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a b s t r a c t

Several optimal eighth order methods to obtain simple roots are analyzed. The methods are
based on two step, fourth order optimal methods and a third step of modified Newton. The
modification is performed by taking an interpolating polynomial to replace either f ðznÞ or
f 0ðznÞ. In six of the eight methods we have used a Hermite interpolating polynomial. The
other two schemes use inverse interpolation. We discovered that the eighth order methods
based on Jarratt’s optimal fourth order methods perform well and those based on King’s or
Kung–Traub’s methods do not. In all cases tested, the replacement of f ðzÞ by Hermite inter-
polation is better than the replacement of the derivative, f 0ðzÞ.

Published by Elsevier Inc.

1. Introduction

A vast number of different methods have been proposed for the numerical solution of nonlinear equations. The methods
are classified by their order of convergence, p, and the number, d, of function- (and derivative-) evaluation per step. There are
two efficiency measures (see [1]) defined as I ¼ p=d (informational efficiency) and E ¼ p1=d (efficiency index). Another mea-
sure, introduced recently, is the basin of attraction. See Stewart [2], Scott et al. [3], Amat et al. [4–7], Chicharro et al. [8], Chun
et al. [9], Cordero et al. [10], Neta et al. [11], Gutiérrez et al. [12] and for methods to find multiple roots, see Neta et al. [13].

In 1974, Kung and Traub [14] introduced the notion of optimality. They conjectured that multipoint methods without
memory requiring dþ 1 function-evaluations have order of convergence at most 2d. Such methods are usually called optimal
(see, for example, [15]). An optimal method of order p ¼ 2 is the well known Newton’s method. It was discussed by Stewart
[2] and Scott et al. [3] and thus will not be given here. Optimal methods of order four were discussed in [7,9,11]. We have
seen that the best fourth order method is due to Jarratt [16].

In this paper we develop and compare several new optimal methods of order eight. Using the techniques given by
Petković et al. [15], the eighth order methods have been constructed by using optimal fourth order methods followed by
a step of interpolation. Two different forms of the interpolation have been investigated. One where the interpolating
polynomial replaces the function and one where the derivative is replaced. Two of the compared schemes use inverse inter-
polation [18].

In the next section we describe the methods to be considered in this comparative study. Section 3 will give the conjugacy
maps for each method and find the extraneous fixed points (see [17].) We will show the relationship between these maps,
the extraneous fixed points and the basins of attraction in our numerical experiments detailed in Section 4.
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2. Methods for the comparative study

First, we list the eight eighth-order methods we consider here.
Petković et al. [15] have constructed eighth order methods using any optimal fourth order method followed by a step of

interpolation. In the first two methods this idea was combined with Jarratt’s optimal fourth order method [16] to create an
optimal eighth order scheme. In other methods we used inverse interpolation.

I In the first version, denoted by JHID8, we added a Newton-like sub-step and replaced the derivative with a Hermite inter-
polating polynomial. The resulting scheme is of order eight. The method is given by

yn ¼ xn �
2
3

un;

tn ¼ xn �
1
2

un �
1
2

un

1þ 3
2

f 0ðynÞ
f 0n
� 1

� � ;

xnþ1 ¼ tn �
f ðtnÞ

H03ðtnÞ
;

ð1Þ

where

un ¼
fn

f 0n
ð2Þ

and

H03ðtnÞ ¼ 2ðf ½xn; tn� � f ½xn; yn�Þ þ f ½yn; tn� þ
yn � tn

yn � xn
ðf ½xn; yn� � f 0nÞ: ð3Þ

II The second version denoted JHIF8 where the interpolating polynomial replacing the function (instead of derivative) at
the third sub-step is given by

yn ¼ xn �
2
3

un;

tn ¼ xn �
1
2

un �
1
2

un

1þ 3
2

f 0ðynÞ
f 0n
� 1

� � ;

xnþ1 ¼ tn �
H3ðtnÞ
f 0ðtnÞ

;

ð4Þ

where

H3ðtnÞ ¼ fn þ f 0n
ðtn � ynÞ

2ðtn � xnÞ
ðyn � xnÞðxn þ 2yn � 3tnÞ

þ f 0ðtnÞ
ðtn � ynÞðxn � tnÞ

xn þ 2yn � 3tn
� f ½xn; yn�

ðtn � xnÞ3

ðyn � xnÞðxn þ 2yn � 3tnÞ
: ð5Þ

III The next one is using Kung–Traub optimal fourth order [15] and Hermite interpolating polynomial. This is denoted
HKT.

yn ¼ xn � un;

tn ¼ yn �
f ðynÞ

f 0n

1

1� f ðynÞ=fn½ �2
;

xnþ1 ¼ tn �
f ðtnÞ

H03ðtnÞ
;

ð6Þ

where H03ðtnÞ is given by (3).
IV The fourth method is using Hermite interpolating polynomial with King’s fourth order method [20]. This is denoted

HK8:

yn ¼ xn � un;

tn ¼ yn �
f ðynÞ

f 0n

fn þ bf ðynÞ
fn þ ðb� 2Þf ðynÞ

;

xnþ1 ¼ tn �
H3ðtnÞ
f 0ðtnÞ

;

ð7Þ

where H3ðtnÞ is given by (5).
In our experiments we have used b ¼ 3� 2

ffiffiffi
2
p

which is the optimal parameter for King’s method (see [11]).
V Next we took Kung–Traub’s eighth order (KT8) method [14] based on inverse interpolation [18]. It is given by
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yn ¼ xn � un;

tn ¼ yn �
fn

f 0n

f ðynÞfn

fn � f ðynÞ½ �2
;

xnþ1 ¼ tn �
fn

f 0n

fnf ðynÞf ðtnÞ
fn � f ðynÞ½ �2

f 2
n þ f ðynÞ f ðynÞ � f ðtnÞ½ �

fn � f ðtnÞ½ �2 f ðynÞ � f ðtnÞ½ �
;

ð8Þ

where fn ¼ f ðxnÞ and similarly for the derivative.
VI Neta’s eighth order (N8) method [19] is also based on inverse interpolation and given by

yn ¼ xn � un;

tn ¼ yn �
f ðynÞ

f 0n

fn þ bf ðynÞ
fn þ ðb� 2Þf ðynÞ

;

xnþ1 ¼ xn � un þ cf 2
n � qf 3

n ;

ð9Þ

where

q ¼
/y � /t

Fy � Ft
; c ¼ /y � qFy; Fy ¼ f ðynÞ � fn; Ft ¼ f ðtnÞ � fn; /y ¼

yn � xn

F2
y

� 1
Fyf 0n

; /t ¼
tn � xn

F2
t

� 1
Ftf 0n

: ð10Þ

In our experiments we have used b ¼ 3� 2
ffiffiffi
2
p

which is the optimal parameter for King’s method (see [11]). This is different
from method HK8 in that it is using inverse interpolation instead of Hermite interpolating polynomial.

VII The seventh scheme considered is due to Wang and Liu [21]. Here we have the original method denoted by WL

yn ¼ xn � un;

tn ¼ yn �
f ðynÞ

f 0n

fn

fn � 2f ðynÞ
;

xnþ1 ¼ tn �
f ðtnÞ

H03ðtnÞ
;

ð11Þ

where H03ðtnÞ is defined by (3). Note that the first two substeps are Ostrowski’s method [22].
VIII The last scheme, denoted WLN, is similar to the seventh scheme except we replaced the function in the last sub-step

by the Hermite polynomial instead of replacing the derivative.

yn ¼ xn � un;

tn ¼ yn �
f ðynÞ

f 0n

fn

fn � 2f ðynÞ
;

xnþ1 ¼ tn �
H3ðtnÞ
f 0ðtnÞ

;

ð12Þ

where H3ðtnÞ is given by (5).
We will show in all cases tested, the replacement of f ðzÞ by Hermite interpolation is better than the replacement of the deriv-
ative, f 0ðzÞ.

3. Corresponding conjugacy maps for quadratic polynomials

Theorem 3.1 (Hermite based Jarratt optimal eighth order methods, JHID8 and JHIF8). For a rational map RpðzÞ arising from the
method (1) or (4) applied to pðzÞ ¼ ðz� aÞðz� bÞ; a – b; RpðzÞ is conjugate via the Möbius transformation given by MðzÞ ¼ z�a

z�b to

SðzÞ ¼ z8:

Theorem 3.2 (Hermite based Kung–Traub eighth order optimal method, HKT). For a rational map RpðzÞ arising from the method
(6) applied to pðzÞ ¼ ðz� aÞðz� bÞ; a – b; RpðzÞ is conjugate via the Möbius transformation given by MðzÞ ¼ z�a

z�b to

SðzÞ ¼ z8 z4 þ 4z3 þ 8z2 þ 8zþ 4
4z4 þ 8z3 þ 8z2 þ 4zþ 1

:

Theorem 3.3 (Hermite based Neta’s optimal eighth order method, HK8). For a rational map RpðzÞ arising from the method (7)
applied to pðzÞ ¼ ðz� aÞðz� bÞ; a – b; RpðzÞ is conjugate via the Möbius transformation given by MðzÞ ¼ z�a

z�b to

SðzÞ ¼ z8 z4 þ ð2bþ 4Þz3 þ ðb2 þ 8bþ 6Þz2 þ ð4b2 þ 10bþ 4Þzþ ð4b2 þ 4bþ 1Þ
ð4b2 þ 4bþ 1Þz4 þ ð4b2 þ 10bþ 4Þz3 þ ðb2 þ 8bþ 6Þz2 þ ð4þ 2bÞzþ 1
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and for b ¼ 3� 2
ffiffiffi
2
p

Nz ¼ �z4 þ ð�10þ 4
ffiffiffi
2
p
Þz3 þ ð�47þ 28

ffiffiffi
2
p
Þz2 þ ð�102þ 68

ffiffiffi
2
p
Þz� 81þ 56

ffiffiffi
2
p

;

Dz ¼ ð�81þ 56
ffiffiffi
2
p
Þz4 þ ð�102þ 68

ffiffiffi
2
p
Þz3 þ ð�47þ 28

ffiffiffi
2
p
Þz2 þ ð�10þ 4

ffiffiffi
2
p
Þz� 1:

ð13Þ

Theorem 3.4 (Kung–Traub’s optimal eighth order method, KT8). For a rational map RpðzÞ arising from the method (8) applied to
pðzÞ ¼ ðz� aÞðz� bÞ; a – b, RpðzÞ is conjugate via the Möbius transformation given by MðzÞ ¼ z�a

z�b to

SðzÞ ¼ z8 Nz

Dz
;

where

Nz ¼ z16 þ 10z15 þ 52z14 þ 182z13 þ 479z12 þ 1006z11 þ 1749z10 þ 2568z9 þ 3214z8 þ 3432z7 þ 3116z6 þ 2382z5

þ 1506z4 þ 760z3 þ 289z2 þ 74zþ 10:

Dz ¼ 10z16 þ 74z15 þ 289z14 þ 760z13 þ 1506z12 þ 2382z11 þ 3116z10 þ 3432z9 þ 3214z8 þ 2568z7 þ 1749z6

þ 1006z5 þ 479z4 þ 182z3 þ 52z2 þ 10zþ 1:

ð14Þ

Theorem 3.5 (Neta’s optimal eighth order method, N8). For a rational map RpðzÞ arising from the method (9) applied to
pðzÞ ¼ ðz� aÞðz� bÞ; a – b; RpðzÞ is conjugate via the Möbius transformation given by MðzÞ ¼ z�a

z�b to

SðzÞ ¼ z8 Nz

Dz
;

where

Nz ¼ z16 þ ð10þ 3bÞz15 þ ð3b2 þ 30bþ 49Þz14 þ ðb3 þ 30b2 þ 144bþ 158Þz13 þ ð10b3 þ 141b2 þ 450b

þ 380Þz12 þ ð46b3 þ 426b2 þ 1040bþ 732Þz11 þ ð134b3 þ 943b2 þ 1904bþ 1180Þz10 þ ð283b3 þ 1630b2

þ 2872bþ 1630Þz9 þ ð458b3 þ 2269b2 þ 3644bþ 1945Þz8 þ ð576b3 þ 2576b2 þ 3919bþ 2004Þz7

þ ð558b3 þ 2394b2 þ 3566bþ 1778Þz6 þ ð406b3 þ 1810b2 þ 2719bþ 1350Þz5 þ ð212b3 þ 1085b2

þ 1704bþ 861Þz4 þ ð69b3 þ 486b2 þ 848bþ 442Þz3 þ ð10b3 þ 143b2 þ 316bþ 169Þz2 þ ð20b2 þ 79b

þ 42Þzþ ð5þ 10bÞ; ð15Þ

Dz ¼ ð10bþ 5Þz16 þ ð20b2 þ 79bþ 42Þz15 þ ð10b3 þ 143b2 þ 316bþ 169Þz14 þ ð69b3 þ 486b2 þ 848b

þ 442Þz13 þ ð212b3 þ 1085b2 þ 1704bþ 861Þz12 þ ð406b3 þ 1810b2 þ 2719bþ 1350Þz11 þ ð558b3

þ 2394b2 þ 3566bþ 1778Þz10 þ ð576b3 þ 2576b2 þ 3919bþ 2004Þz9 þ ð458b3 þ 2269b2 þ 3644b

þ 1945Þz8 þ ð283b3 þ 1630b2 þ 2872bþ 1630Þz7 þ ð134b3 þ 943b2 þ 1904bþ 1180Þz6 þ ð46b3 þ 426b2

þ 1040bþ 732Þz5 þ ð10b3 þ 141b2 þ 450bþ 380Þz4 þ ðb3 þ 30b2 þ 144bþ 158Þz3 þ ð3b2 þ 30bþ 49Þz2

þ ð3bþ 10Þzþ 1 ð16Þ

and for b ¼ 3� 2
ffiffiffi
2
p

Nz ¼ �z16 þ ð6
ffiffiffi
2
p
� 19Þz15 þ ð96

ffiffiffi
2
p
� 190Þz14 þ ð718

ffiffiffi
2
p
� 1199Þz13 þ ð3292

ffiffiffi
2
p
� 5117Þz12

þ ð�15648þ 10412
ffiffiffi
2
p
Þz11 þ ð24504

ffiffiffi
2
p
� 36189Þz10 þ ð45114

ffiffiffi
2
p
� 65973Þz9 þ ð�96792þ 66576

ffiffiffi
2
p
Þz8

þ ð79070
ffiffiffi
2
p
� 114577Þz7 þ ð74920

ffiffiffi
2
p
� 108416Þz6 þ ð�80471þ 55578

ffiffiffi
2
p
Þz5 þ ð�45406þ 31268

ffiffiffi
2
p
Þz4

þ ð12358
ffiffiffi
2
p
� 18079Þz3 þ ð�4538þ 3048

ffiffiffi
2
p
Þz2 þ ð�619þ 398

ffiffiffi
2
p
Þz� 35þ 20

ffiffiffi
2
p

;

Dz ¼ ð�35þ 20
ffiffiffi
2
p
Þz16 þ ð�619þ 398

ffiffiffi
2
p
Þz15 þ ð�4538þ 3048

ffiffiffi
2
p
Þz14 þ ð12358

ffiffiffi
2
p
� 18079Þz13

þ ð�45406þ 31268
ffiffiffi
2
p
Þz12 þ ð�80471þ 55578

ffiffiffi
2
p
Þz11 þ ð74920

ffiffiffi
2
p
� 108416Þz10

þ ð79070
ffiffiffi
2
p
� 114577Þz9 þ ð�96792þ 66576

ffiffiffi
2
p
Þz8 þ ð45114

ffiffiffi
2
p
� 65973Þz7

þ ð24504
ffiffiffi
2
p
� 36189Þz6 þ ð�15648þ 10412

ffiffiffi
2
p
Þz5 þ ð3292

ffiffiffi
2
p
� 5117Þz4 þ ð718

ffiffiffi
2
p
� 1199Þz3

þ ð96
ffiffiffi
2
p
� 190Þz2 þ ð6

ffiffiffi
2
p
� 19Þz� 1:

ð17Þ

570 B. Neta et al. / Applied Mathematics and Computation 227 (2014) 567–592



Author's personal copy

Theorem 3.6 (Wang–Liu eighth order optimal methods, WL and WLN). For a rational map RpðzÞ arising from the method (11) or
(12) applied to pðzÞ ¼ ðz� aÞðz� bÞ; a – b, RpðzÞ is conjugate via the Möbius transformation given by MðzÞ ¼ z�a

z�b to

SðzÞ ¼ z8:

Note that the maps are of the form SðzÞ ¼ zpRðzÞ where RðzÞ is either unity or a rational function.

3.1. Extraneous fixed points

Note that all these methods can be written as

xnþ1 ¼ xn � unHf ðxn; yn; tnÞ:

Clearly the root a is a fixed point of the method, since unðaÞ ¼ 0. The points n – a at which Hf ðnÞ ¼ 0 are also fixed points of
the method, since the second term on the right vanishes. These points are called extraneous fixed points (see [17]). The fixed
point n is attractive, indifferent or repulsive depending on whether jR0pðnÞj is less than, equal or greater than one, where
RpðzÞ ¼ z� uðzÞHf ðz; yðzÞ; tðzÞÞ is the iteration function.

Theorem 3.7. The extraneous fixed points of Hermite based Jarratt’s eighth-order method (1) are at z ¼ 1:1504�
:53936i; z ¼ :5782� :36400i; z ¼ �:015795� :254898i; z ¼ �:57950� :05708. All fixed points are repulsive.

The simple poles are at z ¼ �:56520; z ¼ :78260� :52171i; z ¼ :71745� :29499i; z ¼ �:10446� :50454i, and z ¼
�:62598.

Theorem 3.8. The extraneous fixed points of Hermite based Jarratt’s eighth-order method (4) are at
z ¼ :2282434731i; z ¼ �2:0765213397i, and z ¼ �:7974733886i. All fixed points are repulsive.

The simple poles are at z ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3� 2

ffiffiffi
2
pp

i, and z ¼ �i.

Theorem 3.9. The extraneous fixed points of Hermite based Kung–Traub’s eighth-order method (HKT) are at z ¼ �:48401�
:093413i; z ¼ �:25752� :37992i; z ¼ �:19422� :48532i; z ¼ :21106� :36453i; z ¼ :26123� :49043i; z ¼ :36073;
z ¼ :40745� :92157i, and at z ¼ 4:89416. All fixed points are repulsive.

The simple poles are at z ¼ �:59234; z ¼ �:20254� :45776i; z ¼ :24924� :38692i; z ¼ :34385� :89384i; z ¼ 4:95411,
and the double poles are at z ¼ 0; �

ffiffi
3
p

3 .

Theorem 3.10. The extraneous fixed points of HK8 (7) are at the roots of a polynomial Q 10 of degree 10 in z2 (assuming
b ¼ 3� 2

ffiffiffi
2
p

)

Q 10ðzÞ ¼ ð�740
ffiffiffi
2
p
þ 1183Þz10 þ ð501þ 68

ffiffiffi
2
p
Þz8 þ ð1176

ffiffiffi
2
p
� 1386Þz6 þ ð�632

ffiffiffi
2
p
þ 906Þz4 þ ð140

ffiffiffi
2
p
� 197Þz2

� 12
ffiffiffi
2
p
þ 17

For b ¼ 3� 2
ffiffiffi
2
p

we get the fixed points at z ¼ �:166892805671862� :175488988836070i; z ¼ �1:96330530862513i; z ¼
�:693658358342116i, and z ¼ �:183870724371883i.

The poles are at z ¼ �:9175962359i; z ¼ �2:305351882i; z ¼ �:1159903203� :2666600162i, and z ¼ 0. The last one is of
multiplicity 2.

All fixed points are repulsive.

Theorem 3.11. The extraneous fixed points of Kung–Traub’s eighth-order method (KT8) are at the roots of a polynomial Q 22 of
degree 22 in z2

Q 22ðzÞ ¼ 56239z22 þ 281123z20 þ 593633z18 þ 617605z16 þ 355510z14 þ 144926z12 þ 38978z10 þ 7850z8 þ 1131z6

þ 143z4 þ 13z2 þ 1

These extraneous fixed points are at z ¼ �:29669� :22853i; z ¼ �:33580� :51558i; z ¼ �:18588� :38359i; z ¼ �:19607
�:42724i; z ¼ �:38347� 1:30296i, and z ¼ �1:072134i.

The poles are at z ¼ �1:17799i, and z ¼ �:23449� :34932i; z ¼ �1:56402i; z ¼ �:23194� :43343i and z ¼ �
ffiffi
3
p

3 i. The first
6 are simple and the last 8 are double.

Theorem 3.12. The extraneous fixed points of Neta’s eighth-order method (N8) are at the roots of a polynomial Q10 of degree 5 in
z2 (assuming b ¼ 3� 2

ffiffiffi
2
p

)

B. Neta et al. / Applied Mathematics and Computation 227 (2014) 567–592 571
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Q10ðzÞ ¼ 304289z10 þ ð693323þ 451184
ffiffiffi
2
p
Þz8 þ ð100842þ 365568

ffiffiffi
2
p
Þz6 þ ð136438� 77216

ffiffiffi
2
p
Þz4 þ ð�25851

þ 19840
ffiffiffi
2
p
Þz2 þ 2351� 1616

ffiffiffi
2
p

For b ¼ 3� 2
ffiffiffi
2
p

we get the fixed points at z ¼ �:166892799425929� :175488993956276i; z ¼ �:183870699530320i; z ¼
�:693658359731125i and z ¼ �1:96330530989740i.

The poles are at z ¼ �:9175962359i; z ¼ �2:305351882i and z ¼ �:1159903203� :2666600162i.
All fixed points are repulsive.

Theorem 3.13. There are no extraneous fixed points of Wang–Liu’s eighth-order method (WL).

Theorem 3.14. The extraneous fixed points of second version of Wang–Liu’s eighth-order method (WLN) are at
z ¼ :2282434731i; z ¼ �2:0765213397i, and z ¼ �:7974733886i. All fixed points are repulsive.

The simple poles are at z ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3� 2

ffiffiffi
2
pp

i, and z ¼ �i. These are identical to those of method JHIF8.

4. Numerical experiments

� Example 1
In our first experiment, we have run all the methods to obtain the real simple zeros of the quadratic polynomial z2 � 1.
The results of the basins of attraction are given in Figs. 1–8.

Fig. 2. JHIF8. The results are for the polynomial z2 � 1.

Fig. 1. JHID8. The results are for the polynomial z2 � 1.
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Fig. 3. HKT. The results are for the polynomial z2 � 1.

Fig. 4. HK8. The results are for the polynomial z2 � 1.

Fig. 5. KT8. The results are for the polynomial z2 � 1.
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Fig. 6. N8. The results are for the polynomial z2 � 1.

Fig. 7. WL. The results are for the polynomial z2 � 1.

Fig. 8. WLN. The results are for the polynomial z2 � 1.
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Fig. 9. JHID8. The results are for the polynomial z3 � 1.

Fig. 10. JHIF8. The results are for the polynomial z3 � 1.

Fig. 11. HKT. The results are for the polynomial z3 � 1.

B. Neta et al. / Applied Mathematics and Computation 227 (2014) 567–592 575



Author's personal copy

Fig. 12. HK8. The results are for the polynomial z3 � 1.

Fig. 13. KT8. The results are for the polynomial z3 � 1.

Fig. 14. N8. The results are for the polynomial z3 � 1.
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Fig. 15. WL. The results are for the polynomial z3 � 1.

Fig. 16. WLN. The results are for the polynomial z3 � 1.

Fig. 17. JHID8. The results are for the polynomial z3 � z.
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Fig. 18. JHIF8. The results are for the polynomial z3 � z.

Fig. 19. HKT. The results are for the polynomial z3 � z.

Fig. 20. HK8. The results are for the polynomial z3 � z.
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Fig. 21. KT8. The results are for the polynomial z3 � z.

Fig. 22. N8. The results are for the polynomial z3 � z.

Fig. 23. WL. The results are for the polynomial z3 � z.
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Fig. 24. WLN. The results are for the polynomial z3 � z.

Fig. 25. JHID8. The results are for the polynomial z4 � 10z2 þ 9.

Fig. 26. JHIF8. The results are for the polynomial z4 � 10z2 þ 9.
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Fig. 27. HKT. The results are for the polynomial z4 � 10z2 þ 9.

Fig. 28. HK8. The results are for the polynomial z4 � 10z2 þ 9.

Fig. 29. KT8. The results are for the polynomial z4 � 10z2 þ 9.
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Fig. 30. N8. The results are for the polynomial z4 � 10z2 þ 9.

Fig. 31. WL. The results are for the polynomial z4 � 10z2 þ 9.

Fig. 32. WLN. The results are for the polynomial z4 � 10z2 þ 9.
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Fig. 33. JHID8. The results are for the polynomial z5 � 1.

Fig. 34. JHIF8. The results are for the polynomial z5 � 1.

Fig. 35. HKT. The results are for the polynomial z5 � 1.
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Fig. 36. HK8. The results are for the polynomial z5 � 1.

Fig. 37. KT8. The results are for the polynomial z5 � 1.

Fig. 38. N8. The results are for the polynomial z5 � 1.
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Fig. 39. WL. The results are for the polynomial z5 � 1.

Fig. 40. WLN. The results are for the polynomial z5 � 1.

Fig. 41. JHID8. The results are for the polynomial z6 � 1
2 z5 þ 11ðiþ1Þ

4 z4 � 3iþ19
4 z3 þ 5iþ11

4 z2 þ i�11
4 zþ 3

2� 3i.
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Fig. 42. JHIF8. The results are for the polynomial z6 � 1
2 z5 þ 11ðiþ1Þ

4 z4 � 3iþ19
4 z3 þ 5iþ11

4 z2 þ i�11
4 zþ 3

2� 3i.

Fig. 43. HKT. The results are for the polynomial z6 � 1
2 z5 þ 11ðiþ1Þ

4 z4 � 3iþ19
4 z3 þ 5iþ11

4 z2 þ i�11
4 zþ 3

2� 3i.

Fig. 44. HK8. The results are for the polynomial z6 � 1
2 z5 þ 11ðiþ1Þ

4 z4 � 3iþ19
4 z3 þ 5iþ11

4 z2 þ i�11
4 zþ 3

2� 3i.
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Fig. 45. KT8. The results are for the polynomial z6 � 1
2 z5 þ 11ðiþ1Þ

4 z4 � 3iþ19
4 z3 þ 5iþ11

4 z2 þ i�11
4 zþ 3

2� 3i.

Fig. 46. N8. The results are for the polynomial z6 � 1
2 z5 þ 11ðiþ1Þ

4 z4 � 3iþ19
4 z3 þ 5iþ11

4 z2 þ i�11
4 zþ 3

2� 3i.

Fig. 47. WL. The results are for the polynomial z6 � 1
2 z5 þ 11ðiþ1Þ

4 z4 � 3iþ19
4 z3 þ 5iþ11

4 z2 þ i�11
4 zþ 3

2� 3i.
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Fig. 48. WLN. The results are for the polynomial z6 � 1
2 z5 þ 11ðiþ1Þ

4 z4 � 3iþ19
4 z3 þ 5iþ11

4 z2 þ i�11
4 zþ 3

2� 3i.

Fig. 49. JHID8. The results are for the polynomial z7 � 1.

Fig. 50. JHIF8. The results are for the polynomial z7 � 1.
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Fig. 51. HKT. The results are for the polynomial z7 � 1.

Fig. 52. HK8. The results are for the polynomial z7 � 1.

Fig. 53. KT8. The results are for the polynomial z7 � 1.
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Fig. 54. N8. The results are for the polynomial z7 � 1.

Fig. 55. WL. The results are for the polynomial z7 � 1.

Fig. 56. WLN. The results are for the polynomial z7 � 1.
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Notice that the two methods based on Jarratt’s method shown in Figs. 1,2 and the modified Wang–Liu’s method (WLN,
Fig. 8) perform best. Kung–Traub’s method (Fig. 5), Neta’s method (Fig. 6) and Wang–Liu’s method (Fig. 7) have black dots
which means that the methods did not converge in 40 iterations starting at those points. Kung–Traub’s method has
regions along the imaginary axis, which are all solidly black. The second version of Wang–Liu (Fig. 8) does not have
the black dots, which we have seen in Wang–Liu’s method.
� Example 2

In our next experiment we have taken the cubic polynomial z3 � 1. The results are given in Figs. 9–16. Again the results in
Figs. 9, 10 and 16 are best. The other methods are all having black regions.
� Example 3

The results for the cubic polynomial z3 � z are given in Figs. 17–24. The best methods are again JHID8 (Fig. 17), JHIF8
(Fig. 18) and WLN (Fig. 24).
� Example 4

Figs. 25–32 show the results for the polynomial z4 � 10z2 þ 9. Again the best results are using JHID8 (Fig. 25), JHIF8
(Fig. 26) and WLN (Fig. 32). In this case even the original Wang–Liu (Fig. 31) performed very well.
� Example 5

The fifth order polynomial, z5 � 1, results are shown in Figs. 33–40. Here only JHIF8 (Fig. 34) and WLN (Fig. 40) perform
best. All other methods suffer from slow convergence.
� Example 6

The next example is for a polynomial of degree 6 with complex coefficients, z6 � 1
2 z5 þ 11ðiþ1Þ

4 z4 � 3iþ19
4 z3 þ 5iþ11

4 z2þ
i�11

4 zþ 3
2� 3i. The results are presented in Figs. 41–48. The results are similar to Example 3.

� Example 7
The last example for a polynomial of degree 7, z7 � 1. The results are presented in Figs. 49–56. In this case all methods
have black dots. But the number of those is the smallest for all the methods JHID8, JHIF8 and WLN.

5. Conclusions

We have produced several new eighth order methods by starting with some well-known fourth order methods and added
a Newton-like third step. In that third step, we investigated replacing the derivative or the function with a Hermite interpo-
lating polynomial. Two of the schemes (KT8 and N8) use inverse interpolation in the third sub-step. In all cases based on
Hermite interpolating polynomials, we found the replacement of the function performed much better than by replacing
the derivative. In addition, we found that the new eighth order Jarratt type methods and the modified Wang and Liu method
performed the best while those methods based on King’s method were the worst, even with the best choice of beta. Methods
KT8 and N8, based on inverse interpolation, performed poorly in all seven examples.
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