(1.23) ±0.3984452141,±.2706511783± .5341202257i

(1.24) ±1.177988819i,±.2344867660± .3493204534i
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Table 2: The Extrernal fixed points and the type for each of the methods

Method Extraneous Fixed Points Type

(1.25) ±0.3531230488,±0.4660790273±0.2880076212i

(1.26) ±.4344883443±0.09409191523i,
±0.4631859437±0.3993687189i

(1.27) ±0.7604373178i,±.3733778531±0.2289240577i

(1.28) ±1.199162147i,±0.3879289068±0.2546119411i

(1.29) ±0.5219553315,±0.4154820660±0.2177317237i,
±0.4817657461±0.4651309847i

(1.30) ±0.4703869448,±.3790735155±0.4072690996i,
±0.6972800367i

(1.31) ±0.4894203836,±0.3750797542±0.4636770778i

(1.32) ±0.4627362244,±0.4081572503±0.4045477933i,
±1.175279534i

(1.33) ±0.2740149501,±0.2370074750±0.8208012174i

(1.34) ±.4164515722,±0.2380307187±0.7250707001i

(1.35) ±0.4472135954,±0.3228899723,
±0.2943092590±0.6500236077i

(1.36) ±0.5773502693i,±0.4086599363,±1.132155499i,
±0.4013588625i

(1.37) ±0.2124092249±0.2454578977i,
±0.2033256984±1.200351443i

(1.38) 0 (quadruple),±i the real
are parabolic

(1.39) ±0.3156450459±0.1941898168i,
±0.1381819628±0.8486410446i
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Table 3: Average number of iterations per point (ANIP) for each example (3.1 – 3.5) and each of the methods

Method Ex1 Ex2 Ex3 Ex4 Ex5 average
(1.5) 3.88 4.44 5.25 5.35 3.97 4.58
(1.7) 3.20 3.78 4.48 4.60 4.41 4.10
(1.8) 4.42 5.48 - - - -
(1.9) 2.84 4.20 28.27 - - -
(1.10) 37.70 - - - - -
(1.11) 3.82 4.24 5.24 5.27 3.93 4.50
(1.12) 3.76 4.27 4.98 5.17 4.35 4.51
(1.13) 3.74 3.86 16.48 - - -
(1.14) 3.57 4.28 5.55 5.60 5.19 4.84
(1.15) 3.87 4.98 6.54 7.09 5.96 5.69
(1.17) 6.26 - - - - -
(1.18) 3.01 4.04 7.47 - - -
(1.19) 4.42 6.71 - - - -
(1.20) 4.29 6.21 - - - -
(1.21) 4.42 6.71 - - - -
(1.22) 3.90 5.22 25.04 - - -
(1.23) 3.35 4.06 5.23 5.43 4.64 4.54
(1.24) 3.18 3.80 25.04 - - -
(1.25) 4.17 6.45 - - - -
(1.26) 4.24 6.32 9.24 - - -
(1.27) 3.55 4.12 5.47 5.60 4.23 4.59
(1.28) 3.47 3.97 24.86 - - -
(1.29) 4.34 6.35 10.79 - - -
(1.30) 3.62 4.71 28.09 - - -
(1.31) 3.58 4.72 6.90 - - -
(1.32) 3.41 4.78 5.50 - - -
(1.33) 3.09 4.13 6.90 16.28 - -
(1.34) 3.17 4.08 5.50 - - -
(1.35) 3.22 4.16 5.37 5.84 6.26 4.97
(1.36) 2.97 4.35 27.80 - - -
(1.37) 2.74 5.43 - - - -
(1.38) 3.84 5.5 - - - -
(1.39) 3.36 4.16 5.56 6.97 5.80 5.17
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Table 4: CPU time (in seconds) required for each example (3.1 – 3.5) and each of the methods

Method Ex1 Ex2 Ex3 Ex4 Ex5 average
(1.5) 125.191 180.618 246.84 295.451 263.314 222.283
(1.7) 115.285 180.04 235.14 283.336 303.984 224.557
(1.8) 152.741 243.33 - - - -
(1.9) 113.772 206.171 1452.104 - - -
(1.10) 1393.431 - - - - -
(1.11) 153.178 208.23 297.868 338.944 300.599 259.764
(1.12) 141.009 211.957 279.695 329.662 319.38 256.341
(1.13) 159.62 211.179 804.697 - - -
(1.14) 232.724 207.809 304.935 355.838 355.635 244.843
(1.15) 153.646 243.939 360.877 451.389 409.003 323.771
(1.17) 241.568 - - - - -
(1.18) 128.997 202.864 394.042 - - -
(1.19) 176.687 336.135 - - - -
(1.20) 156.266 278.556 - - - -
(1.21) 173.691 336.79 - - - -
(1.22) 177.42 288.898 1522.835 - - -
(1.23) 147.031 228.073 313.874 371.329 354.575 282.976
(1.24) 161.227 235.265 1540.156 - - -
(1.25) 148.606 304.03 - - - -
(1.26) 188.293 328.086 517.643 - - -
(1.27) 166.016 229.399 340.644 386.851 343.343 293.251
(1.28) 168.106 242.847 1530.142 - - -
(1.29) 186.718 311.580 615.970 - - -
(1.30) 180.322 288.274 1742.858 - - -
(1.31) 172.833 287.431 414.323 - - -
(1.32) 183.176 297.821 349.723 - - -
(1.33) 156.501 229.867 403.044 1065.393 - -
(1.34) 155.83 242.035 349.723 - - -
(1.35) 147.015 225.11 322.532 373.732 455.663 304.810
(1.36) 162.179 270.35 1731.689 - - -
(1.37) 143.755 324.342 - - - -
(1.38) 171.445 284.031 - - - -
(1.39) 170.696 249.711 377.756 511.106 415.337 344.921
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Table 5: Number of points requiring 40 iterations for each example (3.1 – 3.5) and each of the methods

Method Ex1 Ex2 Ex3 Ex4 Ex5 average
(1.5) 601 1 1201 21 1244 614
(1.7) 601 1 1201 1 3642 1089
(1.8) 10289 15448 - - - -
(1.9) 601 1 242289 - - -
(1.10) 334379 - - - - -
(1.11) 601 14 1285 521 1897 864
(1.12) 601 1 1201 35 4335 1235
(1.13) 601 5 115541 - - -
(1.14) 601 1 1209 18 9967 2359
(1.15) 601 28 1661 2590 18040 4584
(1.17) 31121 - - - - -
(1.18) 601 1 1321 - - -
(1.19) 601 2465 - - - -
(1.20) 601 804 - - - -
(1.21) 601 2465 - - - -
(1.22) 601 289 209569 - - -
(1.23) 601 1 1201 21 6665 1698
(1.24) 601 1 209569 - - -
(1.25) 605 1801 - - - -
(1.26) 629 2784 14237 - - -
(1.27) 601 17 1673 1387 4143 1564
(1.28) 601 1 107809 - - -
(1.29) 669 3182 21313 - - -
(1.30) 601 119 240761 - - -
(1.31) 601 19 1217 - - -
(1.32) 601 17 1201 - - -
(1.33) 601 2 1217 23400 - -
(1.34) 953 1 1201 - - -
(1.35) 601 1 1201 29 13339 3034
(1.36) 601 1 237309 - - -
(1.37) 601 22 - - - -
(1.38) 7113 19295 - - - -
(1.39) 601 7 1293 1089 15796 3757

4 Conclusion

This comparative study of 32 methods of cubic order with Halley’s method using 3 quantitative measures found
that there is no method standing out based on all 3 criteria. If we allow range of values in each category, we can
recommned (1.5), (1.7), (1.11) and (1.12). This comparative study shows that the idea of composing successful
methods to get an even better one is not working. Notice that Halley’s method came close to be best, but composing
two of those to get (1.14) did not bear fruits. The reason that (1.7) was close to best is that it has only purely imaginary
extraneous fixed points. All other methods have a combination of real and complex extraneous fixed points.
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[27] I. K. Argyros, A. A. Magreñan, On the convergence of an optimal fourth-order family of methods and its dy-
namics, Appl. Math. Comput, 252 (2015) 336-346.
https://doi.org/10.1016/j.amc.2014.11.074
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