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1. Introduction

A great variety of applied problems aremodeled by nonlinear integro-differential equations or systems. Investigation and
numerical solution of such models are the object of many scientific works, see e.g. [1–14]. Such systems arise, for instance,
in themathematical modeling of the process of penetration of an electromagnetic field into a substance. By penetrating into
a material, a variable magnetic field generates a variable electronic field which causes the appearance of currents that lead
to the heating of the material which in turn influence its resistance. For large oscillations of temperature the dependence
should be taken into consideration. In a quasistationary case the corresponding system ofMaxwell’s equations has the form,
see e.g. [15], p. 238:

∂H
∂t
= −rot(νmrot H), (1.1)

cν
∂θ

∂t
= νm (rot H)2 , (1.2)

where H = (H1,H2,H3) is a vector of the magnetic field, θ is temperature, cν and νm characterize the thermal heat capacity
and electroconductivity of the substance. The system (1.1) defines the process of diffusion of the magnetic field and (1.2)
describe the change in temperature at the expense of Joule’s heating without taking into account the heat conductivity.
If cν and νm depend on temperature θ , i.e. cν = cν(θ), νm = νm(θ), the system (1.1), (1.2) can be rewritten in the

following form [16]:

∂H
∂t
= −rot

[
a
(∫ t

0
|rot H|2 dτ

)
rot H

]
, (1.3)

where the function a = a(S) is defined for S ∈ [0,∞).
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Let us consider the following magnetic field H , with the form H = (0, 0,U), where U = U(x, t) is a scalar function of
time and of one spatial variables. Then rot H =

(
0,− ∂U

∂x , 0
)
and system (1.3) will take the form

∂U
∂t
=
∂

∂x

[
a

(∫ t

0

(
∂U
∂x

)2
dτ

)
∂U
∂x

]
. (1.4)

Study of the models of type (1.3) and (1.4) have begun in the work [16]. In this work, the existence of a generalized
solution of the first boundary value problem for one-dimensional space case was proved for the case a(S) = 1 + S. They
also proved the uniqueness for more general cases.
In the work [17] Laptev proposed some generalization of the system of type (1.3). In particular, considering the

temperature of the body to be constant all along thematerial, i.e. depending on time, but independent of spatial coordinates,
then the process of penetration of the magnetic field into the material is modeled by the averaged integro-differential
system. A one-dimensional variant of this model has the form [17]:

∂U
∂t
= a

(∫ t

0

∫ 1

0

(
∂U
∂x

)2
dxdτ

)
∂2U
∂x2

. (1.5)

Note that the integro-differential equations of type (1.4) and (1.5) are complex and only special cases were investigated.
The existence and uniqueness of the solutions of the initial-boundary value problems for the equations of type (1.4) and
(1.5) are studied, for example, in [16–21]. The existence theorems, proved in [16,18,21] are based on a-priori estimates and
use Galerkin’s method and compactness arguments as in [22,23] for nonlinear parabolic equations.
The purpose of this paper is to study the asymptotic behavior of solutions and semidiscrete and finite difference schemes

for the Eq. (1.5). Our objective is to give large-time asymptotic behavior (as t →∞) of the solutions of the initial-boundary
value problem with homogeneous Dirichlet boundary conditions for the Eq. (1.5). Here we consider the case a(S) = 1+ S.
The asymptotic behavior of the solutions for type (1.4) models are studied in [24]. Note that in [25] difference schemes for
these models were investigated. Difference schemes for a certain nonlinear parabolic integro-differential model similar to
(1.4) were studied in [26]. Neta [27] also discussed the finite element approximation of that nonlinear integro-differential
equation. Note also that in [28] the finite difference approximation for a linear integro-differential equations was discussed.
The rest of the paper is organized as follows. In the second section we discuss the asymptotic behavior as t → ∞ of

the initial-boundary value problem with zero lateral boundary data. In the Section 3 the semidiscrete and finite difference
schemes for (1.5) are investigated. We conclude with some remarks on numerical implementations.

2. Large time behavior of solutions

Consider the following initial-boundary value problem:

∂U
∂t
= (1+ S)

∂2U
∂x2

, (x, t) ∈ (0, 1)× (0,∞), (2.1)

U(0, t) = U(1, t) = 0, t ≥ 0, (2.2)
U(x, 0) = U0(x), x ∈ [0, 1], (2.3)

where

S(t) =
∫ t

0

∫ 1

0

(
∂U
∂x

)2
dxdτ , (2.4)

and U0(x) is a given initial condition. We assume that U = U(x, t) is a solution of the problem (2.1)–(2.4) on [0, 1]× [0,∞)
such that U(·, t), ∂U(·,t)

∂x ,
∂U(·,t)
∂t ,

∂2U(·,t)
∂x2

, ∂
2U(·,t)
∂t ∂x are all in C

0([0,∞); L2(0, 1)), while ∂
2U(·,t)
∂t2

is in L2((0,∞); L2(0, 1)). Recall
that the L2 norm of a function u is given by:

‖u‖ =
[∫ 1

0
u2(x)dx

]1/2
.

Now we estimate the solution of the problem (2.1)–(2.4) using the Sobolev spaces Hk(0, 1) and Hk0(0, 1).

Theorem 2.1. If U0 ∈ H10 (0, 1), then the solution of the problem (2.1)–(2.4) satisfies the following estimate

‖U‖ +
∥∥∥∥∂U∂x

∥∥∥∥ ≤ C exp(− t2
)
.

Remark. Note that here and below in this section C denote positive constants independent from t .
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Proof. Let us multiply (2.1) by U and integrate over (0, 1). After integrating by parts and using the boundary conditions
(2.2) we get

1
2
d
dt
‖U‖2 +

∫ 1

0
(1+ S)

(
∂U
∂x

)2
dx = 0.

Since 1+ S ≥ 1 we have

1
2
d
dt
‖U‖2 +

∥∥∥∥∂U∂x
∥∥∥∥2 ≤ 0. (2.5)

Using Poincare’s inequality we obtain

1
2
d
dt
‖U‖2 + ‖U‖2 ≤ 0. (2.6)

Now multiply (2.1) by ∂
2U
∂x2
and integrate over (0, 1). Using again integration by parts and the boundary conditions (2.2) we

get

∂U
∂t
∂U
∂x

∣∣∣∣1
0
−

∫ 1

0

∂2U
∂x∂t

∂U
∂x
dx =

∫ 1

0
(1+ S)

(
∂2U
∂x2

)2
dx,

1
2
d
dt

∥∥∥∥∂U∂x
∥∥∥∥2 + (1+ S) ∥∥∥∥∂2U∂x2

∥∥∥∥2 = 0, (2.7)

or

d
dt

∥∥∥∥∂U∂x
∥∥∥∥2 ≤ 0. (2.8)

From (2.5), (2.6) and (2.8) we find

d
dt

[
exp(t)

(
‖U‖2 +

∥∥∥∥∂U∂x
∥∥∥∥2
)]
≤ 0.

This inequality immediately proves Theorem 2.1. �

Note that Theorem 2.1 gives exponential stabilization of the solution of the problem (2.1)–(2.4) in the norm of the space
H1(0, 1). Let us show that the stabilization is also achieved in the norm of the space C1(0, 1). In particular, let us show that
the following estimates hold.

Theorem 2.2. If U0 ∈ H4(0, 1) ∩ H10 (0, 1), then the solution of the problem (2.1)–(2.4) satisfies the following estimates:∣∣∣∣∂U(x, t)∂x

∣∣∣∣ ≤ C exp(− t2
)
,

∣∣∣∣∂U(x, t)∂t

∣∣∣∣ ≤ C exp(− t2
)
.

To this end we need following auxiliary result.

Lemma 2.1. For the solution of the problem (2.1)–(2.4) the following estimate holds∥∥∥∥∂U∂t
∥∥∥∥ ≤ C exp(− t2

)
.

Proof. Let us differentiate (2.1) with respect to t ,

∂2U
∂t2
= (1+ S)

∂3U
∂x2∂t

+

[∫ 1

0

(
∂U
∂x

)2
dx

]
∂2U
∂x2

. (2.9)

Multiply (2.9) by ∂U
∂t and integrate over (0, 1). Using the boundary conditions (2.2) we deduce

1
2
d
dt

∫ 1

0

(
∂U
∂t

)2
dx+ (1+ S)

∫ 1

0

(
∂2U
∂x∂t

)2
dx+

[∫ 1

0

(
∂U
∂x

)2
dx

] ∫ 1

0

∂U
∂x

∂2U
∂x∂t

dx = 0,
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or

d
dt

∫ 1

0

(
∂U
∂t

)2
dx + 2(1+ S)

∫ 1

0

(
∂2U
∂x∂t

)2
dx = −2

[∫ 1

0

(
∂U
∂x

)2
dx

] ∫ 1

0

∂U
∂x

∂2U
∂x∂t

dx. (2.10)

Let us estimate the right hand side of the last equality

− 2

[∫ 1

0

(
∂U
∂x

)2
dx

]∫ 1

0

∂U
∂x

∂2U
∂x∂t

dx = −2
∫ 1

0

{
(1+ S)−1/2

[∫ 1

0

(
∂U
∂x

)2
dx

]
∂U
∂x

}{
(1+ S)1/2

∂2U
∂x∂t

}
dx. (2.11)

From this, using the Schwarz’s inequality we get

− 2

[∫ 1

0

(
∂U
∂x

)2
dx

]∫ 1

0

∂U
∂x

∂2U
∂x∂t

dx ≤ (1+ S)
∫ 1

0

(
∂2U
∂x∂t

)2
dx

+ (1+ S)−1
[∫ 1

0

(
∂U
∂x

)2
dx

]2 ∫ 1

0

(
∂U
∂x

)2
dx. (2.12)

Combining (2.10)–(2.12) we have

d
dt

∫ 1

0

(
∂U
∂t

)2
dx+ (1+ S)

∫ 1

0

(
∂2U
∂x∂t

)2
dx ≤ (1+ S)−1

[∫ 1

0

(
∂U
∂x

)2
dx

]3
.

Using Poincare’s inequality and the nonnegativity of S(t)we arrive at

d
dt

∫ 1

0

(
∂U
∂t

)2
dx+

∫ 1

0

(
∂U
∂t

)2
dx ≤

[∫ 1

0

(
∂U
∂x

)2
dx

]3
.

Using Theorem 2.1 to estimate the right hand side we get

d
dt

(
exp(t)

∥∥∥∥∂U∂t
∥∥∥∥2
)
≤ C exp(−2t).

Therefore

exp(t)
∥∥∥∥∂U∂t

∥∥∥∥2 ≤ C ∫ t

0
exp(−2τ)dτ ,

which proves the Lemma 2.1. �

Now, let us estimate ∂
2U
∂x2
in the space L1(0, 1). From (2.1) we have

∂2U
∂x2
= (1+ S)−1

∂U
∂t
. (2.13)

Integrating on (0, 1) and using Schwarz’s inequality we get∫ 1

0

∣∣∣∣∂2U∂x2
∣∣∣∣ dx = ∫ 1

0

∣∣∣∣(1+ S)−1 ∂U∂t
∣∣∣∣ dx ≤ [∫ 1

0
(1+ S)−2dx

]1/2 [∫ 1

0

(
∂U
∂t

)2
dx

]1/2
.

Applying Lemma 2.1 and taking into account the nonnegativity of S(t)we derive∫ 1

0

∣∣∣∣∂2U∂x2
∣∣∣∣ dx ≤ C exp(− t2

)
.

From this, taking into account the relation

∂U(x, t)
∂x

=

∫ 1

0

∂U(y, t)
∂y

dy+
∫ 1

0

∫ x

y

∂2U(ξ , t)
∂ξ 2

dξdy

and the boundary conditions (2.2) it follows that∣∣∣∣∂U(x, t)∂x

∣∣∣∣ = ∣∣∣∣∫ 1

0

∫ x

y

∂2U(ξ , t)
∂ξ 2

dξdy
∣∣∣∣ ≤ ∫ 1

0

∣∣∣∣∂2U(y, t)∂y2

∣∣∣∣ dy ≤ C exp(− t2
)
.
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Now let us estimate ∂U
∂t in the norm of the space C

1(0, 1). Let us multiply (2.1) by ∂3U
∂x2∂t

and integrate over (0, 1). Using
integration by parts we get

∂U
∂t

∂2U
∂x∂t

∣∣∣∣1
0
−

∥∥∥∥ ∂2U∂x∂t
∥∥∥∥2 = (1+ S) ∫ 1

0

∂2U
∂x2

∂3U
∂x2∂t

dx. (2.14)

Taking into account the equality∫ 1

0

∂3U
∂x2∂t

∂2U
∂x2
dx =

1
2
d
dt

∥∥∥∥∂2U∂x2
∥∥∥∥2

and the boundary conditions (2.2) we arrive at

1+ S
2

d
dt

∥∥∥∥∂2U∂x2
∥∥∥∥2 + ∥∥∥∥ ∂2U∂x∂t

∥∥∥∥2 = 0,
or

d
dt

∥∥∥∥∂2U∂x2
∥∥∥∥2 ≤ 0. (2.15)

Note that from (2.14) we have∥∥∥∥ ∂2U∂x∂t
∥∥∥∥2 ≤ 1+ S2

∥∥∥∥∂2U∂x2
∥∥∥∥2 + 1+ S2

∥∥∥∥ ∂3U∂x2∂t

∥∥∥∥2 . (2.16)

Now multiply (2.9) by ∂3U
∂x2∂t

, integrate over (0, 1) and integrate the left hand side by parts,

∂2U
∂t2

∂2U
∂x∂t

∣∣∣∣1
0
−

∫ 1

0

∂3U
∂x∂t2

∂2U
∂x∂t

dx = (1+ S)
∥∥∥∥ ∂3U∂x2∂t

∥∥∥∥2 +
[∫ 1

0

(
∂U
∂x

)2
dx

] ∫ 1

0

∂2U
∂x2

∂3U
∂x2∂t

dx.

Now combine this with∫ 1

0

∂3U
∂x∂t2

∂2U
∂x∂t

dx =
1
2
d
dt

∥∥∥∥ ∂2U∂x∂t
∥∥∥∥2

and taking into account the boundary conditions (2.2) we have

1
2
d
dt

∥∥∥∥ ∂2U∂x∂t
∥∥∥∥2 + (1+ S) ∥∥∥∥ ∂3U∂x2∂t

∥∥∥∥2 +
[∫ 1

0

(
∂U
∂x

)2
dx

] ∫ 1

0

∂2U
∂x2

∂3U
∂x2∂t

dx = 0,

or

d
dt

∥∥∥∥ ∂2U∂x∂t
∥∥∥∥2 + 2(1+ S) ∥∥∥∥ ∂3U∂x2∂t

∥∥∥∥2 = −2
[∫ 1

0

(
∂U
∂x

)2
dx

] ∫ 1

0

∂2U
∂x2

∂3U
∂x2∂t

dx.

We estimate the right hand side in a similar fashion to (2.11), (2.12). It is easy to see that

d
dt

∥∥∥∥ ∂2U∂x∂t
∥∥∥∥2 + (1+ S) ∥∥∥∥ ∂3U∂x2∂t

∥∥∥∥2 ≤ (1+ S)−1
[∫ 1

0

(
∂U
∂x

)2
dx

]2 ∫ 1

0

(
∂2U
∂x2

)2
dx.

Using Theorem 2.1, (2.13) and Lemma 2.1 we have

d
dt

∥∥∥∥ ∂2U∂x∂t
∥∥∥∥2 + (1+ S) ∥∥∥∥ ∂3U∂x2∂t

∥∥∥∥2 ≤ C exp(−3t). (2.17)

Combining (2.5)–(2.7) and (2.15)–(2.17) we get

‖U‖2 +
d
dt
‖U‖2 +

∥∥∥∥∂U∂x
∥∥∥∥2 + ddt

∥∥∥∥∂U∂x
∥∥∥∥2 + 2(1+ S) ∥∥∥∥∂2U∂x2

∥∥∥∥2 + ddt
∥∥∥∥∂2U∂x2

∥∥∥∥2
+

∥∥∥∥ ∂2U∂x∂t
∥∥∥∥2 + ddt

∥∥∥∥ ∂2U∂x∂t
∥∥∥∥2 + (1+ S) ∥∥∥∥ ∂3U∂x2∂t

∥∥∥∥2
≤
1
2
(1+ S)

∥∥∥∥∂2U∂x2
∥∥∥∥2 + 12 (1+ S)

∥∥∥∥ ∂3U∂x2∂t

∥∥∥∥2 + C exp(−3t).
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From this, keeping in mind the nonnegativity of S(t), we deduce

‖U‖2 +
d
dt
‖U‖2 +

∥∥∥∥∂U∂x
∥∥∥∥2 + ddt

∥∥∥∥∂U∂x
∥∥∥∥2 + ∥∥∥∥∂2U∂x2

∥∥∥∥2 + ddt
∥∥∥∥∂2U∂x2

∥∥∥∥2 + ∥∥∥∥ ∂2U∂x∂t
∥∥∥∥2 + ddt

∥∥∥∥ ∂2U∂x∂t
∥∥∥∥2 ≤ C exp(−3t).

After multiplying by the function exp(t)we get

d
dt

[
exp(t)

(
‖U‖2 +

∥∥∥∥∂U∂x
∥∥∥∥2 + ∥∥∥∥∂2U∂x2

∥∥∥∥2 + ∥∥∥∥ ∂2U∂x∂t
∥∥∥∥2
)]
≤ C exp(−2t),

or

‖U‖2 +
∥∥∥∥∂U∂x

∥∥∥∥2 + ∥∥∥∥∂2U∂x2
∥∥∥∥2 + ∥∥∥∥ ∂2U∂x∂t

∥∥∥∥2 ≤ C exp(−t).
From this, taking into account the relation

∂U(x, t)
∂t

=

∫ 1

0

∂U(y, t)
∂t

dy+
∫ 1

0

∫ x

y

∂2U(ξ , t)
∂t∂ξ

dξdy

and Lemma 2.1, we obtain∣∣∣∣∂U(x, t)∂t

∣∣∣∣ ≤ C exp(− t2
)
.

This proves Theorem 2.2. �

Remark. The existence of globally defined solutions of the problem (2.1)–(2.4) can be obtained by a routine procedure. One
first establishes the existence of local solutions on a maximal time interval and then uses the derived a-priori estimates to
show that the solutions cannot escape in finite time, (see, for example, [22,23]).

3. Space discretization and finite difference scheme

Consider the problem

∂U
∂t
−

[
1+

∫ t

0

∫ 1

0

(
∂U
∂x

)2
dxdτ

]
∂2U
∂x2
= f (x, t), (3.1)

U(0, t) = U(1, t) = 0, (3.2)
U(x, 0) = U0(x), (3.3)

in the rectangle QT = (0, 1)× (0, T ), where T is a positive constant, f = f (x, t) and U0 = U0(x) are given functions of their
arguments.
We introduce a net whose mesh points are denoted by xi = ih, i = 0, 1, . . . ,M , with h = 1/M . The boundaries

are specified by i = 0 and i = M . Let ui = ui(t) be the semidiscrete approximation at (xi, t). The exact solution to the
problem at (xi, t), denoted by Ui = Ui(t), is assumed to exist and be smooth enough. From the boundary conditions (3.2)
we have u0(t) = uM(t) = 0. At other points xi, i = 1, 2, . . . ,M − 1, the integro-differential equation will be replaced by
approximating the space derivatives by a forward and backward differences. We will use the following notations for the
forward and backward differences

ux,i(t) =
ui+1(t)− ui(t)

h
, ux̄,i(t) =

ui(t)− ui−1(t)
h

.

Note that the values ui(0), i = 1, 2, . . . ,M − 1 can be computed from the initial condition (3.3)

ui(0) = U0,i, i = 1, 2, . . . ,M − 1.

Therefore the semidiscrete problem corresponding to (3.1)–(3.3) is

dui
dt
−

[
1+ h

M∑
l=1

∫ t

0

(
ux̄,l
)2 dτ] ux̄x,i = f (xi, t), i = 1, 2, . . . ,M − 1, (3.4)

u0(t) = uM(t) = 0, (3.5)
ui(0) = U0,i, i = 0, 1, . . . ,M. (3.6)

So, we obtained a Cauchy problem (3.4)–(3.6) for a nonlinear system of ordinary integro-differential equations.
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Introduce inner products and norms:

(u, v)h =
M−1∑
i=1

uivih, (u, v]h =
M∑
i=1

uivih,

‖u‖h = (u, u)
1/2
h , ||u]|h = (u, u]

1/2
h .

Multiplying (3.4) by u(t) = (u1(t), u2(t), . . . , uM−1(t)), using the discrete analogue of the integration by parts and
Poincare’s inequality we get

1
2
d
dt
‖u(t)‖2h + ||ux̄(t)]|

2
h ≤ (f (t), u(t)) ≤

1
2
‖f (t)‖2h +

1
2
‖u(t)‖2h ≤

1
2
‖f (t)‖2h +

1
2
||ux̄(t)]|2h,

where f (t) = (f1(t), f2(t), . . . , fM−1(t)), fi(t) = f (xi, t). So, we have

‖u(t)‖2h +
∫ t

0
||ux̄]|2hdτ ≤ C . (3.7)

Remark. Here and below in the investigation of (3.4)–(3.6), C denotes a positive constant independent on h.

The a-priori estimate (3.7) guarantees the global solvability of the problem (3.4)–(3.6).
The first result of this section is:

Theorem 3.1. If the problem (3.1)–(3.3) has a sufficiently smooth solution U = U(x, t), then the solution u = u(t) =
(u1(t), u2(t), . . . , uM−1(t)) of the problem (3.4)–(3.6) tends to U = U(t) = (U1(t),U2(t), . . . ,UM−1(t)) as h → 0 and
the following estimate is true

‖u(t)− U(t)‖h ≤ Ch. (3.8)

Proof. For the exact solution U = U(x, t)we have

dUi
dt
−

[
1+ h

M∑
l=1

∫ t

0
(Ux̄,l)2dτ

]
Ux̄x,i = f (xi, t)− ψi(t), i = 1, 2, . . . ,M − 1, (3.9)

U0(t) = UM(t) = 0, (3.10)
Ui(0) = U0,i, i = 0, 1, . . . ,M, (3.11)

where

ψi(t) = O(h).

Let zi(t) = ui(t) − Ui(t) be the difference between approximate and exact solutions. From (3.4)–(3.6) and (3.9)–(3.11)
we have

dzi
dt
−

{[
1+ h

M∑
l=1

∫ t

0
(ux̄,l)2dτ

]
ux̄,i −

[
1+ h

M∑
l=1

∫ t

0
(Ux̄,l)2dτ

]
Ux̄,i

}
x

= ψi(t), (3.12)

z0(t) = zM(t) = 0, (3.13)
zi(0) = 0. (3.14)

Multiplying (3.12) by z(t) = (z1(t), z2(t), . . . , zM−1(t)), using (3.13) and the discrete analogue of the integration by parts
we get

1
2
d
dt
‖z‖2h +

M∑
i=1

{[
1+ h

M∑
l=1

∫ t

0
(ux̄,l)2dτ

]
ux̄,i −

[
1+ h

M∑
l=1

∫ t

0
(Ux̄,l)2dτ

]
Ux̄,i

}
zx̄,ih =

M−1∑
i=1

ψizih. (3.15)

Note that,{[
1+ h

M∑
l=1

∫ t

0
(ux̄,l)2dτ

]
ux̄,i −

[
1+ h

M∑
l=1

∫ t

0
(Ux̄,l)2dτ

]
Ux̄,i

}
(ux̄,i − Ux̄,i)

= (zx̄,i)2 + h
M∑
l=1

[∫ t

0
(ux̄,l)2dτux̄,i −

∫ t

0
(Ux̄,l)2dτUx̄,i

]
(ux̄,i − Ux̄,i)
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= (zx̄,i)2 +
1
2
h
M∑
l=1

{[∫ t

0
(ux̄,l)2dτ +

∫ t

0
(Ux̄,l)2dτ

]
(ux̄,i − Ux̄,i)2

+

[∫ t

0
(ux̄,l)2dτ −

∫ t

0
(Ux̄,l)2dτ

] [
(ux̄,i)2 − (Ux̄,i)2

]}

≥
1
2
h
M∑
l=1

[∫ t

0
(ux̄,l)2dτ −

∫ t

0
(Ux̄,l)2dτ

] [
(ux̄,i)2 − (Ux̄,i)2

]
. (3.16)

Using (3.15) and (3.16) we have

1
2
d
dt
‖z‖2h +

h
2

M∑
l=1

[∫ t

0
(ux̄,l)2dτ −

∫ t

0
(Ux̄,l)2dτ

]
h
M∑
i=1

[
(ux̄,i)2 − (Ux̄,i)2

]
≤

M−1∑
i=1

ψizih. (3.17)

Now introduce the notation

ϕ(t) = h
M∑
l=1

∫ t

0

[
(ux̄,l)2 − (Ux̄,l)2

]
dτ ,

we have

1
2
d
dt
‖z‖2h +

1
4
d
dt
ϕ2(t) ≤

M−1∑
i=1

ψizih ≤
1
2
‖z‖2h +

1
2
‖ψ‖2h,

or after integrating and using (3.14) in (3.17), we get

‖z(t)‖2h ≤
∫ t

0
‖z(τ )‖2hdτ +

∫ t

0
‖ψ(τ)‖2hdτ . (3.18)

Using Grönwall’s lemma from (3.18) we get (3.8). �

Now let us consider the fully discrete scheme for the problem (3.1)–(3.3). Introduce a net whosemesh points are denoted
by (xi, tj) = (ih, jτ), where i = 0, 1, . . . ,M; j = 0, 1, . . . ,N with h = 1/M, τ = T/N . The initial line is denoted by j = 0.
The discrete approximation at (xi, tj) is denoted by u

j
i and the exact solution to the problem (3.1)–(3.3) at those points by

U ji . We will use the following notations:

ujt,i =
uj+1i − u

j
i

τ
, ujt̄,i = u

j−1
t,i =

uji − u
j−1
i

τ
.

Thus we have

uj+1i − u
j
i

τ
−

[
1+ τh

M∑
l=1

j+1∑
k=1

(ukx̄,l)
2

]
uj+1x̄x,i = f

j
i , i = 1, 2, . . . ,M − 1; j = 0, 1, . . . ,N − 1, (3.19)

uj0 = u
j
M = 0, j = 0, 1, . . . ,N, (3.20)

u0i = U0,i, i = 0, 1, . . . ,M. (3.21)

In a similar fashion to the way we obtained (3.7), we can show that

‖un‖2h + τ
n∑
j=1

||ujx̄]|
2
h ≤ C, n = 1, 2, . . . ,N. (3.22)

Remark. Here and below C is a positive constant independent from τ and h.

The a-priori estimate (3.22) guarantees the stability of the scheme (3.19)–(3.21).
The second result of this section is the following:

Theorem 3.2. If the problem (3.1)–(3.3) has a sufficiently smooth solution U = U(x, t), then the solution uj =
(uj1, u

j
2, . . . , u

j
M−1), j = 1, 2, . . . ,N of the finite difference scheme (3.19)–(3.21) tends to the U

j
= (U j1,U

j
2, . . . ,U

j
M−1) for

j = 1, 2, . . . ,N as τ → 0, h→ 0 and the following estimate is true

‖uj − U j‖h ≤ C(τ + h), j = 1, 2, . . . ,N. (3.23)
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Proof. For the exact solution U = U(x, t) of the problem (3.1)–(3.3) we have

U j+1i − U
j
i

τ
−

[
1+ τh

M∑
l=1

j+1∑
k=1

(Ukx̄,l)
2

]
U j+1x̄x,i = f

j
i − ψ

j
i , (3.24)

U j0 = U
j
M = 0, (3.25)

U0i = U0,i, (3.26)

where

ψ
j
i = O(τ + h).

Solving (3.19)–(3.21) instead of the problem (3.1)–(3.3) we have the error z ji = u
j
i−U

j
i . From (3.19)–(3.21) and (3.24)–(3.26)

we get

z j+1i − z
j
i

τ
−

{[
1+ τh

M∑
l=1

j+1∑
k=1

(ukx̄,i)
2

]
uj+1x̄,i −

[
1+ τh

M∑
l=1

j+1∑
k=1

(Ukx̄,i)
2

]
U j+1x̄,i

}
x

= ψ
j
i , (3.27)

z j0 = z
j
M = 0, (3.28)

z0i = 0. (3.29)

Multiplying (3.27) by z j+1 = (z j+11 , z j+12 , . . . , z j+1M−1), using (3.28), and the discrete analogue of integration by parts we
get

‖z j+1‖2h − (z
j+1, z j)h + τh

M∑
i=1

{[
1+ τh

M∑
l=1

j+1∑
k=1

(ukx̄,l)
2

]
uj+1x̄,i

−

[
1+ τh

M∑
l=1

j+1∑
k=1

(Ukx̄,l)
2

]
U j+1x̄,i

}
z j+1x̄,i = τ(ψ

j, z j+1)h. (3.30)

Taking into account the relations:

(z j+1, z j)h =
1
2
‖z j+1‖2h +

1
2
‖z j‖2h −

1
2
‖z j+1 − z j‖2h,[

(ukx̄,l)
2uj+1x̄,i − (U

k
x̄,l)
2U j+1x̄,i

]
(uj+1x̄,i − U

j+1
x̄,i ) = (u

k
x̄,l)
2(uj+1x̄,i )

2
+ (Ukx̄,l)

2(U j+1x̄,i )
2
− (ukx̄,l)

2uj+1x̄,i U
j+1
x̄,i − (U

k
x̄,l)
2U j+1x̄,i u

j+1
x̄,i

= (ukx̄,l)
2(uj+1x̄,i )

2
+ (Ukx̄,l)

2(U j+1x̄,i )
2
−
[
(ukx̄,l)

2
+ (Ukx̄,l)

2] uj+1x̄,i U j+1x̄,i
≥ (ukx̄,l)

2(uj+1x̄,i )
2
+ (Ukx̄,l)

2(U j+1x̄,i )
2
−
1
2

[
(ukx̄,l)

2
+ (Ukx̄,l)

2] [(uj+1x̄,i )2 + (U j+1x̄,i )2]
=
1
2
(ukx̄,l)

2
[
(uj+1x̄,i )

2
− (U j+1x̄,i )

2
]
−
1
2
(Ukx̄,l)

2
[
(uj+1x̄,i )

2
− (U j+1x̄,i )

2
]

=
1
2

[
(ukx̄,l)

2
− (Ukx̄,l)

2] [(uj+1x̄,i )2 − (U j+1x̄,i )2] ,
from (3.30) we have

‖z j+1‖2h +
1
2
‖z j+1 − z j‖2h −

1
2
‖z j+1‖2h −

1
2
‖z j‖2h + τ ||z

j+1
x̄ ]|

2
h

+
τ 2h2

2

M∑
i=1

M∑
l=1

j+1∑
k=1

[
(ukx̄,l)

2
− (Ukx̄,l)

2] [(uj+1x̄,i )2 − (U j+1x̄,i )2]
≤
τ

2ε
‖ψ j‖2h + 2ετ‖z

j+1
‖
2
h, ∀ε > 0, j = 0, 1, . . . ,N − 1. (3.31)

Introduce the notations

ξ j = τh
j∑
k=1

M∑
l=1

[
(ukx̄,l)

2
− (Ukx̄,l)

2] , ξ 0 = 0,
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then

ξ
j
t = h

M∑
i=1

[
(uj+1x̄,i )

2
− (U j+1x̄,i )

2
]
.

So, from (3.31) we get

‖z j+1‖2h − ‖z
j
‖
2
h + τ

2
‖z j+1t̄ ‖

2
h + τ ||z

j+1
x̄ ]|

2
h + τ

2
(
ξ
j
t

)2
+ τξ jξ

j
t ≤

τ

ε
‖ψ j‖2h + 4ετ‖z

j+1
‖
2
h. (3.32)

Using (3.29) and the discrete analogue of Poincare’s inequality

‖z j+1‖2h ≤
1
8
||z j+1x̄ ]|

2
h

and the relation

τξ jξ
j
t =

1
2

(
ξ j+1

)2
−
1
2

(
ξ j
)2
−
τ 2

2

(
ξ
j
t

)2
,

we have from (3.32)

‖zn‖2h + τ
2
n−1∑
j=0

‖z j+1t̄ ‖
2
h +

τ

2

n−1∑
j=0

||z j+1x̄ ]|
2
h +

τ 2

2

n−1∑
j=0

(
ξ
j
t

)2
+
1
2

(
ξ n
)2
≤ C

n−1∑
j=0

‖ψ j‖2hτ , n = 1, 2, . . . ,N. (3.33)

From (3.33) we get (3.23) and thus Theorem 3.2 has been proven. �

Remark. Note, that according to the scheme of proving convergence theorem, the uniqueness of the solution of the scheme
(3.19)–(3.21) can be proven. In particular, assuming existence of two solutions u and ū of the scheme (3.19)–(3.21), for the
difference z̄ = u− ūwe get ‖z̄n‖2h ≤ 0, n = 1, 2, . . . ,N . So, z̄ ≡ 0.

4. Numerical implementation remarks

We now comment on the numerical implementation of the discrete problem (3.19)–(3.21). Note that (3.19) can be
rewritten as:

1
τ
uj+1i − A

(
uj+1

) uj+1i+1 − 2uj+1i + uj+1i−1
h2

− f ji −
1
τ
uji = 0, i = 1, . . . ,M − 1.

where

A
(
uj+1

)
= 1+ τh

M∑
`=1

j+1∑
k=1

(
uk` − u

k
`−1

h

)2
.

This system can be written in matrix form

H
(
uj+1

)
≡ G

(
uj+1

)
−
1
τ
uj − fj = 0.

The vector u containing all the unknowns u1, . . . , uM−1 at the level indicated. The vector G is given by
G
(
uj+1

)
= T

(
uj+1

)
uj+1,

where the matrix T is symmetric and tridiagonal with elements

Tir =


1
τ
+ 2

A
h2
, r = i,

−
A
h2
, r = i± 1.

Newton’s method for the system is given by
∇H

(
uj+1

)
|
(n) (uj+1 |(n+1)−uj+1 |(n)) = −H (uj+1) |(n) .

The elements of the matrix ∇H
(
uj+1

)
require the derivative of A. The elements are:

∇H
(
uj+1

)
|ir =



1
τ
+
2
h2
A
(
uj+1

)
−
∂A
(
uj+1

)
∂uj+1i

δ
j+1
i , r = i,

−δ
j+1
i
∂A
(
uj+1

)
∂uj+1r

−
1
h2
A
(
uj+1

)
, r = i± 1,

−δ
j+1
i
∂A
(
uj+1

)
∂uj+1r

, otherwise,
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Fig. 1. The solution at t = 0.5. The exact solution is the solid line and the numerical solution is marked by+.

where

δ
j+1
i =

uj+1i+1 − 2u
j+1
i + u

j+1
i−1

h2
.

To evaluate the partial derivatives, we use

∂A

∂uj+1r
=

∂

∂uj+1r

1+ τh M∑
`=1

j+1∑
k=1

(
uk` − u

k
`−1

h

)2
=

∂

∂uj+1r

C + τh(uj+1r − uj+1r−1
h

)2
+ τh

(
uj+1r+1 − u

j+1
r

h

)2
= 2τh

uj+1r − u
j+1
r−1

h
·
1
h
+ 2τh

uj+1r+1 − u
j+1
r

h
·

(
−
1
h

)
= −2τh

uj+1r+1 − 2u
j+1
r + u

j+1
r−1

h2
.

Note that we incorporated into the constant C all the terms that are independent of uj+1r .

Theorem 4.1. Given the nonlinear system of equations

gi (x1, . . . , xM−1) = 0, i = 1, 2, . . . ,M − 1.

If gi are three times continuously differentiable in a region containing the solution ξ1, . . . , ξM−1 and the Jacobian does not vanish
in that region, then Newton’s method converges at least quadratically. See [29].

In our case we can write

gi = u
j+1
i − τA

(
uj+1

) uj+1i+1 − 2uj+1i + uj+1i−1
h2

− τ f ji − u
j
i = 0, i = 1, . . . ,M − 1.

The Jacobian is thematrix∇H computed above. The term 1
τ
on the diagonal ensures that the Jacobian does not vanish. The

differentiability is guaranteed, since ∇H is quadratic. Newton’s method is costly, because the matrix changes at every step
of the iteration. One can use a modified Newton (keep the same matrix for several iterations) but the rate of convergence
will be slower.
In our first numerical experiment we have chosen the right hand side so that the exact solution is given by

u(x, t) = x(1− x)e−x−t .
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Fig. 2. The solution at t = 1.0. The exact solution is the solid line and the numerical solution is marked by+.

Fig. 3. The initial solution.

In this case the right hand side is

f (x, t) = −
[
9
8
−
3
8
e−2 −

(
1
8
−
3
8
e−2

)
e−2t

] (
−4+ 5x− x2

)
e−x−t − x(1− x)e−x−t .

The parameters used are M = 100 which dictates h = 0.01. Since the method is implicit we can use τ = h and we took
100 time steps. In the next two figures we plotted the numerical solution (marked with+) and the exact solution at t = 0.5
(Fig. 1) and t = 1.0 (Fig. 2) and it is clear that the two solutions are identical.
In our next experiment we have taken zero right hand side and initial solution given by

u(x, 0) = x(1− x)+ x
(
e−x − e−1 cos(24πx)

)
.

In this case, we know that the solution will decay in time. The parameters M, h, τ are as before. In Fig. 3, we plotted the
initial solution and in Fig. 4, we have the numerical solution at four different times. It is clear that the numerical solution is
approaching zero for all x. Therefore the numerical solution of our experiment fully agrees with the theoretical results.
We have experimentedwith several other initial solutions, and in all caseswe noticed the decay of the numerical solution

as expected.
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Fig. 4. The numerical solution at t = 0.1, 0.2, 0.3, 0.4.
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