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Abstract

Various finite element approximations to the vorticity-divergence form of the
shallow water equations are analyzed. The vorticity-divergence cquation schemes
give superior solutions to those which are based on the primitive equations. The hest
results come from the finite element schemes on isosceles triangles and rectanges.

1 INTRODUCTION

The hydrostatic primitive equation numerical models which are used for weather-prediction;
permit inertial gravity waves, Rosshy waves and advective effects. The influence of a numerical
method on each of these types of motion is analyzed by separating the linearized prediction
ecquations into vertical modes with an equivalent depth analy -.i~.(Gi|l/l 1982). Thus one obtains
the lincarized shallow water equations with the appropriate equivalent depth. ;
Four finite difference grids were analyzed by Winninghofl[{/2- 1968) and Arakawa and Lamb
(/3-1977). These grids are labeled A-D (see Fig.1). Their analysis showed that the gcosirophlc
adjustinent for the unstaggered grids A, D is poor. Schoenstadt{/4-1980) studied geostrophics
adjustnient for finite elements (piccewise linear basis functions). He eoncluded that the unstag-s
gered finite element (grid A) gives poor adjustment for small scale motions, but grids B, C ane
excellent. Williams(/5-1981) examined geosirophic adjustment in the \Ol’ll(‘l‘\-llt\ ergence fori
of the shallow-water equations with finite clements and finite differences. In this fornml'lhnn,
the unstaggered schemes give good geostrophic adjustment. Finite elements are currently used
in atmospheric prediction nodels, see Staniforth and Mitchell(/6-1977, [T-1978), qlallerl"h
and Daley(/8-1979) and Cullen and Hall(/9-1979). :
Here we compare the treatinent of Rosshy waves by finite element approximations of tHE
vorticity-divergence formulation of the shallow water equations. We also inclnde in our coms
parison the fourth order method due to Staniforth and Mitchell(/6-1977).
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2 VORTICITY-DIVERGENCE FORMULATION

"The linearized shallow waler equations are

uy— fe+gh, =0
v+ fudgh, =0 (1)
hy + gli(u, + v,)=0

where u , v are the perturbations in velocity, h is the perturbation in height, H is the equivalent
depth and f is the Coriolis parameter,

f=l+5y (2)

The vorticity-divergence formulation with the ¢uasi-geostrophic approximation is (see, for
example Haltiner and Williams(/10- 1980))

G + fo +Fegh.ffo =0
- fDC + g(h.r.r + hyy) =0
h, + DH =0.

The Rosshy wave frequency w is given by (see, Neta and Willitams(/11-1989))
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Fig.1: Varions elements
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where
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15 the Rosshy radius of deformation. The group velocities are
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3 NUMERICAL SCHEMES

[t was shown by Neta and Williams(/11-1989) that, for most of the numerical schemes under
investigation, the semi-discretized vorticity-divergence system is

aly + foaD + Fifighffy =0
- foaf — glo+e)h =40 (6)
ohy, + HaD =0

where a, §, § and ¢ depend on the scheme. The only exception is the fourth order method
due to Staniforth and Mitchell(/7-1978). This scheme approximates first derivatives to fourth
order. The boundary value problems resulting from this method are also approximated to
fourth order.

In this case one can show that the system (6) shoull be replaced hy

aly + foo'D + fulyhffo =0
- foo'¢ = glé+=)h =0 (7)
ah, + Ho'D =0,

The parameters {or all these methods are listed in Table 1.
The frequency can now be computed in terws of these parameters

Bofl
gl Al VI 8
R T ¥etai? (8)
except for the method due to Staniforth and Mtiichell for which
Bobo' e
= 9
O T e~ )

The group velocities can he obtained by deifferentiating the frequency with respect to g
and k.
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4 COMPARISON

In our comparison we chose Az = Ay = d. The frequencies and group velocities for the
various schemes are given for r* = d?/4X2 = .1, 1. and 10. The parameter r? measures the
relative importance of the terms in the denominator of (7) when the wave scale is small. In
Fig.2 we present the frequencies for k = 0 and % = .1. The analytic formula for the frequency
shows that w — 0 as either 4 — 0 or ¢ — 0o and w has a minimum at # = A"1 All schemes
show the same behavior for small 4. However for p > 7/2d all underestimate the magnitude
of the frequency. Staniforth and Mitchell’s (SM} method is closest to (he analytic but later
(pd/7 > .85) the isosceles finite clement (FET) is betler.

For r? = 1 (Fig.3), the FET scheme is the best for pdfw > .75. For r* = 10 (Tig.4), FET is
best. These three cases show that SM, FET and FER (bilinear basis functions on rectangles)
are best,

5 CONCLUSIONS

When the grid size is smaller than the Rossby radius of deformation, our results show all of
the vorticity-divergence based methods are good, especially FET and SM. When the grid size
is of the order of the Rossby radius, FET, FER and SM are best, When the grid size is larger,
FER is best.

To combine these results with those of Neta and Williams{/11-1989) and Williams(/5-1981)
for the geostrophic adjustment properties of schemes, one can recommend the use of finite ele-
ment. voriicity-divergence model.
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Table 1: Parameters in Eqs.(6) and (7)
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oprat. analy. isosceles triangles rectangles Staniforth/Mitchell
: 3+cos X +2coscosY (24cosX)(2+cosY) (24 cosX)(2+cosY)
= 6 9 9
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Fig.2: Comparison of frequencies (r? = .1)
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Fig.3: Comparison of frequencies (r? = 1)
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Fig.4: Comparison of {requencies (r? = 10)




