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Abstract 

Neta, B., Analysis of finite elements and finite differences for shallow water equations: A review, Mathematics 
and Computers in Simulation 34 (1992) 141-161. 

In this review article we discuss analyses of finite-element and finite-difference approximations of the shallow 
water equations. An extensive bibliography is given. 

0. Introduction 

In this article we review analyses of finite-element and finite-difference methods for the 
approximation of the shallow water equations. Results by the author and others are given, 
tables showing side by side all these results are included. Current research including semi- 
Lagrangian and domain decomposition methods are covered. An extensive bibliography is 
given. 

1. Shallow water equations 

1.1. Model 

Consider a sheet of fluid with constant and uniform density (see, for example, [41]). (See Fig. 
1.) The height of the surface of the fluid above the reference level z = 0 is h(x, y, t). With 
atmosphere or ocean in mind, we model the body force arising from the potential 4 =gh. The 
rigid bottom is defined by the surface z = h,(x, y>. The velocity has components u, L’ and w in 
the X-, y- and z-directions, respectively. The pressure of the fluid surface can be arbitrarily 
imposed, but here we assume it is constant. The fluid is assumed inciscid, that is, only motions 
for which viscosity is unimportant are considered. 

Let H be the average depth of the fluid, h - h,. Let L be a characteristic horizontal scale 
for the motion. For shallow water theory one must have 

H 
- -=c 1. 
L (14 
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Fig. 1. 
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The shallow water model thus contains some of the important dynamical features of the 
atmosphere and ocean. The major physical deficiency is the absence of density stratification 
present in the real atmosphere and oceans. 

1.2. Equations 

The specification of incompressibility and constant density decouples the dynamics from the 
thermodynamics (see, e.g., [41]). The equation of mass conservation reduces to the condition of 
incompressibility: 

au aL! aw 

G+-+az=O. ay 

The momentum equations: 

au au au au I aj 
t+uax+c-+w--g-fL~= ---> 

ay P ax 
ar; aL? au au I ag 
at+uax+“-+W~+fu=---, 

ay P aY 
(14 

aw aw aw aw 1 afi 
~+u~+c-+w~=---_, 

ay P az 
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where the total pressure p(x, y, z, t) is 

P(.G Y, 2, t) = -Pi? +P(x, Y, 23 t>. (W 

Note that the horizontal pressure gradient is independent of z if one uses the hydrostatic 
approximation 

aP H2 
-=--pg+o t (I 1) . 
dZ 

Such approximation follows from scale analysis of the momentum equations and the 
pressibility condition. Integrating the last equation and using the boundary condition 

P(X> Y> h) ‘PO 

yields 

P =m(h -4 +Po* 

(1.4) 

incom- 

(I.9 

(1.6) 

This means that the pressure in excess of pO at any point simply equals the weight of the unit 
column of fluid above the point at that time. 

Note that the horizontal pressure gradient is independent of z, therefore the horizontal 
accelerations must be independent of z. For low Rossby-wave number U/(fL), the Taylor- 
Proudman theorem (see, e.g., [41, p. 431) applied to a homogeneous fluid will require the 
velocities to be independent of z. 

The vertical momentum equation can be integrated easily, since u and L’ are independent of 

The condition of IZO normal flow at the bottom requires 

ah, ah, 
w(x, y, h,, t) =uax fc- 

ay . 

This leads to 

au a[: 

i I ahE3 
w(x, y, z, t) = (h, -z) z + - fur ay 

(1.8) 

ahI3 
+tJ-. 

ay (1.9) 

The corresponding kinematic condition at the surface z = h is 

ah ah ah 

Thus 

W(X, y, 2, t) = z +uz + L’-. 
ay 

(1.10) 

g + ;[a(h-h,J + y&h -h,)] =O. (1.11) 
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This equation, combined with the horizontal momentum equations 

au au au ah au ar; au ah 
-+Llx+L!ay‘-fL~=-_g~, 
at 

~+"~+"-+fu=-g- 

dY ay 
(1.12) 

form the shallow water equations, 

Remarks. (1) The vertical momentum equation can be interpreted as follows: if the local 
horizontal divergence of volume V . (U’H) is positive, it must be balanced by a local decrease of 
the layer thickness due to a drop in the free surface. Here we define the total depth 
H=h -h,. 

(2) The time it takes a fluid element to move a distance L with speed U is L/U. If that 
period of time is much less than the period of rotation of the earth, the fluid can barely feel the 
earth’s rotation. For rotation to be important, we anticipate U/( fL) G 1. This ratio is called 
Rossby number. 

2. Advection equation 

Advective processes are dominant in atmospheric and oceanic circulation systems, while 
diffusive effects are important only in boundary layer regions. Any numerical model for these 
circulation systems should treat advective effects accurately. Neta and Williams [36] have 
analyzed various finite-element formulations of the linearized advection equation in two 
dimensions, 

aF aF aF 
-+Vcosf9~+~sinH--0, 
at ay 

(2.1) 

where I/ is the mean flow speed and 13 is the direction relative to the x-axis. The analytic 
solution to (2.1) is 

F(x, y, t) =F(x - tV cos 13, y - tV sin 8, 0). (2.2) 

The following methods were analyzed: 
(i) linear elements on isosceles triangles; 

(ii) linear elements on biased triangles; 
(iii) linear elements on criss-cross grid; 
(iv) linear elements on unbiased triangles; 
(v) bilinear basis functions on rectangles; 

(vi) second-order finite differences; and 
(vii) fourth-order finite differences. 

Figures 2-5 show various triangulations in the case Ax = Ay. 
The leapfrog time differencing is used in all cases. For the case 8 = 0 (flow in the x-axis 

direction) one can show that if the initial condition is 

F(x, y, 0) =K ej(kxi’y), (2.3) 
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Fig. 2. Isosceles triangles. Fig. 3. Biased grid. 

then the analytic solution is 

Because of the localized nature of the schemes we obtained in each case an ordinary 
differential equation or a system of two such equations. The solution in each case is a wave 

F(x, y, t) =A(t) ejck++ly). (2.5) 

The amplitude A(t) can be solved in terms of (T (see Table 1 of functions u for each scheme). 
The phase speed of the numerical solution is related to (T by 

arcsin (T 
c,= 

kAt ’ P-6) 

The use of leapfrog (centered difference) in time leads to a numerical solution consisting of two 
waves or modes. The spurious (computational) mode is damped. The CFL condition for 
stability of each scheme is given in Table 2. 

Fig. 4. Criss-cross grid. Fig. 5. Unbiased grid. 
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Table 1 
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(T (for 0 = 0) 

Isosceles 

Biased 

4VF 
sin k Ax +sin ;k Ax cos 1 Ay 

Ax 3+sin kAx+2cosikAxcoslAy 

At sin kd + i sin Id + i sin( k - 1)d 
4v- 

d 3+coskd+cosld+cos(k-l)d’ 
Ax=Ay=d 

Criss-cross 
At -bid=, 

2vY? 2a ’ 
where a = 4 + cos kd + cos Id - cos kd cos fkd cos Id cos ild, 

b = sin kd -sin $kd cos Id cos $d, 

e = -sin kd sin ikd cos Id cos $d 

Unbiased 

Rectangles 

Second-order 
finite differences 

Fourth-order 

4vE sin kd(cos kd f 6) 

d q -cos’kd ’ 
where q = 8 + 2 cos kd cos Id - cos’ld 

At sinkAx 
3v- 

Ax 2+cos kAx 

At 
Vzsin k Ax 

finite differences 
Vg($ sin kAx -i sin 2k Ax) 

Two of the schemes require special consideration. The criss-cross is unstable. The unbiased 
scheme has four modes like the criss-cross instead of two modes for the other methods. These 
two extra modes can explain the noise in the numerical solution experienced in [19]. 

The scheme with isosceles triangles is superior to all of the schemes which use right triangles. 
The rectangles become superior for larger y wave numbers. The finite-difference methods are 
both inferior to the stable finite elements. 

For the general case 8 # 0, only isosceles triangles, biased triangles and bilinear rectangular 
elements are compared to the finite differences (see [36] for details and contour plots of 
C,/C>. (See Table 3.) The study concludes that both finite elements are superior to the finite 

Table 2 

CFL condition V At/Ax < 

Isosceles 0.45144 
Biased 0.456 

Rectangles l/6 
Second-order 

finite differences 1 
Fourth-order 

finite differences 0.73 
Unbiased 0.5623 
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Table 3 

g (for 0 # 0) 

Isosceles 

(base angle 0) 

Rectangles 

At 3 cos ik Ax sin 1 Ay +sin k Ax +sin ik Ax cos 1 Ay 
4vcos ex 

3+cos k Ax +2cos ;k Ax cos 1 Ay 

(0 = angle 
between base 
and diagonal) 

Second-order 
finite differences 

Fourth-order 

3v cos 0’ 
[ 

sin k Ax sin 1 Ay 

Ax 2+cos k Ax 
+ 

2+cosl Ay 1 
Vcos 0 g(sin k Ax +sin 1 Ay) 

finite differences 

difference. The triangles may lose their attractiveness if the resolution varies or the east-west 
boundary conditions are not periodic. Staniforth [52] discussed the efficiency of solution of 
finite-element scheme using rectangles. 

3. Phase speed and group velocities for various schemes to solve the shallow water equation 

The comparative study of the last section is continued both analytically and numerically in 
[39] for the shallow water equations with topography. The primitive formulation (Section 2) and 
the vorticity-divergence form are used. Cullen and Hall [9] showed that the accuracy of the 
Galerkin finite-element solution was better for the vorticity-divergence formulation than for an 
increase in resolution with the primitive formulation. Williams and Schoenstadt [67] noted that 
staggered variable formulation of the primitive equations and the unstaggered vorticity-diver- 
gence formulation gave the best treatment of geostrophic adjustment for small scale features. 

The linearized shallow water equations in primitive form are 

(3.1) 

where U, I/ are the horizontal mean velocities and y = (H - h,). The vorticity-divergence 
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formulation is obtained from the above when recalling that the vorticity l and divergence D are 
defined by 

These equations are 

ah ah ah ay dY 
at+uax+v-+yD=u~+“-’ 

ay ay 

fY=s V2h, 

with the geostrophic relations 

fu = -g;, fvg$ 

The phase speed is 

(T 1 _=_ 
k k 

kU+ lI/+ (f/Y)@ aY/aY - 1 aY/ax) 

k2+12+f2/y 

The phase speed for the numerical methods discussed previously is given by 

1 cc, 
C”=k -u+%+ 1 

WY)( *z -$) 
ff LY I 6+e+f2/y ’ 

(3.3) 

(3.4) 

(3.5) 

(3.6) 

where cy, p, $, 6, E for each scheme are listed in Table 4. The group velocities are defined by 
the partial derivatives of the phase speed with respect to each of the wave numbers. 

As discussed in Section 1, the distortion of the output (solution) depends on the transfer 
function. In the next section we discuss the use of transfer functions to analyze the shallow 
water equations. 

4. Transfer functions 

Linear (space or time) invariant systems can be described by the so-called transfer functions 
(see [SS]). Let yi(x), yO(x) be the input and output to a system, respectively. Let y^Jk), y,,(k) 

be the Fourier transforms of the input and output, respectively, where 

fjk) = jrn f(x) eeikx dx. 
-02 

(4.1) 
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Then the Fourier transforms of the input and output are related by 

9{J(k) = J(k)Fi(k)’ (4.2) 

This is the representation of the system in the transform domain. The representation in the 
physical domain is given by the convolution theorem 

d( x> is known as impulse response of the system to an input 6(x), since 

+(x) = lrn 4(x - Y)~(Y) dr. 
-cc 

(4.3) 

(4.4) 

The magnitude and phase of J(k) can be found by taking a sinusoidal input 

yi( x) = ejkd.r, 

where j = \r-1. Then 

(4.5) 

y,,(x) = $(k,) ejk? = 1 $(ki) 1 ejkcb ejk,x = 1 $(k,) 1 ejk#(x+kcb/kt). 
(4.6) 

Thus, the magnitude 141 of the transfer function is the factor by which the amplitude of a 
sinusoidal is amplified or attenuated. The argument k,/k, is the shift of the phase of the 
input. 

In general, the different frequencies are amplified/attenuated and shifted in phase by 
different amounts. The distortion (change in shape) of the output depends on both effects. 

In electrical engineering, any linear invariant system which can be described by a transfer 
function is called a filter. When a continuous process is discretized, one obtains a discrete or 

digital filter. 

For example, 

2 =f(x), WI 

where f(x) is input and y(x) is output, is a filter. A digital filter for this could be 

y(x + Ax) =y(x) + Axf(x) (4.8) 

(nothing more than Euler’s method). The transfer function of digital filters can be determined 
by Fourier transform. To this end, one recalls 

y^(x + Ax) = /m y(x + Ax) e-jkx dx = ejkAxy^(x). (4.9) 
--CD 

The transfer function for the filter is 

6(k) = ;> (4.10) 
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and for the above digital filter is (easy exercise) 

(6”(k) = 

e-jk Ax/2 

sin ik Ax ’ 
(4.11) 

j 
;Ax 

The main difference between continuous and digital filters is the so-called aliasing. A sampling 
device at interval Ax is not capable of resolving waves of frequency greater than r/Ax and if 
energy is present in a sampled continuous signal at such high frequencies, it 
resolved into a frequency lower than n/Ax. 

5. Transfer function analysis for one-dimensional shallow water equations 

5.1. Analytic case 

will erroneously be 

The one-dimensional linearized shallow water equations with no mean flow were analyzed in 
[48]: 

; +fu = 0, 
dh 
;+H;=O. (5.1) 

This model is especially important in the study of geostrophic adjustment. This process has 
been studied in some detail from several approaches in [l-3,45,47,69]. The process of 
geostrophic adjustment is important because it is the primary mechanism by which the 
atmosphere reacts to errors in the initial data. The process takes place by means of wave 
propagation from local regions of initial imbalance, leaving behind a steady semigeostrophic 
balance flow. Cahn [3] showed that a sudden perturbation caused by an addition of momentum 
will cause the disturbance amplitude to first grow linearly with time followed by an asymptotic 
state 

sh - Lcos(ft + f7-r). 
\& (5 4 

The speed of propagation of energy is ,/&. Obukhov [40] showed that for two-dimensional flow 

gh-0 f . 
( i 

(5.3) 

Schoenstadt [48] has shown that the amplitude distortion in this system is governed by one of 
the three factors l/v, k/a or k/v2, or the square of one of these were v/k, the phase speed, 
is given by 

lJ f _=_ 
k 

k/1+R;k2, (5 4 
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i-l 
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i-l 
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A grid B grid 
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i i+l i-l i i+l 

C grid D grid 

Fig. 6. 

where 

digH 
R,,= - 

f 
is the Rossby radius of deformation. 

When drawing the amplitude coefficients, it is clear that the terms with the coefficient l/v 
have their low frequencies least affected (low-pass filter), the terms with coefficient k/v are 
high-pass filters and those with k/v* are band-pass filters. 

5.2. Semi-discrete case 

Schoenstadt [48] analyzed second- and fourth-order finite-difference and finite-element 
schemes for which the variables are either unstaggered (A grid) or staggered (B, C, D grids) 
(see Fig. 6). Finite-element D grid is not given there. See also [25]. 

Neta and Navon [34] analyzed the Turkel-Zwas explicit large time step scheme [61]. The 
filter coefficients l/v, k/v, k/v2 are replaced, respectively, by r/v, S/v, Q-S/V*. For the 
Turkel-Zwas scheme the filter coefficients change but not always in the same manner. In this 
case there are extra coefficients namely r/v* and rS/v2. The filter coefficients for each 

scheme can be found in [34,48]. The phase speed for the Turkel-Zwas scheme is 

(W 

where 

T = +(2 + cos sk AX) (5.7) 

and 

sin sk Ax 
s= 

SAX ’ 
(5 4 

Schoenstadt concludes that Scheme A produces the greatest distortion especially at high 
frequencies. Other methods very accurately approximate the transfer function for high-pass 
filter. Scheme B overstates the amount of energy distributed into the short wave, while Scheme 
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u,v,h u,v,h h 

UP’ I,h 

1 

1 

u,v,h h 
Fig. 7(a). Grid A. 

h 

L n 

Fig. 7(b). Grid B. 

C understates this. The finite-element methods appear more accurate than fourth-order 
difference. The group velocity for Schemes A, D is reversed for short waves. Based on 
one-dimensional results. Scheme C is best. 

finite 
these 

6. Transfer function analysis for two-dimensional shallow water equations 

The transfer function analysis initiated by Schoenstadt [48] for the one-dimensional case was 
extended to two dimensions in [32,33,64]. The transfer coefficients are functions of both 
wavenumbers k, 1. The methods analyzed are the same as in the one-dimensional case. What is 
surprising is that the Turkel-Zwas scheme must be modified to get convergence. This 
modification was not enough to make the method competitive with finite-element or fourth- 
order C scheme. See Fig. 7 for two-dimensional arrangement of variables. The filter coeffi- 

h ” h h ” h 

” n 

” 

h ” 

Fig. 7(c). Grid C. Fig. 7(d). Grid D. 
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Table 5 
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Scheme CY, ff> ,B(k, 1) 

A2 

B2 

c2 

D2 

A4 

B4 

c4 

D4 

TZ 

FET 

FER 

1 1 

1 1 

1 cos ;kd cos $ld 

1 cos ;kd cos +ld 

1 1 

1 1 

1 cos ;kd cos +ld 

1 cm ;kd cos +ld 

1 34 + cos ksd + cos lsd) 

+(3 + cos kd + 2 cos ;kd cos Id) ;(3 + cos kd + 2 cos ;kd cos Id) 

$(2+cos kd)(2+cos Id) ;(2+cos kd)(2+cos Id) 

sin kd 

d 
sin ;kd 
Icos ;ld 

pi 

sin +kd 

id 

sin kd 
pcos ;ld 

d 
8 sin kd -sin 2kd 

6d 
-sin :kd + 27 sin tkd 

12d 
cos i/d 

- sin $kd + 27 sin +kd 

12d 
8 sin kd - sin 2kd 

6d 
cos ;ld 

sin ksd 

sd 
2( sin kd + sin ikd cos ld) 

3d 
sin kd 

+(2+cos IdId 

cients for all schemes are a,/(a,v>, P(k, I>/(a,v), P(l, k)/(a,v), a,P(k, l)/(azv2), 
c~,p(l, ~)/((Y:v~> and P(k, OpU; k)/(azv21. The frequency 1, is given by 

cfv =f a; +RlQ2(k, 1) +p’(A k)) 7 

where ayx, (Y,,, p for each scheme are listed in Table 5. The only 
finite-element scheme on isosceles triangles (FET), in which 
(cos ikd sin Zd)/d. 

(6.1) 

exception to the above is in the 
P(E, k) should be replaced by 

7. Rossby wave frequencies 

The hydrostatic primitive equation numerical models that are used for atmosphere and 
oceanographic prediction permit inertial gravity waves, Rossby waves and advective effects. The 
influence of a numerical method on each of these types of motion is most easily analyzed by 
separating the linearized prediction equations into vertical modes with an equivalent depth 
analysis (see, e.g., [13]). In this case the equations for each vertical mode are just the linearized 
shallow water equations (7.1). Arakawa and Lamb [l] analyzed inertial gravity wave motions for 
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grids A, B, C, D. They found that the geostrophic adjustment for grids A, D is poor and that 
the adjustment for grids B, C is good. 

In this section we discuss the treatment of Rossby waves in vorticity-divergence shallow 
water formulations with various finite-element and finite-difference schemes. For comparison 
the finite-difference primitive equations solution for grids A, B and C are also included (see 

B',641). 

7.1. Primitiue form 

The linearized shallow water equations on a beta plane can be written as follows: 

&A 

z -fi; +gg 

al! ah 
; +“b+g- 

ay 

= 0, 

= 0, 

au 

-1 
=o. 

dY 

The frequency can be obtained by 

PO* 
WF= - 

6+E+(YK2’ 

where (Y, $I, 6, E depend on the method used and where PO 
These parameters are listed in [38] and reproduced in Table 6. 

7.2. Vorticity-diuergence form 

(7.1) 

(7.2) 

(7.3) 

(7.4) 

is an average value of df/dy. 

The vorticity-divergence equation set, which is obtained by differentiating (7.1) and (7.2) with 
respect to x and y, respectively, and combining, can be written 

z +fD + pc = 0, (7.5) 

aD dl-f~+Su+y~$+~)=o. (7.6) 

; +HD=O. (7.7) 
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Table 6 
The operators for the various numerical schemes for the shallow water equations 

Scheme Vorticity-divergence form 

Operator 

Finite elements 

Analytic Isosceles triangles Rectangular Staniforth and Mitchell 

t55,561 

a 1 i(3+cos x* +2cos txcos Y) $(2+cos xx2+cos Y) ;(2+cos X)(2+cos Y) 

2(sin X+sin +Xcos Y) sin X 
z $(2 + cos Y) 

sin X 
9 P 

3Ax 
-&2+cos Y) 

6 P2 
sin*fX 

(; Ax)* 

sinZLX 
(t A;)2 $(2+cos Y) 

sin’+X 
---+5+cos Y) 
(t Ax) 

E 

(Y’ 

k* 
(3+cosx-4cos~xcosY) sin’+Y 

----+(2+cos X) 
sin’+Y 

2 Ay* (:AY) 
~$+cos X) 
(DAY) 

$5 + cos X)(5 + cos Y) 

*X=k Ax,Y=lAy. 

To isolate the Rossby mode more easily we apply the quasi-geostrophic approximation to the 
set (7SH7.7) 

ah 
z +HD=O, 

(7.9) 

(7.10) 

where f,, and PO are evaluated at an approximate central latitude. The frequency is given as 
before with an appropriate value for the parameters IY, 9, 6, E. 

7.3. Semi-implicit fourth order 

Staniforth and Mitchell [56] introduced a finite-element scheme in which the first derivatives 
are approximated to fourth order. The frequency in this case is given by 

(7.11) 

The parameters LX, CX’, I/I, 6, E are listed in Table 6. 
Neta and Williams [38] have shown that the finite-element method based on isosceles 

triangles (FET) and on rectangles (FER) are as good as the method due to Staniforth and 
Mitchell GM). These three methods are better than all others. 
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Table 6 
(continued) 

Vorticity-divergence form 

Finite differences 

Second order Fourth order 

Primitive equation form 

Finite differences 

A B C 

1 1 1 

sin X 4 sin X 1 sin 2X sin X 
__- 

AX 3 Ax 6 Ax 
-cos $Y 

AX 

sin’+X cos2X-16cosX+15 sin2X 

(4 Ax)~ 6 Ax’ AX2 

1 cos2;x cos2;Y 

sin X sin X 
- cos2Y 

Ax Ax 

sin’fX sin’;X 
~;(l+cos Y) ~ 

(f Ax) (4 Ax)~ 

sin21Y * cos2Y-16cosY+15 sin2Y 

(t AY)’ 6 Ay2 Ay2 

sin2LY sin”+Y 
+$(l+cos x> ~ 

(t AY) (5 AY)* 

8. Semi-Lagrangian methods 

Semi-Lagrangian methods were first proposed in [21,46], and improved recently in [59] and 
elsewhere. See recent review [53]. 

Consider the advection-diffusion equation 

a#+ t> 
at 

+ u(x, t) +b(x, t) = v v2+, t), 

where II is the diffusion coefficient. A semi-Lagrangian approximation may be written as 
[42-441 

4(x, t + At) - 4(x -a, t) 
=I 

At 
2 

where 

1 (x,t+Ar) + v v24 1 (r-a~)] , (84 

a(x) = At V(X - ;a, t + ; At). (84 
Suppose x is a grid point of a given regular mesh. Suppose that at these mesh points we 

know 4 at time t and V at time t + i At. A semi-Lagrangian algorithm is then the following. 

(1) Solve (8.3) iteratively for a(x) by 

aci+‘)(x) = At V(x - $zci), t + 3 At), i = 0, 1,. .., (8.4) 

and by an interpolation of I/ between mesh points. 
(2) Evaluate v V*$J I cX,tj at mesh points by finite-difference, finite-element or spectral 

method. Use interpolation to evaluate the right-hand side of 

(4 - $’ At V’4) 1 (x,t+Af) = (4 + $’ At v’4) 1 (x-ay,t). (8.5) 
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(3) Solve the above Helmholtz equation at mesh points (SOR, ADI, finite Fourier transform, 
finite elements). 

(4) Repeat the steps to obtain 4(x, t + 2 At). 

Remarks. (1) Eulerian schemes suffer from serious numerical dispersion and diffusion. 
(2) High-ord E 1 er u erian schemes tend to produce artificial extrema because of the unrealistic 

phase speeds of the high wave number. 
(3) Lagrangian schemes suffer from distortion of the initial grid after a long integration 

(more than twelve hours). 

In two dimensions it is appropriate to consider the pseudo staggering suggested in [7]. “The 
scheme works well with the primitive form of the equations, uses unstaggered grid but does not 
propagate small scale energy in the wrong direction, works well with variable resolution and as 
computationally efficient as staggered formulation using the primitive form of the equations.” 

9. Domain decomposition 

One of the major developing areas in numerical analysis is parallel computation which offers 
the possibility of significantly faster computational speeds. Domain decomposition methods are 
based on subdivision of the domain into several (maybe overlapping) subdomains and solving 
the problem on several subdomains in parallel. The methods can be regarded as divide-and- 
conquer algorithms (see [65]). The interactions between the solutions on the subdomains lead 
to an iterative technique. When the number of subdomains is large, one can improve the 
convergence of this iterative procedure by using a coarse grid to obtain starting values of the 
solution on the interfaces. In this respect, the methods are similar to multigrid schemes. The 
crucial point is how to pass information from one domain to other processors. Two different 
approaches were followed in the literature. The first approach is based on decompositions of 
the domain into contiguous regions (see, e.g., [12] and references there). The second is based 
on having overlapping regions (Schwartz alternating method, see, e.g., [22-241 and references 
there). 

The main difficulty of such parallel techniques is in the initial assignment of values to the 
interfaces between subdomains. The more accurate such values are, the faster the convergence. 
We have already mentioned the idea based on multigrid. There are several other possibilities to 
accelerate convergence (see the proceedings of four international conferences on domain 
decomposition [5,6,14,X]). According to Lions [24] the approach based on optima1 control as 
followed by Glowinski et al. [16,17] is a bit faster, at least for Laplace equations. 

Neta and Okamoto 1351 have suggested an acceleration based on boundary elements. These 
two approaches for shallow water equations are now under investigation by Neta and Navon. 

10. Conclusions 

This paper reviewed analyses of finite-element and finite-difference schemes for the solution 
of the shallow water equations. The superiority of certain finite-element methods is indicated. 
Some recent results in parallel computations are included. 
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