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In this paper we analyze an optimal fourth-order family of methods suggested by Khattri

and Babajee, (2013). We analyze the family using the information on the extraneous fixed

points. Two measures of closeness to the imaginary axis of the set of extraneous points

are considered and applied to the members of the family to find its best performer. The

results are compared to three best members of King’s family of methods.
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1. Introduction

“Calculating zeros of a scalar function f ranks among the most significant problems in the theory and practice not only

of applied mathematics, but also of many branches of engineering sciences, physics, computer science, finance, to mention

only some fields” [2]. For example, to minimize a function F(x) one has to find the points where the derivative vanishes,

i.e. F ′(x) = 0. There are many algorithms for the solution of nonlinear equations, see e.g. Traub [3], Neta [4] and the recent

book by Petković et al. [2]. The methods can be classified as one step and multistep. One step methods are of the form

xn+1 = φ(xn).

The iteration function φ depends on the method used. For example, Newton’s method is given by

xn+1 = φ(xn) = xn − f (xn)

f ′(xn)
. (1)

Some one point methods allow the use of one or more previously found points, in such cases we have a one step method

with memory. For example, the secant method uses one previous point and is given by

xn+1 = xn − xn − xn−1

f (xn) − f (xn−1)
f (xn).

In order to increase the order of a one step method, one requires higher derivatives. For example, Halley’s method is of third

order and uses a second derivative [5]. In many cases the function is not smooth enough or the higher derivatives are too

complicated. Another way to increase the order is by using multistep. The recent book by Petković et al. [2] is dedicated to

multistep methods. A trivial example of a multistep method is a combination of two Newton steps, i.e.

yn = xn − f (xn)

f ′(xn)
, (2)
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xn+1 = yn − f (yn)

f ′(yn)
. (2)

Of course this is too expensive. The cost of a method is defined by the number (�) of function-evaluations per step. The

method (2) requires four function-evaluations (including derivatives). The efficiency of a method is defined by

I = p1/�,

where p is the order of the method. Clearly one strives to find the most efficient methods. To this end, Kung and Traub [6]

introduced the idea of optimality. They conjectured that a method using � evaluations is optimal if the order is 2�−1. This

conjecture was proved by Woźniakowski [7] in the case of Hermitian information. Kung and Traub have developed optimal

multistep methods of increasing order. Newton’s method (1) is optimal of order 2. King [8] has developed an optimal fourth

order family of methods depending on a parameter β

yn = xn − f (xn)

f ′(xn)
,

xn+1 = yn − f (yn)

f ′(xn)

f (xn) + β f (yn)

fn + (β − 2) f (yn)
, (3)

Neta [9] has developed a family of sixth order methods based on King’s method (3). Also Neta [10] has developed optimal

eighth and sixteenth order methods. Wang and Liu [11] and Thukral and Petković [12] have developed optimal eighth order

methods. Khattri and Babajee [1] has developed the following optimal fourth order 3 parameter family of methods

yn = xn − f (xn)

f ′(xn) + αβ
2

f (xn)m
,

xn+1 = yn − f (xn) f (yn)

f (xn) − 2 f (yn)

[
α

f ′(xn) + β f (xn)m
− α − 1

f ′(xn) + η f (yn)

]
. (4)

There are a number of ways to compare various techniques proposed for solving nonlinear equations. Comparisons of the

various algorithms are based on the number of iterations required for convergence, number of function evaluations, and/or

amount of CPU time. “The primary flaw in this type of comparison is that the starting point, although it may have been

chosen at random, represents only one of an infinite number of other choices” [13]. In recent years the Basin of Attraction

method was introduced to visually comprehend how an algorithm behaves as a function of the various starting points. The

first comparative study using basin of attraction, to the best of our knowledge, is by Vrscay and Gilbert [14]. They analyzed

Schröder and König rational iteration functions. Other work was done by Stewart [15], Kalantari and Jin [16], Amat et al.

[17–20], Chicharro et al. [21], Chun et al. [22,23], Cordero et al. [24], Neta et al. [25–27], Magreňán [28], Magreňán et al.

[29], and Scott et al. [13]. There are also similar results for methods to find roots with multiplicity, see e.g. [30,31] and [32].

In this paper we analyze a family of optimal fourth order methods (4). We will examine the family and show how to

choose the parameters involved in the family similar to Chun et al. [33].

2. Extraneous fixed points

In solving a nonlinear equation iteratively we are looking for fixed points which are zeros of the given nonlinear function.

Many multipoint iterative methods have fixed points that are not zeros of the function of interest. Thus, it is necessary to

investigate the number of extraneous fixed points, their location and their properties. In order to find the extraneous fixed

points, we rewrite the family of methods in the form

xn+1 = xn − f (xn)

f ′(xn)
Hf (xn, yn), (5)

where the function Hf for method (4) is given by

Hf (xn, yn) = f ′(xn)

f ′(xn) + αβ
2

f (xn)m
+ f ′(xn) f (yn)

f (xn) − 2 f (yn)

[
α

f ′(xn) + β f (xn)m
− α − 1

f ′(xn) + η f (yn)

]
. (6)

Clearly, if xn is the root then from (5) we have xn+1 = xn and the iterative process converged. But we can have xn+1 = xn

even if xn is not the root but Hf (xn, yn) = 0. Those latter points are called extraneous fixed points. It is best to have the

extraneous fixed points on the imaginary axis or close to it. For example, in the case of King’s method (3) we found that

the best performance is when the parameter β = 3 − 2
√

2 or β = 0 since then the extraneous fixed points are closest to the

imaginary axis.

We have searched the parameter space (α, β , η) in the case of m = 1 and found that the extraneous fixed points are

not on the imaginary axis except in the case that any two of the parameters are zero, which is Ostrwoski’s fourth order

method [3]. As it can be seen in the next section, the cases of m greater than 1 (i.e. methods KB1 and KB2) gave worse

performance than m = 1. We have tried to get several measures of closeness to the imaginary axis and experimented with

those members from the parameter space.
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Table 1

The eleven cases for experimentation.

Case Method α β η m

1 KB1 6 –1 2.5 2

2 KB2 5.5 1 2.5 2

3 KB3 2 1 2.5 1

4 KB4 –2 0 0.01 1

5 KB5 2.1 –0.7 –1.1 1

6 KB6 –2 0 0.1 1

7 KB7 –2 0 0.001 1

8 KB8 –2 0 –4 1

9 King0 – – – –

10 King – – – –

11 King01 – – – –
Let E = {z1, z2, . . . , znα,β,η
} be the set of the extraneous fixed points corresponding to the values given to α, β , and η. We

define

d(α,β, η) = max
zi∈E

|Re(zi)|. (7)

To choose the parameters α, β , and η we set m = 1. The minimum of d(α, β , η) occurs at α = −2, β = 0 and η = 0.1

for the grid spacing of 0.1 in the α, β and η directions. We observed that the minimum of d(α, β , η) occurs also at α =
−2, β = 0 when we decrease the value of η from 0.1 to 0.01. To further look for where the minimum of d occurs for the

grid spacing of 0.001 in the α, β and η directions, we set at α = −2, β = 0 and found that it occurs at η = 0.001

Another method to choose the parameters is by considering the stability of z ∈ E defined by

dq(z) = dq

dz
(z), (8)

where q is the iteration function of (5). We define a function, A(α, β , η), the averaged stability value of the set E by

A(α,β, η) =
∑

zi∈E |dq(zi)|
nα,β,η

. (9)

The smaller A becomes, the less chaotic the basin of attraction tends to. We also set m = 1 to choose the parameters.

The minimum of A(α, β , η) occurs at α = 2.1, β = −0.7 and η = −1.1 for the grid spacing dx = 0.1. To choose another

parameters set for the grid spacing dx = 0.001, we set α = −2, β = 0, and found that the minimum of A occurs at η = −4.

In the next section we plot the basins of attraction for these cases along with the basins for several members of King’s

family of methods and the cases presented in [1] to find the best performer.

3. Numerical experiments

In this section, we give the results of using the 11 cases described in Table 1 on six different polynomial equations.

Khattri et al. [1] suggested three cases (i) α = 6, β = −1, η = 2.5, m = 2, (ii) α = 5.5, β = 1, η = 2.5, m = 2, and (iii)

α = 2, β = 1, η = 2.5, m = 1 of their proposed family. Here, we consider these cases and call them KB1, KB2, and KB3, re-

spectively. We also compare the results to 3 other members of King’s fourth-order family (3). In King’s family (3) we have

chosen the parameters β = 3 − 2
√

2 as suggested by the analysis in [26], β = 0 and β = 1
10 . We call them King, King0, and

King01, respectively.

We have ran our code for each case and each example on a 6 by 6 square centered at the origin. We have taken 360,000

equally spaced points in the square as initial points for the algorithms. We have recorded the root the method converged to

and the number of iterations it took. We chose a color for each root and the intensity of the color gives information on the

number of iterations. The slower the convergence the darker the shade. If the scheme did not converge in 40 iterations to

one of the roots, we color the point black.

Example 1. In the first case we have taken the cubic polynomial

p1(z) = z3 + 4z2 − 10 (10)

Clearly, one root is real (1.365230013) and the other two are complex conjugate. The basins are plotted in Fig. 1. In the

top row we have KB1 (left) and KB2 (right). Clearly these two methods have many initial points in the square leading to

a non converging sequence within 40 iterations. In the second row we have KB3 (left), KB4 (center) and KB5 (right). In

the third row we view KB6 (left), KB7 (center) and KB8 (right) and the bottom row shows King method with β = 0 (left),

β = 3 − 2
√

2 (center) and β = 0.1 (right). It is clear that the only ones not having black points are KB4, KB6, KB7 and King

with β = 3 − 2
√

2. The worst are KB1, KB2, KB8 and KB3. In order to have a more quantitative comparison, we have listed the

average number of iterations per point for each method and each example in Table 2 and the standard deviation in Table 3.
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Fig. 1. Top row for KB1 (left) and KB2 (right), second row for KB3 (left), KB4 (center), and KB5 (right), third row for KB6 (left), KB7 (center) and KB8

(right), bottom row for King with β = 3 − 2
√

2 (left), β = 0 (center) and β = 0.1 (right) for the roots of the polynomial z3 + 4z2 − 10.
Consulting these tables for the first example, we note that King with β = 3 − 2
√

2, KB7 and KB4 are requiring about the

same number followed by KB6. The worst are KB1, KB2 and KB8, followed by KB3. Another measure for comparison is the

CPU time to run the method on all 360,000 points. This is listed in Table 4 for a Samsung Premium Ultrabook NT900X4C.

Now it shows that King with β = 3 − 2
√

2 and β = 0.1 are the fastest followed by King with β = 0, KB7 and KB6.

Example 2. In the second example we have taken a quintic polynomial with real simple roots

p2(z) = z5 − 5z3 + 4z. (11)

The results are plotted in Fig. 2. The order of the subplots is as before. Again the worst are KB1 and KB2. Therefore these

methods will not be shown in the rest of the examples. The best methods seem to be King with β = 3 − 2
√

2, followed by

KB7, KB4 and KB6. The results in Tables 2 and 3 confirm these qualitative conclusions. The CPU time for King method for

any value of β we have was the lowest, followed by KB4, KB7 and KB6 in that order.
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Fig. 2. Top row for KB1 (left) and KB2 (right), second row for KB3 (left), KB4 (center), and KB5 (right), third row for KB6 (left), KB7 (center) and KB8

(right), bottom row for King with β = 3 − 2
√

2 (left), β = 0 (center) and β = 0.1 (right) for the roots of the polynomial z5 − 5z3 + 4z.

Table 2

Average number of iterations per point for each example (1–6) and each of the 11 methods.

Example 1 2 3 4 5 6 Average

KB1 38.0463 36.0777 35.2893 31.5894 36.5235 37.6280 35.8590

KB2 36.7347 36.0863 31.6800 26.8284 37.7211 36.1124 34.1938

KB3 21.7486 7.2352 11.9838 8.1814 25.2988 9.8164 15.044

KB4 3.7810 4.1420 5.0251 6.1719 4.0078 4.6179 4.6242

KB5 8.8653 4.4799 8.2300 7.1327 10.2061 5.7878 7.4503

KB6 3.9215 4.1695 5.2388 6.4170 4.0466 4.7026 4.7430

KB7 3.7478 4.1320 4.9423 6.0892 3.9979 4.5666 4.5793

KB8 31.0994 11.3453 18.8762 12.8613 26.1077 16.8813 19.5285

King0 4.2024 4.3839 6.7290 8.5668 4.2425 5.5509 5.6126

King 3.7381 4.1246 4.7468 5.7538 3.9934 4.4682 4.4708

King01 3.9736 4.2820 6.4665 8.4667 4.1228 5.2308 5.4237
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Fig. 3. Top row for KB3 (left), KB4 (center), and KB5 (right), second row for KB6 (left), KB7 (center) and KB8 (right), bottom row for King with β = 3 − 2
√

2

(left), β = 0 (center) and β = 0.1 (right) for the roots of the polynomial z5 − 1.

Table 3

Standard deviation for each example (1–6) and each of the 11 methods.

Example 1 2 3 4 5 6

KB1 8.0621 11.0025 11.8690 14.2144 10.4785 8.7399

KB2 10.1726 10.9618 14.3347 16.4513 8.7597 10.7734

KB3 16.2666 8.3862 13.6347 9.1354 17.1542 11.4326

KB4 1.4320 1.1531 3.1224 4.5166 1.0597 1.8245

KB5 11.9018 1.9052 9.6221 6.9423 12.7737 4.0665

KB6 1.5607 1.2182 4.2277 5.3978 1.1616 1.9386

KB7 1.3565 1.1242 2.7293 4.2101 1.0316 1.7361

KB8 14.9765 11.1584 15.5711 12.5419 16.4313 14.6135

King0 2.8940 2.0927 7.2217 9.2797 2.0176 4.3342

King 1.3468 1.0950 2.0903 3.3499 1.0138 1.4578

King01 1.6315 1.5827 7.0440 9.5377 1.2501 3.7457
Example 3. In the third example we have taken a polynomial of degree 5 with the 5 roots of unity, i.e.

p3(z) = z5 − 1. (12)

The basins for all methods except KB1 and KB2 are given in Fig. 3. Qualitatively, the results are exactly the same as before.

The same is true when consulting Tables 2 and 3. As for the CPU time (see Table 4), we find that the fastest is King with

β = 3 − 2
√

2, followed by KB7, King with β = 0.1, KB4 and KB6. In all these examples so far we see that the special cases

we have for KB are very competitive. On the other hand the two cases suggested by Khattri and Babajee[1] are not.

Example 4. In the next example we have taken a polynomial of degree 7

p4(z) = z7 − 1. (13)
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Fig. 4. Top row for KB3 (left), KB4 (center), and KB5 (right), second row for KB6 (left), KB7 (center) and KB8 (right), bottom row for King with β = 3 − 2
√

2

(left), β = 0 (center) and β = 0.1 (right) for the roots of the polynomial z7 − 1.

Table 4

CPU time (in seconds) required for each example (1–6) and each of the 11 methods using a

Samsung Premium Ultrabook NT900X4C.

Example 1 2 3 4 5 6 Average

KB1 5609.75 7061.65 4837.03 5176.18 7086.34 19856.07 8226.17

KB2 4991.67 9374.46 4275 4355.73 7281.07 18890.17 8194.68

KB3 2763.92 1352.06 1547.04 1304.5 4666.57 4972.54 2767.77

KB4 517.06 744.03 646.56 970.84 756.53 2335.75 995.13

KB5 1118.65 864.35 1094.48 1218.62 1910.98 2881.53 1514.77

KB6 499.29 750.15 683.15 1034.46 754.39 2365.25 1014.45

KB7 477.09 745.37 631.5 960.04 739.67 2262.71 969.40

KB8 3886.6 2020.34 2564.96 1984.89 4903 8518.82 3979.77

King0 466.73 644.28 729.64 1123.56 645.35 2218.21 971.30

King 356.23 556.93 465.7 703.85 558.68 1711.2 725.43

King01 376.92 647.67 639.54 1090.06 587.57 2001.98 890.62
The basins are plotted in Fig. 4. The qualitative results are identical to the previous example. The average number of itera-

tions per point confirms that conclusion. The CPU time is the lowest for King with β = 3 − 2
√

2, followed by KB7, KB4 and

KB6 in that order. This matches perfectly the qualitative results.

In the last two examples, we consider polynomials with complex coefficients. We find that these are more challenging

problems.

Example 5. We have considered a cubic polynomial with complex coefficients

p5(z) = z3 + 2z2 − 3iz2 − 3
z − 9

iz − 7 − 3
i (14)
4 2 4 2
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Fig. 5. Top row for KB3 (left), KB4 (center), and KB5 (right), second row for KB6 (left), KB7 (center) and KB8 (right), bottom row for King with β = 3 − 2
√

2

(left), β = 0 (center) and β = 0.1 (right) for the roots of the polynomial p5(z).

Table 5

The number of points requiring 40 iterations for each method and each example.

Example 1 2 3 4 5 6 Average

KB1 341116 320272 8749 264153 325146 336237 265945.5

KB2 327317 320108 268543 218628 338255 319113 298660.7

KB3 157472 21118 67289 26055 206765 43320 87003.17

KB4 107 0 1131 2876 0 0 685.6667

KB5 44983 515 27935 12904 54882 2368 23931.17

KB6 130 5 3735 6318 5 12 1701

KB7 79 0 8749 1442 0 0 1711.667

KB8 265079 44352 123111 59293 208347 96392 132762.3

King0 93 0 18 468 0 0 96.5

King 1612 572 9279 22505 671 1342 5996.833

King01 3 12 8749 24288 0 663 5619.167
The results are plotted in Fig. 5. The best methods are almost as before King with β = 0, KB7, KB4 and KB6, but the other

King methods are also good. In terms of CPU time, King method with any of the parameter values we tried were faster than

KB methods.

Example 6. In the last example we took a polynomial of degree 6 with complex coefficients

p6(z) = z6 − 1

2
z5 + 11

4
(1 + i)z4 −

(
3

4
i + 19

4

)
z3 −

(
5

4
i + 11

4

)
z2 −

(
1

4
i + 11

4

)
z + 3

2
− 3i (15)

The basins are presented in Fig. 6. The most chaotic is KB8 followed by KB3 and KB5. The best ones seem to be as before

King with β = 0, KB7, KB4 and KB6. This is confirmed by the average number of iterations per point (see Table 2). The CPU
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Fig. 6. Top row for KB3 (left), KB4 (center), and KB5 (right), second row for KB6 (left), KB7 (center) and KB8 (right), bottom row for King with β = 3 − 2
√

2

(left), β = 0 (center) and β = 0.1 (right) for the roots of the polynomial p6(z).
time was lowest for King method with the 3 different values of the parameter β followed by KB7, KB4 and KB6 in that

order.

To summarize, we have averaged all the values in Table 2 over all 6 examples. The results show that King with β =
3 − 2

√
2 requires 4.47 iterations per point followed by KB7 (4.58), KB4 (4.62) and KB6 (4.74). All the others require more

than 5.4 iterations per point (on average) with the worst being KB1 and KB2 with over 34 iterations per point. In terms of

CPU time, the fastest is King with β = 3 − 2
√

2 (725 s) followed by King with β = 0.1 (890 s), KB7 (969 s), King with β = 0

(971 s) and KB4 (995 s). All the others require more than 1000 s on average over all examples with the highest being KB1

(8226 s) and KB2 (8194 s).

Another measure for comparison is the number of points requiring 40 iterations. These are the points colored black. We

tabulated the numbers for each method and each example in Table 5. It is clear that King with β = 0 had the lowest such

number on average (96.5) followed by KB4 (685.7 points), KB6 (1701 points) and KB7 (1711.7 points). King with β = 3 − 2
√

2

had 5996.8 points on average, even though on average this was the fastest and had the lowest number of iterations per

point. King with β = 0 has the lowest number of black points but came fourth in CPU time and sixth in the average number

of iterations per point. It is now clear that the best methods are KB7, KB4 and KB6 in that order.

Conclusion

In this paper we have experimented with several possible parameter combinations for Khattri et al.’s family of methods

and compared them to 3 members of King’s family of methods. We found based on several criteria that the 3 members KB7,

KB4 and KB6 are the best.
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