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In this paper we analyze Murakami’s family of fifth order methods for the solution 
of nonlinear equations. We show how to find the best performer by using a measure 
of closeness of the extraneous fixed points to the imaginary axis. We demonstrate the 
performance of these members as compared to the two members originally suggested by 
Murakami. We found several members for which the extraneous fixed points are on the 
imaginary axis, only one of these has 6 such points (compared to 8 for the other members). 
We show that this member is the best performer.
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1. Introduction

There is a vast literature on the solution of nonlinear equations, see for example Ostrowski [19], Traub [23], Neta [16] and 
Petković et al. [20]. In this paper we consider a fifth-order family of methods and show how to choose the best parameters. 
We will compare the performance of the two originally suggested members to two new ones by using the idea of basin of 
attraction and analyzing the extraneous fixed points.

Murakami [15] has developed a fifth order family of methods

xn+1 = xn − a1un − a2 w2(xn) − a3 w3(xn) − ψ(xn), (1)

where

un = f (xn)

f ′(xn)
,

w2(xn) = f (xn)

f ′(xn − un)
,

(2)
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w3(xn) = f (xn)

f ′(xn + βun + γ w2(xn))
,

ψ(xn) = f (xn)

b1 f ′(xn) + b2 f ′(xn − un)
.

This family is of order five when we take

a1 = 1

6

(
1 + 4γ + 1

θ

)
, a2 = 1

θ − 1

(
1

6
θ − 2

3
γ − 1

3

)
, a3 = 2

3
,

b1 = −6θ(θ − 1)2

4γ + 1
, b2 = 6θ2(θ − 1)

4γ + 1
, β = −γ − 1

2
,

(3)

and

θ = 16γ + 5

4(4γ + 1)
. (4)

Murakami suggested the following two possibilities:

γ = 0, a1 = 0.3, a2 = −0.5, a3 = 2

3
,

b1 = −15

32
, b2 = 75

32
, β = −1

2

(5)

and

γ = −0.5, a1 = − 1

18
, a2 = −1

2
, a3 = 2

3
,

b1 = 9

32
, b2 = 27

32
, β = 0.

(6)

The idea there probably to choose one of the parameters to be zero, i.e. either γ = 0 or β = 0. As it turns out these 
parameters are not far from the best.

In this paper, we find the best possible value of the parameter γ . We will use two criteria we have developed in previous 
work [7] based on the location of the extraneous fixed points. In the next section, we discuss the extraneous fixed points. 
In section 3 we will discuss the two criteria and give the best parameter based on these criteria. In section 4 we describe 
the basins of attraction for the best members of the family for 7 different examples. We close with conclusions.

2. Extraneous fixed points

For the Murakami family zn+1 = M f (zn), where

M f (z) = z − a1u f (z) − a2 w2, f (z) − a3 w3, f (z) − ψ f (z),

u f (z) = f (z)

f ′(z)
,

w2, f (z) = f (z)

f ′(z − u f (z))
,

w3, f (z) = f (z)

f ′(z + βu f (z) + γ w2, f (z))
,

ψ f (z) = f (z)

b1 f ′(z) + b2 f ′(z − u f (z))
,

(7)

we explore its conjugacy on quadratic polynomials. We begin with a preliminary result.

Lemma 1. Let f (z) be an analytic function on the Riemann sphere, and let T (z) = αz+β, α �= 0, be an affine map. If g(z) = ( f ◦T )(z), 
then we have
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u f (T (z)) = αug(z),

w2, f (T (z)) = αw2,g(z),

w3, f (T (z)) = αw3,g(z),

ψ f (T (z)) = αψg(z).

(8)

Proof. We have g′(z) = α f ′(T (z)), so that

g(n)(z) = αn f (n)(T (z)), n ≥ 1. (9)

From this we obtain

u f (T (z)) = f (T (z))

f ′(T (z))
= αug(z). (10)

We then have by the comparison of Taylor series expansions on f and g ,

f ′(T (z) − u f (T (z))) = f ′(T (z) − αug(z))

= f ′(T (z)) − f ′′(T (z))αug(z) + · · ·
= 1

α
g′(z) − 1

α2
g′′(z)αug(z) + · · ·

= 1

α
g′(z − ug(z)),

(11)

and we obtain

w2, f (T (z)) = f (T (z))

f ′(T (z) − u f (T (z)))
= αw2,g(z). (12)

Similarly as in (11), it can be shown from (9), (10), (12) that

f ′(T (z) + βu f (T (z)) + γ w2, f (T (z))) = 1

α
g′(z + βug(z) + γ w2,g(z)), (13)

from which,

w3, f (T (z)) = αw3,g(z). (14)

It follows from (9) and (11) that

ψ f (T (z)) = αψg(z). (15)

We can now obtain the scaling theorem for the Murakami family.

Theorem 2. Let f (z) be an analytic function on the Riemann sphere, and let T (z) = αz + β, α �= 0, be an affine map. If g(z) =
( f ◦ T )(z), then we have T ◦ Mg ◦ T −1 = M f (z), that is, M f and Mg are topologically conjugated via T .

Proof. We will prove that (T ◦ Mg)(z) = (M f ◦ T )(z) for all z. By Lemma 1 we have

(T ◦ Mg)(z) = αMg(z) + β

= αz − [a1αug(z) + a2αw2,g(z) + a3αw3,g(z) + αψg(z)] + β

= T (z) − [a1u f (T (z)) + a2 w2, f (T (z)) + a3 w3, f (T (z)) + ψ f (T (z))]
= (M f ◦ T )(z).

(16)

Every quadratic polynomial p(z) with distinct roots reduces, via a linear map, to a polynomial belonging to the one 
parameter family q(z) = z2 − μ, and so by the above scaling theorem, the study of the dynamics of the Murakami family 
for any complex quadratic polynomial with distinct roots reduces to its dynamical study for f (z) = z2 − μ. The scaling 
theorems and the conjugacy classes of the Murakami family for degree three and four polynomials can be discussed as in 
Amat et al. [2].

In solving a nonlinear equation iteratively we are looking for fixed points which are zeros of the given nonlinear function. 
Many multipoint iterative methods have fixed points that are not zeros of the function of interest. Thus, it is imperative to 
investigate the number of extraneous fixed points, their location and their properties.
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Theorem 3. The extraneous fixed points for the Murakami family for f (z) = z2 − μ can be found by solving

Nγ (z)

Dγ (z)
= 0, (17)

where

Nγ (z) = (128γ 3 + 352γ 2 + 522γ + 87)z8 − 2μ(256γ 3 + 224γ 2 − 528γ − 129)z6

+ 12μ2(64γ 3 + 83γ + 24)z4 − 2μ3(256γ 3 + 32γ 2 − 216γ − 63)z2

+ μ4(2γ + 1)(3 + 8γ )2,

Dγ (z) = 6((3 + 16γ )z2 + 16μ(5 + γ ))((3 + 2γ )z4 + 4μ(1 − γ )z2 + μ2(1 + 2γ ))(z2 + μ).

Proof. In order to obtain the extraneous fixed points for the method (1), we have to rewrite it in the following form:

xn+1 = xn − un H f (xn), (18)

where

H f (xn) = a1 + a2
f ′(xn)

f ′(xn − un)
+ a3

f ′(xn)

f ′(xn + βun + γ w2(xn))

+ f ′(xn)

b1 f ′(xn) + b2 f ′(xn − un)

(19)

Upon using f (z) = z2 − μ in (19), we have (17).
In the sequel, the case μ = 1 will be considered, so the best possible value of the parameter of the Murakami family will 

be found for f (z) = z2 − 1.
For γ = 0 and μ = 1, the equation (17) becomes

1

2

29z6 + 57z4 + 39z2 + 3

(z2 + 1)(3z2 + 5)(3z2 + 1)
= 0. (20)

The roots are as follows;

ξ = ±0.296058904382937i, ξ = ±0.271524554061638 ± 1.00630947859782i.

All the fixed points are repulsive.
For γ = −0.5 and μ = 1, the equation (17) becomes

Nγ (z)

(z2 + 3)(z2 + 1)(z2 + 0.6)
= 0, (21)

where

Nγ (z) = 1.7(z2 + 0.467734312641029z + 1.58640402523038)

(z2 + 0.163614395584542)(z2 − 0.467734312641029z + 1.58640402523038).

The roots are as follows;

ξ = ±0.4044927633i, ξ = ±0.2338671563 ± 1.237622793i.

All the fixed points are repulsive.
In the next section we find that, based on the criterion used, the parameter γ should be either γ = −0.62 or γ =

−0.125.
For γ = −0.62 and μ = 1, the equation (17) becomes

Nγ (z)

Dγ (z)
= 0, (22)

where

Nγ (z) = 1.804130321(z2 + 0.698167010067880z + 1.89250439483774)

(z2 + 0.0593972226948352)(z2 + 0.0328734688882183)

(z2 − 0.698167010067880z + 1.89250439483774),

Dγ (z) = (z2 + 0.7109826589)(z + 0.191498766272523)(z − 0.191498766272523)

(z2 + 3.71848995930208)(z2 + 1).
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The roots are as follows;

ξ = ±0.3490835050 ± 1.330655891i, ξ = ±0.2437154544i, ξ = ±0.1813104213i.

All the fixed points are repulsive.
For γ = −0.125 and μ = 1, the equation (17) becomes

Nγ (z)

Dγ (z)
= 0, (23)

where

Nγ (z) = 1.636363636(z2 + 0.0463327506379597)(z2 + 1)(z2 + 2.39811169380649),

Dγ (z) = (z2 + 1.44801847547959)(z2 + 3)(z2 + 0.188345160884045).

The roots are as follows;

ξ = ±1.548583770i, ξ = ±i, ξ = ±0.2152504370i.

All the fixed points are repulsive.

Remark. Notice that this is the only case out of the 4 above where the extraneous fixed points are all on the imaginary axis. 
There are other values of γ in the range (−0.1891, −0.125) for which we have purely imaginary extraneous fixed points. 
In these cases the number of points is 8 versus 6 in the case we chose to present here.

In the next section we discuss two criteria to choose the parameters in the Murakami family. These criteria were devel-
oped in [8].

3. Best possible parameters

The parameters can be chosen to position the extraneous fixed points on the imaginary axis or, at least, close to that 
axis, (see, for example, Chun and Neta [7] and [10]).

We have searched the parameter space (γ ) and found that the extraneous fixed points are on the imaginary axis for 
certain values of the parameter γ . We have considered one measure of closeness to the imaginary axis, denoted by d, and 
another measure of averaged stability of the extraneous fixed points, denoted by A. These measures are defined below. We 
have experimented with those members from the parameter space.

Let E = {z1, z2, ..., znγ } be the set of the extraneous fixed points corresponding to the value of the parameter γ . We 
define

d(γ ) = max
zi∈E

|Re(zi)|. (24)

We look for the parameters γ which attain the minimum of d(γ ). The minimum of d(γ ) = 0 occurs at γ = −0.125. We 
will call the corresponding method Murakamid. We will not consider other values of γ for which d(γ ) = 0, since they have 
more extraneous fixed points.

Another method to choose the parameter is by considering the stability of z ∈ E defined by

dq(z) = dq

dz
(z), (25)

where q is the iteration function of the Murakami family of methods. We define a function called the averaged stability 
value of the set E by

A(γ ) =

∑
zi∈E

|dq(zi)|

nγ
, (26)

where nγ is the number of elements of the set E .
The smaller A becomes, the less chaotic the basin of attraction tends to. The minimum of A(γ ) occurs at γ = −0.62. 

We will call the corresponding method MurakamiA.
It was shown before that methods for which the extraneous fixed points are on or close to the imaginary axis perform 

better than others. d(γ ) measures the distance of the extraneous fixed points from the imaginary axis and thus predicts 
best performance. The measures d(γ ) and A(γ ) provide ways of choosing the best performers for any parameter-dependent 
families of methods. In our previous work, we found that methods suggested by these measures perform better than others.

The values of the parameter γ presented in [15] are γ = 0 and γ = −0.5 that we call them Murakami1 and Murakami2, 
respectively.
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Fig. 1. The top row for Murakami1 (left) and Murakami2 (right), and second row for MurakamiA (left) and Murakamid (right) for the roots of the 
polynomial z2 − 1.

4. Numerical experiments

The Basin of Attraction is a method to visually understand how a method behaves as a function of the various starting 
points. This idea was started by Stewart [22] and continued in the work of Amat et al. [1–3], Argyros and Magreñan [4], 
Chicharro et al. [5], Chun et al. [6,9,11], Cordero et al. [12], Geum et al. [13], Magreñan [14], Neta et al. [17,18], and Scott et 
al. [21].

We have used the 4 members of the Murakami family for 7 different polynomials. The choice of the parameters in the 
families used is based on the analysis in the previous section. All the examples have roots within a square of [−3, 3] by 
[−3, 3]. We have taken 360,000 equally spaced points in the square as initial points for the methods and we have registered 
the total number of iterations required to converge to a root and also to which root it converged. We have also collected 
the CPU time (in seconds) required to run each method on all the points using Dell Optiplex 990 desktop computer. We 
then computed the average number of iterations required per point and the number of points requiring 40 iterations.

Example 1. In our first example, we have taken the polynomial

p1(z) = z2 − 1 (27)

whose roots are z = ±1. In Fig. 1 we have presented the basins for the 4 members of the Murakami family of methods. In 
the top row, we have γ = 0 (left) and γ = −0.5 (right). On the bottom row we have the case γ = −0.62 based on the A
criterion (left) and γ = −0.125 based on the d criterion (right). It is clear from the Fig. 1 that Murakamid is the best method 
(bottom right subplot). The parameter based on the d criterion for closeness has improved the basins (compared to the cases 
suggested by [15]). The parameter based on the A criterion made the situation slightly worse. In order to get a quantitative 
comparison, we have collected the average number of iterations per point in Table 1, the CPU time for each method and 
each example in Table 2 and the number of points requiring 40 iterations in Table 3. It is clear that Murakamid requires 
the least number (2.70), and the original ones require slightly more. MurakamiA is the worst, requiring 2.94 iterations per 
point on average. Note that the difference is very small. In terms of CPU time (see Table 2) now Murakami2 is the fastest 
(150 seconds) followed by Murakamid (151 seconds). MurakamiA is the slowest with 162 seconds. In terms of the number 
of points requiring 40 iterations (see Table 3) we find that MurakamiA is the worst with 765 points requiring 40 iterations. 
All other methods have 601 points requiring 40 iterations.

Example 2. Our next example is a cubic polynomial having the three roots of unity,
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Table 1
Average number of iterations per point for each example (1–7) and each method.

Method Ex1 Ex2 Ex3 Ex4 Ex5 Ex6 Ex7 Average

Murakami1 (γ = 0) 2.81 3.43 3.52 2.98 4.64 4.21 5.93 3.93
Murakami2 (γ = −0.5) 2.72 3.39 3.38 2.92 4.62 4.24 6.06 3.90

MurakamiA (γ = −0.62) 2.94 3.58 3.47 3.09 4.84 4.48 6.35 4.11
Murakamid (γ = −0.125) 2.70 3.36 3.29 2.88 4.34 3.63 5.09 3.61

Table 2
CPU time (in seconds) required for each example (1–7) and each method.

Method Ex1 Ex2 Ex3 Ex4 Ex5 Ex6 Ex7 Average

Murakami1 156.297 252.331 258.228 289.428 417.116 1297.023 648.995 474.203
Murakami2 150.338 248.837 240.382 278.508 420.501 1296.010 657.076 470.236

MurakamiA 162.584 259.336 244.734 295.357 438.565 1358.800 679.961 491.334
Murakamid 151.024 244.407 244.235 276.402 386.477 1111.538 572.367 426.636

Table 3
Number of points requiring 40 iterations for each example (1–7) and each method.

Method Ex1 Ex2 Ex3 Ex4 Ex5 Ex6 Ex7 Average

Murakami1 601 1 0 601 19 0 1027 321.29
Murakami2 601 1 0 601 20 0 886 301.29

MurakamiA 765 1 0 601 41 1 948 336.71
Murakamid 601 2086 4 609 5483 28 6158 2138.43

Fig. 2. The top row for Murakami1 (left) and Murakami2 (right), and second row for MurakamiA (left) and Murakamid (right) for the roots of the 
polynomial z3 − 1.

p2(z) = z3 − 1. (28)

The basins of attraction are plotted in Fig. 2. Again MurakamiA is most chaotic and the others are about the same. The 
average number of iterations per point is lowest for Murakamid (3.36) and highest for MurakamiA (3.58). The CPU time 
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Fig. 3. The top row for Murakami1 (left) and Murakami2 (right), and second row for MurakamiA (left) and Murakamid (right) for the roots of the 
polynomial z3 − z.

is about the same for all (249–259 seconds) with MurakamiA being the slowest and Murakamid being the fastest. The 
methods with the fewest number of points requiring 40 iterations are: Murakami1, Murakami2 and MurakamiA (all with 
one point). The worst is Murakamid with 2086 points.

Example 3. Our next example is the cubic polynomial,

p3(z) = z3 − z. (29)

The basins of attraction are given in Fig. 3. It is clear that Murakamid is best, but Murakami1 and Murakami2 are not far 
behind. In terms of the average number of iterations per points, Murakamid is best (3.29) and Murakami1 is worst (3.52). 
The fastest is Murakami2 (240 seconds) and the slowest is Murakami1 (258 seconds). All members have no black points 
(see Table 3) except Murakamid with 4 black points.

Example 4. The fourth example is the quartic polynomial,

p4(z) = z4 − 10z2 + 9. (30)

The basins of attraction are plotted in Fig. 4. Again Murakamid is better than the others. This is also confirmed by consulting 
Tables 1 and 2. All members have the same numbers of points requiring 40 iterations (601 points) except Murakamid with 
609 points.

Example 5. The fifth example is a polynomial

p5(z) = z5 − 1. (31)

The plots of the basins are given in Fig. 5. Murakamid and Murakami1 are better than the others. The average number of 
iterations per point is 4.34 for Murakamid and higher (4.62–4.84) for the others (see Table 1). Murakamid is the fastest 
with 386 seconds (see Table 2) followed by Murakami1 (417 seconds) and Murakami2 (420 seconds). In terms of the 
number of points requiring 40 iterations, Murakami1 and Murakami2 have fewest number (19–20 points) and Murakamid
the highest with 5483 points.
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Fig. 4. The top row for Murakami1 (left) and Murakami2 (right), and second row for MurakamiA (left) and Murakamid (right) for the roots of the 
polynomial z4 − 10z2 + 9.

Fig. 5. The top row for Murakami1 (left) and Murakami2 (right), and second row for MurakamiA (left) and Murakamid (right) for the roots of the 
polynomial z5 − 1.
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Fig. 6. The top row for Murakami1 (left) and Murakami2 (right), and second row for MurakamiA (left) and Murakamid (right) for the roots of the 
polynomial z6 − 1

2 z5 + 11
4 (1 + i)z4 − 1

4 (19 + 3i)z3 + 1
4 (11 + 5i)z2 − 1

4 (11 + i)z + 3
2 − 3i.

Example 6. Our next example is a polynomial with complex coefficients

p6(z) = z6 − 1
2 z5 + 11

4 (1 + i)z4 − 1
4 (19 + 3i)z3 + 1

4 (11 + 5i)z2

− 1
4 (11 + i)z + 3

2 − 3i.
(32)

This example was the hardest for many iterative methods as we found out in our previous work. Murakamid is the best, as 
can be seen from Fig. 6. From Table 1 we find that Murakamid requires 3.63 iterations per point on average and the others 
require above 4.21. Murakamid is the fastest with 1111 seconds, followed by Murakami2 (1296 seconds) and Murakami1
(1297 seconds). The number of points requiring 40 iterations (see Table 3) is highest for Murakamid with 28 points. The 
rest have no black point or just one point.

Example 7. Our last example is a polynomial

p7(z) = z7 − 1. (33)

The basins of attraction are plotted in Fig. 7. Based on the figure we conclude that Murakamid is best. Based on Table 1, we 
conclude that Murakamid uses least number of iterations per point (5.09) and the others use 5.93–6.35 iterations per point 
on average. The fastest method (see Table 2) is Murakamid (572 seconds) and the slowest is MurakamiA with 680 seconds. 
The number of points requiring 40 iterations is the smallest for Murakami2 (886) and the highest (6158) for Murakamid.

5. Conclusions

In order to decide which member is best overall, we have averaged the numbers across the examples. We now find that
Murakamid requires the least number of iterations per point (3.61) followed by Murakami2 (3.90). MurakamiA requires 
the most (4.11). Same conclusion for the average CPU time across examples, i.e. Murakamid is the fastest (426 seconds) and
MurakamiA is the slowest (491 seconds). In terms of the number of points requiring 40 iterations, the highest is 2138 for
Murakamid and the lowest (301) for Murakami2. We can conclude that the criterion d is very useful in finding the best 
performer from a family of methods. Based on the averages in the 3 tables we conclude that Murakamid is best followed 
by Murakami2 and Murakami1.
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Fig. 7. The top row for Murakami1 (left) and Murakami2 (right), and second row for MurakamiA (left) and Murakamid (right) for the roots of the 
polynomial z7 − 1.
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