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a b s t r a c t

High-order non-reflecting boundary conditions are introduced to create a finite computa-
tional space and for the solution of dispersive waves using a spectral element formulation
with high-order time integration. Numerical examples are used to demonstrate the syn-
ergy of using high-order spatial, time, and boundary discretization. We show that by bal-
ancing all numerical errors involved, high-order accuracy can be achieved for unbounded
domain problems in polar coordinate systems.

Published by Elsevier Inc.

1. Introduction

The numerical solution of a wave propagation problem in a very large or unbounded domain provides a challenging com-
putational difficulty – namely, solving the problem on a finite computational domain while maintaining the true essence of
the solution. One of the modern techniques that has garnered a significant amount of attention in handling this challenge is
the absorbing or non-reflecting boundary condition (NRBC) method. In using this method, the original infinite domain is
truncated by an artificial boundary B, resulting in a finite computational domain X and the residual domain D.

When truncating the domain, the modeler must devise boundary conditions for the truncated domain. Of course, by
imposing a boundary where one does not physically exist, the problem is changed – and unless chosen carefully, would cer-
tainly be expected to pollute the solution as the problem evolves and impinges on the boundary. For this reason, much effort
has and continues to be exerted on finding stable, efficient, accurate and practical means of reducing this reflection through
so-called NRBCs [1].

Several high-order NRBCs have been devised to reduce spurious reflections that would pollute the solution. Beginning in
the late 1980’s, the well-known Engquist–Majda [2] and Bayliss–Turkel conditions [3] gave way to Collino’s [4] low deriv-
ative, auxiliary variable formulation for the 2D scalar wave equation. This sparked a flurry of activity in an effort to find qual-
ity, high-order NRBCs that were easily implementable. See [5,6] for reviews on the subject. See also Higdon’s papers [7,8],
Givoli–Neta [9,10] and Neta et al. [11].

The Givoli–Neta (G–N) auxiliary formulation of the Higdon NRBC was implemented on a reduced form of the linearized
shallow water equations (SWE) under non-zero advection. This formulation has been previously demonstrated in a finite dif-
ference formulation to arbitrarily high NRBC order [12], however, accuracy gains realized by increasing the NRBC ceased after
order 2. The formulation used by Lindquist et al. [13] remedied this limitation by using a high-order treatment of space (SE)
and time (Runge–Kutta) to show the benefits of using the high-order boundary (G–N) scheme. Spectral elements methods
used recently by Mitra and Gopalakrishnan [14] and Vinod et al. [15] to solve wave propagation problem and by Dorao and
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Jakobsen [16] for incompressible flow. Tohumoglu [17] has applied spectral analysis for periodically time varying discrete
time systems.

In this paper, the interior and boundary formulations are discretized using high-order basis functions in a stable, equal-
order interpolation scheme for all the variables (this does not violate the inf–sup condition). High-order time integration is
performed as well in an effort to balance all of the errors involved with the numerical solution. The computational effort
associated with the high-order boundary scheme can be shown to grow only linearly with the order [18].

It should be noted that the only other spectral element, high-order boundary approach are Kucherov and Givoli [19] and
Lindquist et al. [20,13]. Kucherov and Givoli demonstrate exponential error convergence of the classical wave equation on a
semi-infinite channel when solved using spectral elements and high order boundary treatment (using the H–W boundary
scheme). They further show how the spectral element formulation allows the NRBC to realize its true potential, prior masked
by low order numerical schemes. They note that, ‘‘Although it is generally felt that there is no need to treat the time domain
‘spectrally’ like the spatial domain, [they] feel that a consistently high-order treatment requires that the entire approxima-
tion be spectral, i.e. the convergence of all three types of error – the spatial and temporal discretization errors and the ABC
error – be exponential.’’ [19].

Subsequent spectral element and boundary work by the current authors [20] using the G–N formulation of the dispersive
wave equation on a semi-infinite channel showed similar results to those presented by Kucherov and Givoli and how a high-
order treatment of the time domain (up to order 10) produces additional improvements. These improvements, however,
have their limits thus confirming the hypothesis of Kucherov and Givoli. The key difference in that work is that we extend
the high order space, boundary and time integration results previously demonstrated in a non-zero advection setting to one
where the wave medium is not at rest.

The early work with auxiliary variables in Cartesian coordinates encounters a difficulty at the corners. This was alleviated
in the case of the wave equation. This remedy was not possible when one includes dispersion. In order to avoid corners, Lind-
quist [21] has considered several possibilities and arrived at the conclusion that the best possibility is to use cylindrical or
spherical coordinate systems. In the case of cylindrical or spherical coordinate systems, one cannot use the auxiliary func-
tions suggested for the Cartesian coordinate system. The reason is that only in the latter the coefficients are constant. To
overcome this, van Joolen et al. [22] extended the Hagstrom–Hariharan (HH) conditions to dispersive media. Here we show
how to implement this idea. The following is the outline of the rest of this paper. In Section 2, the problem under investi-
gation is stated. In Section 3, an overview of the auxiliary formulation is presented. In Section 4, a SE semi-discrete formu-
lation that incorporates the NRBC with any desired order is constructed. In Section 5 the time-integrator used to March the
equations in time is discussed. The performance of the method is demonstrated in Section 6 via numerical examples.

2. Statement of the problem

To motivate the problem under consideration, consider the SWE (see e.g. [23]):

@tuþ u@xuþ v@yu� f v ¼ �g@xh;

@tv þ u@xv þ v@yv þ fu ¼ �g@yh;

@thþ @xðHuÞ þ @yðHvÞ ¼ 0:
ð1Þ

We use the following shorthand for partial derivatives

@i
a ¼

@i

@ai
:

The shallow water model in its current form is non-linear. We have three state variables: u(x,y, t) and v(x,y, t) are the un-
known velocities in the x and y directions and h(x,y, t) is the water depth above a reference value. Further, H is the water
depth as shown in Fig. 1 such that H = hB + h, f is the Coriolis parameter, and g is the gravity acceleration.

Now, suppose that the bottom topography is flat such that hB is constant and u and v can be described by a constant mean
term and a small O(d) deviation from that value, i.e.

u ¼ U þ u� v ¼ V þ v�:

To be clear, U and V are the mean velocities with respect to the coordinate axes. Using these substitutions and neglecting any
O(d2) terms results in the linearized form of the SWE:

@tu� þ U@xu� þ V@yu� � f ðV þ v�Þ ¼ �g@xh;

@tv� þ U@xv� þ V@yv� þ f ðU þ u�Þ ¼ �g@yh;

@thþ U@xhþ V@yhþ hBð@xu� þ @yv�Þ ¼ 0:
ð2Þ

van Joolen shows in [24], how, using the operator:

D
Dt
¼ @

@t
þ U

@

@x
þ V

@

@y
;
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the SWE can be reduced to a single variable Klein Gordon equation (KGE) equivalent for the wave perturbation h under non-
zero, constant advection velocities U and V. Once h has been found, the unknown velocities can be computed in a similar
manner (see [23] for details). The current paper seeks to numerically solve this two-dimensional advective, dispersive wave
equation:

@2
t hþ U2 � C2

0

� �
@2

x hþ V2 � C2
0

� �
@2

yhþ 2U@2
xthþ 2V@2

ythþ 2UV@2
xyhþ f 2h ¼ 0; ð3Þ

where C2
0 ¼ gH, using continuous Galerkin methods.

While the assumptions for this reduced form of the SWE may undermine the predictive capability of the already simpli-
fied equations of fluid motion, the advective KGE serves as an important test-bed to extend and improve non-reflecting
boundary conditions for wave propagation in a non-static environment. When shown to improve performance in test cases
as those presented here, these conditions will then be extended to the full linearized SWE system and further to include non-
linear effects.

3. Hagstrom and Hariharan auxiliary variable formulation

The boundary condition devised by Hagstrom and Hariharan [25] provides a systematic approach for constructing bound-
ary conditions for the standard two-dimensional wave equation. The condition is based on the asymptotic series represen-
tation (which does not converge at any fixed radius) for an outgoing solution of the wave equation (in polar coordinates)

1
c2

0

@2h
@t2 ¼

@2h
@r2 þ

1
r
@h
@r
þ 1

r2

@2h

@h2 : ð4Þ

Since the boundary condition is asymptotic by nature, valid for large radial distances – this implies that larger radial dis-
tances should provide better NRBC convergence. Thompson et al. make the observation that ‘‘. . . for practical problems, trun-
cating the asymptotic expansion after [J] terms provides solutions with errors well below that of the discretization error’’
[26]. Here, we seek to significantly reduce the discretization error by employing spectral elements to find the true error con-
vergence properties of the NRBC. In developing the boundary condition, Hagstrom and Hariharan construct a sequence of
operators that approximately annihilate the residual of the preceding element in the sequence, viewed as a function on
the artificial boundary. The sequence begins with a first-order Bayliss–Turkel operator discussed in [3]. The boundary con-
dition takes the form:

@h
@r
¼ /1 �

1
c0

@h
@t
� 1

2r
h; ð5Þ

/jþ1 ¼
1
c0

@/j

@t
þ j

r
/j �

j� 1
2

� �2

4r2 /j�1 �
1

4r2

@2/j�1

@h2 ; j ¼ 1; . . . ; J � 1; ð6Þ

where

/0 � 2h and /J � 0:

At first glance, this boundary formulation suggests that we should develop a ‘‘new’’ spectral element formulation for the
wave equation cast in polar coordinates. If we did this, however, we would then require a polar grid that would introduce
additional complications such as the method of dealing with the degenerate quadrilaterals that inevitably occur at the center

Fig. 1. The shallow water model with irregular bottom topography. Adapted from [23, p. 58].
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of the grid. Of course there are ways to overcome these obstacles, but it would be much more convenient to cast the problem
in the same framework already developed. In other words, we seek to implement this boundary condition (presented in po-
lar form) in our unstructured quadrilateral formulation of the wave equation (in Cartesian form).

4. Spectral element method

The spectral element (SE) method is a generalized high-order finite element method where the integration and interpo-
lation points are selected carefully in order to yield accurate but efficient solutions. For this problem, we will discuss two
formulations – one for the interior and one for implementing the boundary conditions.

4.1. Interior formulation

First, consider the two-dimensional wave equation (same formulation as presented in (3) with U = V = 0)

@2h
@t2 � c2

0r2hþ f 2h ¼ 0: ð7Þ

Multiplying by the test functions Wi and integrating over the circular domain yields the weak integral formZ
X

Wi
@2h
@t2 dX� c2

0

Z
X

Wir2hdXþ
Z

X
Wif 2hdX ¼ 0:

Transferring the second order spatial derivatives from h to the basis functions via integration by parts and applying the
divergence theorem to recast one surface integral term as a boundary integral gives usZ

X
Wi
@2h
@t2 dX� c2

0

Z
C

Wi~n � rhdCþ c2
0

Z
X
rWi � rhdXþ

Z
X

Wif 2hdX ¼ 0: ð8Þ

Of note now is that the boundary condition (5) contains a radial derivatives of h that on the circle is precisely the normal
derivative ~n � rh. This allows direct implementation of the boundary condition into (8) as follows:Z

X
Wi
@2h
@t2 dX� c2

0

Z
C

Wi /1 �
1
c0

@h
@t
� 1

2r
h

� �
dCþ c2

0

Z
X
rWi � rhdXþ

Z
X

Wif 2hdX ¼ 0: ð9Þ

Here, since on the boundary the radius is fixed, the 1
2r term may be treated as a constant.

A similar weak form is constructed for the boundary formulation by multiplying (6) by the test functions fi and integrat-
ing over C yielding (after by integration by parts):

1
c0

Z
C

fi
@/j

@t
dCþ j

r

Z
C

fi/jdC�
j� 1

2

� �2

4r2

Z
C

fi/j�1dC� 1
4r2 fi

@/j�1

@h

����end

start

þ 1
4r2

Z
C

@fi

@h

@/j�1

@h
dC

¼
Z

C
fi/jþ1dC; j ¼ 1;2; . . . ; J � 1; ð10Þ

where /0 = h. We now use the fact that the boundary is continuous and closed to surmise that the endpoint evaluation term
vanishes. The formal problem statement is then: Find h 2 V and /j 2 VC where j = 1, . . . , J�1, such that Eqs. (9) and (10) are
satisfied 8Wi 2 V and fi 2 VC. Here, the finite-dimensional spectral element spaces (the discrete representations of V and VC)
are defined as follows

VN ¼ fW 2 H1ðXÞ : W 2 PNðIÞ; e ¼ 1; . . . ;Neg;

where

PNðIÞ ¼ spanfnngmjm;n 6 N; ðn;gÞ 2 Ig; N P 1

and I is the unit square.

4.2. Galerkin expansion

We now turn our attention to the spatial discretization. First, we expand the solution variables h and /j using the basis
functions as follows:

hN ¼
XNp

k¼1

Wkhk
; /jN ¼

XNb

k¼1

fk/
k
j ; j ¼ 1;2; . . . ; J � 1: ð11Þ

Here, Np refers to the number of points that X is discretized into and Nb refers to the number of points that C is discretized
into. Next, we substitute these basis function expansions directly into the weak forms, resulting in the following matrix form
of the problem:
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M€h ¼ A _hþ Bhþ C/1; ð12Þ

where

A ¼ c0B;

B ¼ � c2
0Lþ c2

0

2r
Bþ f 2M

� �
;

C ¼ c2
0B;

ð13Þ

Mik ¼
Z

X
WiWkdX Bik ¼

Z
C

WiWkdC;

Lik ¼
Z

X
rWirWkdX Aik ¼

Z
C
WifkdC:

If we examine the boundary auxiliary variable formulation (10) we see that the selection of appropriate Cj values for the
auxiliary variables has not yet been addressed.

It should be noted that van Joolen et al. [27] show that any choice of Cj is guaranteed to reduce spurious reflection as the
order of the NRBC (J) increases. While we omit the details here, the core of this argument is the computation of a so-called
reflection coefficient that is a product of J factors, each of which are less than one. The reflection caused by the artificial
boundary must decrease as the order of the NRBC increases. They note, ‘‘Of course, a good choice for the Cj would lead to
better accuracy with a lower order J, but even if the ‘wrong’ Cj’s are taken . . . one is still guaranteed to reduce the spurious
reflection as the order J increases. [27, p. 1045].

If we now collect the terms on the left and right, we get the matrix form of the problem:

E _U ¼ FUþ �h; ð14Þ

where

Mb
ik ¼

Z
C

fifkdC lb
ik ¼

Z
C

f0if
0
kdC;

E ¼

1
c0

Mb 0 . . . 0

0 1
c0

Mb . . . 0

..

. ..
. . .

. ..
.

0 0 0 1
c0

Mb

0
BBBBBB@

1
CCCCCCA;

F ¼

1
r Mb �Mb 0 . . . 0

1
4r2

1
4 Mb � l
� �

2
r Mb �Mb . . . 0

..

. . .
. . .

. . .
. ..

.

0 0 1
4r2 J � 3

2

� �2Mb � l
� �

J�2
r Mb �Mb

0 0 0 1
4r2 J � 1

2

� �2Mb � l
� �

J�1
r Mb

0
BBBBBBBBBB@

1
CCCCCCCCCCA
;

U ¼

/1

/2

..

.

/J�1

0
BBBB@

1
CCCCA; _U ¼

_/1

_/2

..

.

_/J�1

0
BBBBB@

1
CCCCCA and �h ¼

1
4r2

1
4 Mb � l
� �

0
..
.

0

0
BBBBB@

1
CCCCCA:

4.3. Time integration

The formulation outlined in (12) and (14) constitute a system of coupled ODEs that must be solved to yield a solution for
h(x,y, t). Since the goal of this analysis is to uncover the ‘‘true’’ gains made by high-order boundary treatment, it is possible
that any high-order treatment of the boundary and spatial discretization without considering a high-order treatment of the
temporal component could mask gains made by a high-order boundary treatment. For this purpose, our approach uses stan-
dard kth order Runge–Kutta (RK) methods (up to order 10) to integrate the system in time.

The set-up of this scheme is a standard one, namely, the second order system is expanded to a larger system of first order
ODEs, then solved appropriately using the associated RK tableau. For most cases in this analysis (unless otherwise stated)
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time integration is performed using a 4th order RK scheme using a time-step chosen to ensure a Courant number of 0.25,
where the Courant number is defined:

Courant number ¼ C0Dtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðDxÞ2 þ ðDyÞ2

q :

Here, Dx and Dy are chosen as the minimum distance between any two points in the x- or y-directions respectively. Addi-
tionally, This choice is made since the interpolation points are not uniformly distributed when using spectral elements.

4.4. Results for the HH formulation

A series of experiments was conducted to determine the effect of the HH boundary condition for various SE and NRBC
orders. Since the formulation is designed for circular boundaries, we consider only circular boundaries with unstructured
grids. In each case, we choose the number of elements to yield approximately 3000 global points. We take a smooth,
two-dimensional ‘‘oval-shaped’’ initial condition with shape parameters rx ¼ 1

2 ; ry ¼ 1
3, further rotated by an angle of

h ¼ p
6. The initial condition used here is:

hðx; y;0Þ ¼ e�ðax2þ2bxyþcy2Þ; _hðx; y;0Þ ¼ 0: ð15Þ

Here, the parameters a, b, and c are defined as follows:

a ¼ cos2 h
2r2

x
þ sin2 h

2r2
y

b ¼ � sin 2h
4r2

x
þ sin 2h

4r2
y

c ¼ sin2 h
2r2

x
þ cos2 h

2r2
y
: ð16Þ

Again, the solution is compared to one computed on a larger domain allowing the wave to propagate out of the NRBC domain
but not yet impinge on the non-physical boundary used to compute the solution on the larger domain. Qualitative results are
shown in Fig. 2 and quantitative L2

X errors are shown for various NRBC orders for SE orders up to 6 in Table 2. No further
improvement was observed for SE orders above order 6.
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(d) NRBC J = 4 ( t = 1)
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(e) NRBC J = 4 ( t = 2)

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x

y

−0.1 −0.05 0 0.05 0.1

(f ) NRBC J = 4 ( t = 3)

Fig. 2. Open domain, 4th order spectral elements (J = 4) using oblique Gaussian initial condition shown for t = 1,2,3. Top plots: contour plots of reference
solution solved on extended domain. Superimposed black circle indicates NRBC domain. Bottom plots: contour plots of various NRBC boundary
configurations using J = 4.
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4.5. Adjustments to HH to include mild dispersion

The unstructured grid (see e.g. Fig. 3) representation of the HH formulation has been demonstrated to significantly re-
duce reflection caused by the boundary for the standard wave equation. The question now arises, can this formulation
be extended to include dispersive effects such as Coriolis? In [22], van Joolen et al. presented a method to extend the HH
formulation for the standard wave equation under mild dispersion. While this formulation was well grounded mathemat-
ically it was never implemented. A brief synopsis of their derivation follows with results presented for mild dispersion
where f2 = 0.1.

We first consider the KGE without advection (in polar coordinates as in the HH derivation):

1
c2

0

@2h
@t2 ¼

@2h
@r2 þ

1
r
@h
@r
þ 1

r2

@2h

@h2 �
f 2

c2
0

h: ð17Þ

As has been previously discussed, in the geophysical context, the dispersion parameter is typically small. We assume here
that

f
c0K
� 1; ð18Þ

where K is a typical wave number appearing in the solution. Now, apply the Fourier transform to (4) and (17) in time to yield:

x2

c2
0

ĥþ @
2ĥ
@r2 þ

1
r
@ĥ
@r
þ 1

r2

@2ĥ

@h2 ¼ 0 Wave;

x2

c2
0

� f 2

c2
0

� �
ĥþ @

2ĥ
@r2 þ

1
r
@ĥ
@r
þ 1

r2

@2ĥ

@h2 ¼ 0 Klein—Gordon;

where x is the frequency and ĥ is the frequency domain representation of h. In both cases, we obtain the Helmholtz
equation:

K2ĥþ @
2ĥ
@r2 þ

1
r
@ĥ
@r
þ 1

r2

@2ĥ

@h2 ¼ 0:

In the non-dispersive case, K ¼ x
c0
� K and K ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2 � f 2

c2
0

r
in the dispersive case. In order to facilitate the conversion back to the

time domain, we now consider a Taylor series approximation to the square root term found in the dispersive case, i.e.,ffiffiffiffiffiffiffiffiffiffiffi
1� x
p

¼ 1� 1
2

xþ Oðx2Þ:

Provided that x is small, we can truncate the O(x2) terms. In our case, from (18) we can reasonably make this assumption
yielding for the dispersive case:

Fig. 3. Unstructured grid.
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K
K
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f 2

c2
0K2

s
� 1� f 2

2c2
0K2 ) K � K � f 2

2c2
0K

:

We now see that in the frequency domain, an equation valid in the non-dispersive case is valid in the dispersive case if we
make the replacement:

K !
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2 � f 2

c2
0

s
� K � f 2

2c2
0K

: ð19Þ

We now turn our attention to the boundary condition (5) and (6) that we Fourier transform in time to yield:

� iKĥþ @ĥ
@r
þ 1

2r
ĥ ¼ /̂1; ð20Þ

� iK/̂j þ
j
r
/̂j �

j� 1
2

� �2

4r2 /̂j�1 �
1

4r2

@2/̂j�1

@h2 ¼ /̂jþ1; j ¼ 1; . . . ; J � 1: ð21Þ

Making the substitution (19), we obtain the dispersive version of the HH formulation in the frequency domain, i.e.,

� iKĥþ if 2

2c2
0K

ĥþ @ĥ
@r
þ 1

2r
ĥ ¼ /̂1;

� iK/̂j þ
if 2

2c2
0K

/̂j þ
j
r
/̂j �

j� 1
2

� �2

4r2 /̂j�1 �
1

4r2

@2/̂j�1

@h2 ¼ /̂jþ1; j ¼ 1; . . . ; J � 1:

Transforming these equations back into the time domain results in the final HH boundary formulation for the KGE:

1
c0

@h
@t
þ f 2

2c0

Z t

0
hðsÞds|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
mðtÞ

þ @h
@r
þ 1

2r
h ¼ /1; ð22Þ

1
c0

@/j

@t
þ f 2

2c0

Z t

0
/jðsÞds|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

nðtÞ

þ j
r
/j �

j� 1
2

� �2

4r2 /j�1 �
1

4r2

@2/j�1

@h2 ¼ /jþ1; ð23Þ

where

j ¼ 1; . . . ; J � 1; /0 � 2h and /J � 0:

It should be noted that van Joolen et al. [22] show how m(t) and n(t) can be calculated in each time-step to keep the boundary
condition local in time without having to store and operate on the history of the solution. For this analysis, a simple trap-
ezoidal approximation was used to approximate the integral.

The weak form of the formulation is now constructed. We consider the KGE in its general form:

@2h
@t2 � c2

0r2hþ f 2h ¼ 0:

Multiplying by the test functions Wi and integrating over the circular domain yields the weak integral formZ
X

Wi
@2h
@t2 dX� c2

0

Z
X

Wir2hdXþ f 2
Z

X
WihdX ¼ 0:

Transferring the second order spatial derivatives from h to the basis functions via integration by parts and applying the
divergence theorem to recast one surface integral term as a boundary integral gives usZ

X
Wi
@2h
@t2 dX� c2

0

Z
C

Wi~n � rhdXþ c2
0

Z
X
rWi � rhdXþ f 2

Z
X

WihdX ¼ 0: ð24Þ

Of note now is that the boundary condition (22) contains a radial derivatives of h that on the circle is precisely the normal
derivative ~n � rh. This allows direct implementation of the boundary condition into (24) as follows:Z

X
Wi
@2h
@t2 dX� c2

0

Z
C

Wi /1 �
1
c0

@h
@t
� 1

2r
h� f 2

2c0
mðtÞ

� �
dXþ c2

0

Z
X
rWi � rhdXþ f 2

Z
X

WihdX ¼ 0: ð25Þ

Here, since on the boundary the radius is fixed, the 1
2r term may be treated as a constant.

A similar weak form is constructed for the boundary formulation by multiplying (23) by the test functions fi and integrat-
ing over C yielding (after integration by parts):
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1
c0

Z
C

fi
@/j

@t
dCþ f 2

2c0

Z
C

finðtÞdCþ j
r

Z
C

fi/jdC�
j� 1

2

� �2

4r2

Z
C

fi/j�1dC� 1
4r2 fi

@/j�1

@h

����end

start

þ 1
4r2

Z
C

@fi

@h

@/j�1

@h
dC

¼
Z

C
fi/jþ1dC: ð26Þ

We now use the fact that the boundary is continuous and closed to surmise that the endpoint evaluation term vanishes. The
formal problem statement is then: Find h 2 V and /j 2 VC where j = 1, . . . , J�1, such that Eqs. (25) and (26) are satisfied
8Wi 2 V and fi 2 VC.

4.6. Results for HH with dispersion

A series of experiments was conducted to determine the effect of the HH boundary condition extended to include mild dis-
persion for various SE and NRBC orders. The set-up is identical to the experiments without dispersion, except the dispersion
parameter is set to f2 = 0.1. Qualitative results are shown in Fig. 4 and quantitative L2

X errors are shown for various NRBC orders
for SE orders up to 6 in Table 1. As in the non-dispersive case, no improvement was observed for SE orders above order 6.

4.7. Effects of time integration technique

At the outset of this work, it was believed that at some point the improvements realized by improving the spatial discret-
ization and NRBC would eventually be limited by the time integration scheme [28]. To this end, the order of the time inte-
gration scheme (RK2 -RK10) was varied to examine the effects of time integration on the accuracy of the solution. As has
already been presented, gains made by increasing the order of the NRBC halt for lower order (second order) spectral ele-
ments after J = 5. Even for high order (order 8 and 16) spectral elements, the gains made by increasing the order of the NRBC
are limited at some point using RK4. In [20] the authors showed that high-order time integration allowed boundary gains to
improve solution quality for the KGE under zero advection.
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Fig. 4. Open domain, 4th order spectral elements (J = 4) using oblique Gaussian initial condition shown for t = 1,2,3 under dispersion f2 = 0.1. Top plots:
contour plots of reference solution solved on extended domain. Superimposed black circle indicates NRBC domain. Bottom plots: contour plots of various
NRBC boundary configurations using J = 4.
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For this experiment, consider the KGE on a semi-infinite domain with h = 0 on CW. To ensure that any boundary or time
effects are not masked by the interior discretization, we consider 8th order spectral elements discretized into 9409 global
points. The Gaussian initial condition is used and is evaluated until t = 3. The reference solution in this case was computed
as described previously, except that time integration was performed with a 10th order Runge–Kutta scheme (RK10) using a
time-step chosen to ensure a Courant number of 0.1. Further, to exaggerate the issue of advection and dispersion, we con-
sider the case where U = 0.75 and f2 = 1.

As can be observed in Fig. 5, gains made by improving the time integration matter only if combined with high-order treat-
ment of the boundary. Conversely – gains using high-order treatment of the boundary can only be realized if there is a suf-
ficiently high-order treatment of the time integration. While this analysis conducted time integration using up to RK10 (18
stages), RK4 or RK5 appears to be sufficient in exploiting gains when using high-order (up to J = 15) boundary treatment. It
should be noted that these results (error on the order of 10�9) cannot be observed unless high-order treatment of the interior
also accompanies the high-order treatment of the boundary and time. Several experiments were conducted which varied the
order of the interior, boundary and time integration. The clear result was that without high-order treatment of all compo-
nents in concert, convergence to the reference solution is stalled.

While these results are for a specific problem (KGE with advection), we believe that the principle of a balanced approach
to all components (interior, boundary and time) is a sound, extensible procedure for any problem. If high-order treatment of

Table 2
L2

X error as a function of NRBC order for Hagstrom Hariharan NRBC formulation using various spectral element orders on the circular NRBC domain. Oblique
Gaussian initial condition is used.

NRBC order L2
X error linear elements L2

X error order 2 elements L2
X error order 4 elements L2

X error order 6 elements

J = 1 0.09310 0.04772 0.04555 0.04485
J = 2 0.03381 0.00465 0.00355 0.00315
J = 3 0.02355 0.00324 0.00243 0.00259
J = 4 0.02217 0.00305 0.00236 0.00201
J = 5 0.02198 0.00302 0.00230 0.00196
J = 10 0.02195 0.00302 0.00228 0.00196
J = 20 0.02195 0.00302 0.00228 0.00196
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Fig. 5. Semi-infinite channel L2
X error versus RK time integration order using various order NRBCs. Domain is discretized into 9409 points for 8th order

spectral elements with advection velocities U = 0.75, V = 0.0 and dispersion parameter f2 = 1.

Table 1
L2

X error as a function of NRBC order for Hagstrom Hariharan NRBC formulation using various spectral element orders on the circular NRBC domain. Oblique
Gaussian initial condition is used with dispersion parameter set to f2 = 0.1.

NRBC order L2
X error linear elements L2

X error order 2 elements L2
X error order 4 elements L2

X error order 6 elements

J = 1 0.07290 0.03555 0.03369 0.03293
J = 2 0.02684 0.00371 0.00283 0.00248
J = 3 0.01869 0.00258 0.00192 0.00204
J = 4 0.01759 0.00243 0.00186 0.00157
J = 5 0.01744 0.00240 0.00181 0.00154
J = 10 0.01742 0.00240 0.00180 0.00153
J = 20 0.01742 0.00240 0.00180 0.00153
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any of the three components is missing, the high-order treatment of the other components is essentially wasted; the results
reported here confirm this.

5. Conclusions

In this paper we have considered high order nonreflecting boundary conditions in polar coordinates thus we overcame
the corner problem. The numerical examples demonstrated the synergy of using high-order spatial, time, and boundary dis-
cretization. It was shown that by balancing all numerical errors involved, high-order accuracy can be achieved for un-
bounded domain problems in polar coordinate systems.
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