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A new quasi-Newton method for the solution of gystems of
nonlinear algebraic equations is introduced. This method is a
generalization of a sixth-order one developed by the auther
for approximating the solution of one monlimear equation. The
R-order of the method is four. Numeriecal experiments comparing
the method to Newton's show that one can save over 20% of the
cost of solving a system of algebraic equations. The saving is
greater when the dimension is higher or the number of itera-

tions needed is latrger.

I. INTRODUCTION

Let F: D < R — R™ be a nonlinear mapping with both its
domain and its range in the n-dimeusional real linear space r®.
In this paper we consider the numerical solution of the system

of n equations in n variables

F(x) = 0. (1)

Two special cases of (1), in particular, are much better
understood than most others - namely, the n-dimensional linear
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systems, and the one-dimensional nonlinear equations. See
Varga [10], Householder [2] and Young [14] for the first case,
and Ostrowski [7), Traub [9) and Householder [3] for the se-
cond one. In recent years there has been much interest in
n-dimensional variations of Newton's method, the secant metheod,
and other classical one~dimensional iterative methods. See
for example Rheinboldt {8], Ortega and Rheinboldt [61,
Werner [13], Voight [11],[12}, Dennis and Moré [1], and ref-
erences there,

The algorithm in most common usage for problem (1) can be

written as follows:

Given X
Kepp = 5 - I (x)E(x), ko= 0,1,2,... (2)
where
s9F 4 (x)
J,,(x) = !——————\ is the Jacobian matrix.
ii= \ axl /

The i{teration formula (2) is certainly not the way Newton's
method should be implemented on a computer. The fellowing

form is much more like an actuval implementation.

(1) Gilven X, F(xy) and J(xg}
(11) Solve the n x n linear system
.I(!_(_k)Ek = - E(Ek) (3)

for the Newtan step O .
(111) Using 0y and perhaps some other values of F(x),
choose X) .4
(iv) Evaluate E(§k+l) and test for convergence.
Either terminate the computation or proceed to (v).
(v) Evaluate {or approximate) J(§k+l)’ set the counter to

k+1 and return to (ii).
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The traditional area of research on quasi-Newton methods
are steps (iii) and (v). The reason is that for real problems,
evaluations of F and J dominate the cost of solution and so it
ig in these steps that the potential saving is greatest.

In the next section the new method will be introduced. 1In
gsection 3 the order of convergence will be established. In
the last section we present some of the numerical experiments

performed and compare the performance of the method to Newton's.

IT. DESCRIPTION OF ALGORITHM

Let us consider the one-dimensional case for a moment. In
{51 the author developed a sixth-order method to approximate
the solution x* of f(x) = 0. An iteration consists of a Newton
substep followed by two substeps, of "modified" Newton (i.e.,
using the derivative of f at the first substep instead of the

current one). Giwven X solve the three equations:

} f(xk)

e T R T £ (x)

f(wk) f(xk) + Af(wk)
k T ET(x) ' £(x) + (A-2)E(w)

(1)

£(z,) E(x ) - £(w)
Eedl T Fp T £7(x,) ) E(x ) - 3E(wy)

where A is a parameter. If we choose A=-1 then the cerrecting
term in the last two substeps is the same.
For a system of n equations the algorithm will be as

follows;

(i} Given Xps E(Ek) and J(Ek)
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(ii) Solve
I Gy = x) = Elx,) (2)
for Wy
(iii) Evaluate E(Ek) and test for convergence, Either ter-

minate the computation or proceed to (iv}.

{(iv) Evaluate the entries of the diagonal matrix D

F.{x, )-F,(w )
it~k i*=k .
— , if denominator #0
Folx) 3F, (w,)

D (xhm) = (3)
1 otherwise
(v) Solve
Ty ) (2 - W) = = Dlxgs> wi)F (wg) (4)
for z; .
(vi) Evaluate F(zy) and test for convergence. Either ter-
minate the process or proceed to (vii).
(vii) Solve
T{x) Ry = 2K) = - D(Rg, wr)F(zg) (5)
for xypy -

(viii) Evaluate £(5k+l) and test for convergence, Either
terminate the computation or proceed to (ix).

(ix) Evaluate J(X ,y), set the computer to k+l and return
te (11),.

Remark: Since the evaluation and factorization of the

Jacobian J 18 costly, cone can save by keeping the Jacobian

fixed, This idea is not mew. Our claim 1s that if one modi-

fies the righthand side as described 1in stepas (v) and {(vii)

there will be no serious reduction in the rate of convergence.
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Let us now compare the number of multiplications and divi-
sions needed in one step of this algorithm with two consecu-
tive steps of Newton's method (both are of order four). The
number No of multiplications needed to caleculate the entries
of the Jacobian is given by:

Nge ~ nb (6)
where b is half the bandwidth. The number Np of multiplica-
tions needed to factor the Jacobian is

Np v gub2 )
and the number Ng of multiplications needed to hack solve the
two systems is given by:

Ng ~ 2nh , (8)
If J is a full matrix instead of banded, one has to replace b
by n in (6) - (8). The number Np of multiplications needed to
evaluate the entries of D and multiply by F in both steps is:

Np ~ 4n . (s5)
Note that if J is mot symmetric N, and Np should be doubled.

Thus, the total number of multiplications needed for one atep

of our algorithm is:

To = mb + Znb2 + 6ub + 4n = n(7b + 2 + 4. (10}

The total number of multiplications needed for two steps of

Newton's method is:

Ty = 2(ab + 2nb? + 2nb) = n(8b + b2) . (11)

Clearly, T, is smaller than Ty 1f b > 2 .

Remark: It is known that the natural extension of a procedure
to higher dimensions does not preserve the order of conver-
gence exhibited by the one-dimensional procedure

(see voigt [12]}. Therefore, one cannot expect the method to

have a gsilxth-order in either 0Q or OR measures.
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In the next section we recall some definitions of measures

and prove that our algorithm has at least fourth order.
I1II. ORDER OF CONVERGENCE

In this section we are interested in measuring how fast
the sequence {Ek} converges to x* (the solutien of (1.1)). We
shall use two measures of the order of convergence denoted by

0. and 0R which depend on the asymptotic convergence factors

Q

QP and R respectively. A complete discussion of these

P!

measures may be found in Ortega and Rheinbeldt f6el.

Pefinition: Let F be the iterative procedure
Fi X = G(x Y, k= m=-1, m,... . (1)

L+1 K Ekemtl

Let 5(F,x*) denote the set of all sequences generated by an

iterative procedure F with limit point x*., Then

QP(F,z*) = sup {Qp{zk}l{gk} € S(F,i*)}, )
where
0 if'l!.k"i_(* for all k xk,
Iz, 1 - x*I lep<= if %, # x* for all
RIE i_l,f,'; SUP Tx, - x*Ip but finitely many k ()
0 otherwise,

are the Q-convergence factors of F at x*.

Definition: Let QP(F’E*) be the Q-convergence factors of an

iterative procedure F at x*. Then

0g = int {o € 11,0, (r.x0) = m} ()

is the Q-order of F at x¥*.
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Definition: Let S{F,x*) denote the set of all sequences {Ek}

generated by an {terative procedure F with limit point x*,

Then
Ry (F,x%) = Sup{Rp{Ek}]{Ek} ES(F,E*)} , (s)
where
lim sup [x, - x4/%  1fp =1
k4o
Rp{z(_k} = k
liw sup |z - x4)2P if p € (1,), (6)

ko

are the R-convergence factors of F at x*.

Definition: fyet RP(F,E*) be the R-convergence factors of an
iterative procedure F at x*, Then

OR(F,x*) = inf{p € {1,=)|R,(F,x%) = 1} (1)
is the R-order of F at x*,
Definition: The mapping F: D < R">R™ 1g Frechet- (or F-)
differentiable at x € int (D) 1if there is an A € L(mn,'m“)

such that
. (8)

iim

P (xth) - Fx - Anll_ _ 0
IFY]
h+0

The linear operator A 1s denoted by F'(x), and is called the
F~derivative of F at x.
Theorem: Let F: D ¢ R" + RY be F-differentiable in an open
ball § = S(x*,8) € D and satisfy

I7(x) - J(x*)F € vlx - x*| , » for all x € §.
Assume, further, that F(x*) =0 and J(x*) is nonsingular. Then

x* 18 a point of attraction of the iteration F defined by

= Hx (9

B+l Xy

where
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x - ") F(x)

=
]
1]

6x = N¥x- J"l(x)D(x,Nx)F(¥x) , (10)

Hx = Gx- J”1(x)D(x,Nx)F(Cx)

and
OR(F,x*%) % 0g(F,x*) 3 4 (11)
Proof: Since Nx=x - J"I1{(x)F(x) it is clear that
INx - x*§ ¢ nix - 5*"2 on §, €5 . {12)

Gx = Nx - J-L1{(x)D(x,Nx)F(Nx) iswell defined on 5, 8, .
Therefore, 1f KI-1(x)I < B for all x € S, » then
Gx - x* = Nx - x* - J7h(x)D(x, NO)F(Nx) = (13)
= 17L(x) {3(x) (¥x - x*) - D(x, Nx)F(Nx)} =
= 37N x) {-D(x, Nx)F(Nx) + F(x*) + J(x*) (Nx-x*) -
~[3(x*) - 3(x))(¥x - x0) ]
lex-x* & BID(x,Nx)F(Nx) - F{x*) - J(x*) (Nx-x*)| +
(14)
+ Bylx-x*| INx - x*]
In order to bound the first term on the right, let us examine

the i-th component of the vector

n
Ay = D, (x, Nx)Fi(Nx) - Fy(x*) - z£1 Iy (x%) (Nx - x%),

Fij(x) - Fi(Nx)

Dy (F MOy (NX) = 5 55— 37 (8x) Fy(Nx) =
4 ZFi(Nl‘.) 4
- (1 Y E @ - 3F1(N§))F1(N5) )

2F2 (Nx)

T (x) - 3F (Nx) (1%

= F;(¥x) +
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Expanding Fi(g) and Fi(NE) in Taylor series one obtains

n n (Nx - x*),(¥x - x*)
A, = ] IFl 4 %
T j=1 g=1 %

+

(16}

J. . {x*)(Nx - x*). + H.O.T.2
L LIRS

Jij(_)f_*)(é - }_*)j + H.O.T.

Thus
* * 3 * 3
IGx - x*| & Bplx - x*|” + Bynllx — x*| =
3
= B{p + ym)llx -~ x*|~ . (17

Hx = Gx - J_I(E)D(E,NE)F(GE) is well defined on 53 c 52'

Hx - x* = Gx - x¥% - J‘I(E)D(E,NE)F(GE) =
= 0N lex - x*] - D(x,Nx)F(Ex) | =
(18)

- 17l {[-pix,vx) F(6x) + F(x*) +

I(x*)(6x - x0) ] + [J(x*) - J(x)1(Gx - x%)}

+

IHx ~ x*§ ¢ BID(x,Nx)F(Gx) - F(x*} - J(x*)(Gx-x*| +

+ Brlex - x*lI Ix -~ x*l (19

The first term on the right can be bounded in a similar way to

yield
UD(x,Nx)F(Gx) - F(x*) - J{(x*)(Gx - x*}| ¢ Aﬂ;—;*ﬂa (20)

Combining (19) - (20) with (17) one obtains
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IHx - x*1 € Az -x*1% + B2y (o +yn)ix - %) -

= 8IA+8y(p+ym) lix —x*i? |

This implies that

(21)

IV. NUMERICAL EXPERIMENTS

In this section we present some of the numerical experi-

ments and compare the performance of our algorithm to Newton's.

It is clear that the saving ig in calculating the entries of

the Jacobian and in factoring it., Thus one cannot expect to

see any difference in the performance of the two algorithms

when solving systems of 2 x2 or 3x3. We have compared the

CPU time needed to solve 5 different systems of 2 x2 and 3 dif-

ferent systems of 3 x3,

The results are summarized in Table 1.

TABLE 1

CPU time 1in seconds

Problem Wo, NETA NEWTON
1 .68 W71
2.1 .84 .84
2.2 .76 .79
3 .68 .76
4 »82 T4
5 .81 .75
6.1 1.16 1,22
6.2 Divergence 1.05
7 1.04 Divergence
8 .73 .93
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TABLE 2
Problem No. System of Equations Initial Value
1 x+ 3 log x-y2 = 0 (1, -2)

2x? - Xy = 5x+1 =20

2 x2 + xy? - 9 =0 1. (1.2, 2.5)
Ix’y - y? -4 =0 2. (-1.2, -2.35)
3 X+ 2y = 3 =0 (1.5, 1)

2x* + y2 -5 =09

4 3x%2 4+ 4y2 -1 =0 (-.3, .25)

vy -8x*-1=0

5 4x? + y2 - 4 =9 (1, 0)

x +y - sin(x-y) = 0

6 x + y¥t + 1 =0 1. (-1600, -1000,
-1000)
x'yz = 0 2. (-100, 0, 100)
z" -1 =0
7 x? +y = 37 (5, 0, -2)

X = y° =3

x+y+z=23

8 12x = 3y°% = 4z = 7.17 (3, 0, 1)
x? + 10y - z = 11.54

y' 4+ 7z = 7.631

In Table 2 we list the systems solved and initial values used.
We found one example of each where only one of the methods

converged.
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Hote that the CPU time is for the execution step only.

All numerical results were obtained on IBM 370/148 computer.

In cur last experiment we consider a system of algebraic
equations arising in the finite element approximation to the

solution of:

9([7u(x) P72 0u(x) = £(x) (1)

]
m
2

o
v
X

U(E) a { EE BQ.

Fix and Neta [4] showed that the finite element approximation

ult to the solution u can be written as follows
n
ub(x) = I uy 4400 (2)
{i=
where ¢4y(x) are the basis functions of the finite

dimensional subspace § (dim 8§ = n). The welghts uy can be

computed by solving the algebraic system of equations

K(u)u = g , (3]
where
n
-2
Ryy = JQ izl ug ¥9eP  pey .+ vy dx . (4)
g1 = Jof(x)dg(x)dx. (5)

The results are summarized in Table 3.

Note that the system (3) 1s linear when p = 2 and the
gaving is a result of only one less computation and factori-
zation of the Jacobian.

It is clear from Table 3 that the saving 1s larger when
elither the dimengion is higher or the number of iterations

is larger,
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