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a b s t r a c t

In this paper new fourth order optimal root-finding methods for solving nonlinear equa-
tions are proposed. The classical Jarratt’s family of fourth-order methods are obtained as
special cases. We then present results which describe the conjugacy classes and dynamics
of the presented optimal method for complex polynomials of degree two and three. The
basins of attraction of existing optimal methods and our method are presented and com-
pared to illustrate their performance.
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1. Introduction

In this paper, we consider iterative methods and their dynamics to find a simple root q, i.e., f(q) = 0 and f0(q) – 0, of a
nonlinear equation f(x) = 0. Newton’s method [1] is the best known method for finding a real or complex root q of the non-
linear equation f(x) = 0, which is given by

xnþ1 ¼ xn �
f ðxnÞ
f 0ðxnÞ

:

This method converges quadratically in some neighborhood of q.
It is also well-known (see [2]) that for any function H with H(0) = 1, H0(0) = 1/2 and jH00(0)j <1, the iterative method

xnþ1 ¼ xn �
f ðxnÞ
f 0ðxnÞ

HðtðxnÞÞ; ð1Þ

where

tðxnÞ ¼
f ðxnÞf 00ðxnÞ
½f 0ðxnÞ�2

ð2Þ

is of order 3 [2]. The Schemes (1) and (2) include many well-known methods as particular cases; for example, when

HðtÞ ¼ 1� 1
2 t

� ��1
; HðtÞ ¼ 2 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2t
p� ��1

, and H(t) = (1 � t)�0.5 it reduces to Halley’s method [2], Euler’s formula [2], and

Ostrowski’s square root iteration [3], respectively. The methods (1) and (2) require f(xn), f0(xn) and f00(xn) per step, but it is
of third order, so it is not an optimal method. By an optimal method we mean a multipoint one without memory which
requires n + 1 functional evaluations per iteration, but achieves the order of convergence 2n [4]. It should be observed that
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the method (1) and (2) even involves the computation of the second derivative of f per step, which restricts its practical use.
Optimal root-finding methods which overcome the lack of optimality and practical utility that (1) and (2) has are thus
preferred. A new approximation to the second derivative with arbitrarily given second-order method is devised and applied
to (1) and (2). The methods derived in this manner will be of order 4 and require one function- and two first derivative-
evaluations per step, so they are optimal methods. The methods are also free of second derivative and contain the classical
Jarratt’s fourth-order methods. Our method developed here also contains Kou et al.’s fourth-order family of methods
free from second derivative proposed in [5]. Thus our work can be viewed as an extension of the results of Kou et al. [5].
Sharma and Goyal [6] have developed two fourth-order one-parameter family of methods requiring no evaluation of
derivatives.

There are various criteria involved in choosing an iterative method to approximate the root of an equation [7]. These in-
clude the initial value problem (for what initial values will the method converge? Will it converge to a root, and if so, which
root?), the rate of convergence (how fast the convergence occurs near a root?) and the complexity of the calculation (do first
or higher derivatives have to be calculated?). Some of these problems were investigated in [7] by showing how complex
dynamics can shed light on them when using Newton’s method for finding the real or complex roots of polynomial. In order
to investigate these dynamics with some higher order methods we will improve the method (1) and (2) in order to increase
the rate of convergence and reduce the complexity of the calculation, and then study their complex dynamics. The dynamics
of the König iteration methods [8], the super-Newton method, Cauchy’s method, and Halley’s methods [9] and a number of
root-finding methods including Jarratt’s and King’s methods [10] were previously studied in detail. Scott et al. compared the
dynamics of several methods for simple roots [11] and Neta et al. has performed similar comparison of methods for multiple
roots [12]. See also Amat et al. [13]. Motivated by these works this paper thus may be considered as an extension of them in
various aspects.

A precise analysis of convergence is given for the presented optimal methods. We present results which describe the con-
jugacy classes and dynamics of one of the new optimal fourth order methods for complex polynomials of degree two and
three. The fact that our method is not generally convergent for polynomials is also investigated by constructing a specific
polynomial such that the rational map arising from our method applied to the polynomial has an attracting periodic orbit
of period 2. The basins of attraction of some existing fourth order optimal methods and our method are considered and pre-
sented. To this end, we shall recall some preliminaries, see for example Milnor [14] and Plaza [10]. Let R : bC ! bC be a rational
map on the Riemann sphere.

Definition 1. For z 2 bC we define its orbit as the set

orbðzÞ ¼ z;RðzÞ;R2ðzÞ; . . . ;RnðzÞ; . . .
n o

:

Definition 2. A point z0 is a fixed point of R if R(z0) = z0.

Definition 3. A periodic point z0 of period m is such that Rm(z0) = z0 where m is the smallest such integer. The set of the m
distinct points {z,R(z),R2(z), . . . ,Rm�1(z)} is called a periodic cycle.

Remark 1.1. If z0 is periodic of period m then it is a fixed point for Rm.

Definition 4. If z0 is a periodic point of period m, then the derivative (Rm)0(z0) is called the eigenvalue of the periodic point z0.

Remark 1.2. By the chain rule, if z0 is a periodic point of period m, then its eigenvalue is the product of the derivatives of R at
each point on the orbit of z0, and we have

ðRmÞ0ðz0Þ ¼ ðRmÞ0ðz1Þ ¼ � � � ¼ ðRmÞ0ðzn�1Þ;

that is, all the points of a cycle have the same eigenvalue.
We classify the fixed points of a map based on the magnitude of the derivative.

Definition 5. A point z0 is called attracting if jR0(z0)j < 1, repelling if jR0(z0)j > 1, and neutral if jR0(z0)j = 1. If the derivative is
zero then the point is called super-attracting.

Definition 6. The Julia set of a nonlinear map R(z), denoted J(R), is the closure of the set of its repelling periodic points. The
complement of J(R) is the Fatou set FðRÞ.

By its definition, J(R) is a closed subset of bC. A point z0 belongs to the Julia set if and only if dynamics in a neighborhood of
z0 displays sensitive dependence on the initial conditions, so that nearby initial conditions lead to wildly different behavior
after a number of iterations. As a simple example, consider the map R(z) = z2 on bC. The entire open disk is contained in FðRÞ,
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since successive iterates on any compact subset converge uniformly to zero. Similarly the exterior is contained in FðRÞ. On
the other hand if z0 is on the unit circle then in any neighborhood of z0 any limit of the iterates would necessarily have a jump
discontinuity as we cross the unit circle. Therefore J(R) is the unit circle. Such smooth Julia sets are exceptional.

Lemma 1.1 (Invariance Lemma Milnor [14]). The Julia set J(R) of a holomorphic map R : bC ! bC is fully invariant under R. That
is, z belongs to J if and only if R(z) belongs to J.

Lemma 1.2. Iteration LemmaFor any k > 0, the Julia set J(Rk) of the k-fold iterate coincides with J(R).

Definition 7. If O is an attracting periodic orbit of period m, we define the basin of attraction to be the open set A 2 bC con-
sisting of all points z 2 bC for which the successive iterates Rm(z), R2m(z), . . . converge towards some point of O.

The basin of attraction of a periodic orbit may have infinitely many components.

Definition 8. The immediate basin of attraction of a periodic orbit is the connected component containing the periodic orbit.

Lemma 1.3. Every attracting periodic orbit is contained in the Fatou set of R. In fact the entire basin of attraction A for an attract-
ing periodic orbit is contained in the Fatou set. However, every repelling periodic orbit is contained in the Julia set.

2. New iterative methods

Throughout this work let / be an iteration function of order at least two. We let yn = xn � h[xn � /(xn)] = (1 � h)xn + h/(xn),
where h is a nonzero real parameter. Let us consider the approximation:

f 00ðxnÞ �
f 0ðynÞ � f 0ðxnÞ

yn � xn
¼ f 0ðxnÞ � f 0ðynÞ

h½xn � /ðxnÞ�

from which (2) can be approximated

tðxnÞ ¼
f ðxnÞf 00ðxnÞ
½f 0ðxnÞ�2

� f ðxnÞ½f 0ðxnÞ � f 0ðynÞ�
h½xn � /ðxnÞ�½f 0ðxnÞ�2

:

This gives rise to a new iterative scheme

xnþ1 ¼ xn �
f ðxnÞ
f 0ðxnÞ

Hð~tðxnÞÞ; ð3Þ

where

~tðxnÞ ¼
f ðxnÞ½f 0ðxnÞ � f 0ðynÞ�
h½xn � /ðxnÞ�½f 0ðxnÞ�2

: ð4Þ

We will show that in spite of not using as many function evaluations, we have increased the order of convergence to 4.
The following theorem will prove that the method defined by (3) and (4) is of order 4 under additional conditions on H and
on h.

Theorem 2.1. Let q 2 I be a simple zero of a sufficiently differentiable function f : I ? R in an open interval I. Let H be any function
with H(0) = 1, H0(0) = 1/2 and jH00(0)j <1, h a nonzero real number and / any iteration function of order at least two. Let yn = xn �
h[xn � /(xn)]. Then the method defined by (3) and (4) has third-order convergence, and its error equation is given as

enþ1 ¼ 2ð1� H00ð0ÞÞc2
2 þ

3
2

h� 1
� �

c3

	 

e3

n

þ 14H00ð0Þ � 4
3

H000ð0Þ � 9
� �

c3
2 þ ð6hH00ð0Þ � 12H00ð0Þ � 6hþ 12Þc2c3 �

3
2

h/2c3 � ð2h2 � 6hþ 3Þc4

	 

e4

n þ Oðe5
nÞ; ð5Þ

where en = xn � q,

ck ¼ ð1=k!Þf ðkÞðqÞ=f 0ðqÞ; k ¼ 1;2; . . . ð6Þ

c0 = f(q) = 0, and /ðxnÞ ¼ qþ /2e2
n þ Oðe3

nÞ. Furthermore, if we have H00(0) = 1 and h ¼ 2
3, then the order of the method defined by

(3) and (4) is at least four.

Proof. Let en = xn � q and dn = yn � q, where yn = xn � hw(xn). Using Taylor expansion and taking into account f(q) = 0, we
have
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f ðxnÞ ¼ f 0ðqÞ en þ c2e2
n þ c3e3

n þ c4e4
n þ Oðe5

nÞ
� �

; ð7Þ
f 0ðxnÞ ¼ f 0ðqÞ 1þ 2c2en þ 3c3e2

n þ 4c4e3
n þ Oðe4

nÞ
� �

ð8Þ

and

f 0ðxnÞ½ �2 ¼ f 0ðqÞ½ �2 1þ 4c2en þ ð4c2
2 þ 6c3Þe2

n þ 12c2c3e3
n þ Oðe4

nÞ
� �

; ð9Þ

where ck is given by (6).
Dividing (7) by (8) gives

f ðxnÞ
f 0ðxnÞ

¼ en � c2e2
n þ 2ðc2

2 � c3Þe3
n þ ð7c2c3 � 3c4 � 4c3

2Þe4
n þ Oðe5

nÞ: ð10Þ

Since / is an iteration function of order at least two, it follows that

/ðxnÞ ¼ qþ /2e2
n þ /3e3

n þ /4e4
n þ Oðe5

nÞ;

where /k ¼ 1
k!

/ðkÞðqÞ; k ¼ 2;3;4 so that

xn � /ðxnÞ ¼ en � /2e2
n � /3e3

n � /4e4
n þ Oðe5

nÞ ð11Þ

and hence, we have

dn ¼ en � h½xn � /ðxnÞ� ¼ ð1� hÞen þ h/2e2
n þ h/3e3

n þ h/4e4
n þ Oðe5

nÞ: ð12Þ

Expanding f0(yn) about q, we have

f 0ðynÞ ¼ f 0ðqÞ 1þ 2c2dn þ 3c3d2
n þ 4c4d3

n þ 5c5d4
n þ Oðd5

nÞ
h i

and then from (12), we obtain

f 0ðynÞ ¼ f 0ðqÞ 1þ 2ð1� hÞc2en þ 2h/2c2 þ 3ð1� hÞ2c3

h i
e2

n þ 2h/3c2 þ 6hð1� hÞ/2c3 þ 4ð1� hÞ3c4

h i
e3

n

h
þ 2h/4c2 þ 3hðh/2

2 þ 2ð1� hÞ/3Þc3 þ 12hð1� hÞ2/2c4 þ 5ð1� hÞ4c5

h i
e4

n þ Oðe5
nÞ
i
:

It is then clear that

f 0ðxnÞ � f 0ðynÞ ¼ f 0ðqÞ 2hc2en þ ½3c3 � 2h/2c2 � 3ð1� hÞ2c3�e2
n þ ½4c4 � 2h/3c2 � 6hð1� hÞ/2c3 � 4ð1� hÞ3c4�e3

n

h
�½2h/4c2 þ 3hðh/2

2 þ 2ð1� hÞ/3Þc3 þ 12hð1� hÞ2/2c4 þ 5ð1� hÞ4c5 � 5c5�e4
n þ Oðe5

nÞ
i
: ð13Þ

By a simple calculation, we have from (7), (9), (11) and (13) that

~tðxnÞ ¼
f ðxnÞ½f 0ðxnÞ � f 0ðynÞ�
h½xn � /ðxnÞ�½f 0ðxnÞ�2

¼ 2c2en þ 3ð2� hÞc3 � 6c2
2

� �
e2

n þ 16c3
2 þ ð9h� 28Þc2c3 þ 3h/2c3 þ 4ðh2 � 3hþ 3Þc4

� �
e3

n þ O e4
n

� �
ð14Þ

and so,

~t2ðxnÞ ¼ 4c2
2e2

n þ 4c2 6c3 � 3hc3 � 6c2
2

� �
e3

n þ O e4
n

� �
: ð15Þ

From (14) and (15), we have upon using the values of H(0) and H0(0)

Hð~tðxnÞÞ ¼ 1þ 1
2

~tðxnÞ þ
1
2

H00ð0Þ~t2ðxnÞ þ
1
6

H000ð0Þ~t3ðxnÞ þ Oð~t4ðxnÞÞ

¼ 1þ c2en þ ð2H00ð0Þ � 3Þc2
2 þ

3
2
ð2� hÞc3

	 

e2

n þ 8� 12H00ð0Þ þ 4
3

H000ð0Þ
� �

c3
2

	
þ 12H00ð0Þ � 6hH00ð0Þ þ 9

2
h� 14

� �
c2c3 þ

3
2

h/2c3 þ 2ðh2 � 3hþ 3Þc4



e3

n þ O e4
n

� �
: ð16Þ

Hence, from (10) and (16), we obtain

xnþ1 ¼ xn �
f ðxnÞ
f 0ðxnÞ

Hð~tðxnÞÞ

¼ qþ 2ð1� H00ð0ÞÞc2
2 þ

3
2

h� 1
� �

c3

	 

e3

n

þ 14H00ð0Þ � 4
3

H000ð0Þ � 9
� �

c3
2 þ ð6hH00ð0Þ � 12H00ð0Þ � 6hþ 12Þc2c3 �

3
2

h/2c3 � ð2h2 � 6hþ 3Þc4

	 

e4

n þ O e5
n

� �
;
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therefore,

enþ1 ¼ 2ð1� H00ð0ÞÞc2
2 þ

3
2

h� 1
� �

c3

	 

e3

n

þ 14H00ð0Þ � 4
3

H000ð0Þ � 9
� �

c3
2 þ ð6hH00ð0Þ � 12H00ð0Þ � 6hþ 12Þc2c3 �

3
2

h/2c3 � ð2h2 � 6hþ 3Þc4

	 

e4

n þ O e5
n

� �
;

which is the same one that appears in (5).
Now if we choose h ¼ 2

3 and H00(0) = 1, then (2) becomes

enþ1 ¼ 14H00ð0Þ � 4
3

H000ð0Þ � 9
� �

c3
2 þ ð6hH00ð0Þ � 12H00ð0Þ � 6hþ 12Þc2c3 �

3
2

h/2c3 � ð2h2 � 6hþ 3Þc4

	 

e4

n þ O e5
n

� �
ð17Þ

and we obtain the fourth-order class of methods

yn ¼ xn �
2
3
½xn � /ðxnÞ�; ð18Þ

xnþ1 ¼ xn �
f ðxnÞ
f 0ðxnÞ

Hð~tðxnÞÞ; ð19Þ

where

~tðxnÞ ¼
3
2

f ðxnÞ½f 0ðxnÞ � f 0ðynÞ�
½xn � /ðxnÞ�½f 0ðxnÞ�2

ð20Þ

and / is any iteration function of order at least two. This completes the proof. h

If we consider an iterative function / requiring f(xn) and f0(xn), then our family of methods has an optimal order since it
requires f(xn), f0(xn) and f0(yn) per step.

3. New fourth order optimal methods

For the sake of simplicity, we consider only Newton’s iteration function /ðxÞ ¼ x� f ðxÞ
f 0 ðxÞ, even though other choices for /

may provide us with many other optimal fourth-order methods. For the Newton iteration function, (18)–(20) simplifies to

yn ¼ xn �
2
3

f ðxnÞ
f 0ðxnÞ

; ð21Þ

xnþ1 ¼ xn �
f ðxnÞ
f 0ðxnÞ

Hð~tðxnÞÞ; ð22Þ

where

~tðxnÞ ¼
3
2

f 0ðxnÞ � f 0ðynÞ
f 0ðxnÞ

: ð23Þ

If we take HðtÞ ¼ 1þ 1
2

t
1�t, then (21)–(23) leads to the well-known Jarratt’s fourth-order method [15]

xnþ1 ¼ xn � 1� 3
2

f 0ðynÞ � f 0ðxnÞ
3f 0ðynÞ � f 0ðxnÞ

	 

f ðxnÞ
f 0ðxnÞ

;

where yn ¼ xn � 2
3

f ðxnÞ
f 0 ðxnÞ.

If we take another HðtÞ ¼ 1þ 9
6�4t � 9

6�2t, then (21)–(23) leads to another optimal fourth-order Jarratt’s method [15]

xnþ1 ¼ xn �w1ðxnÞ �
3
2

w2ðxnÞ þ
3f ðxnÞ

f 0ðxnÞ þ f 0ðznÞ
;

where w1ðxnÞ ¼ f ðxnÞ
f 0 ðxnÞ ; w2ðxnÞ ¼ f ðxnÞ

f 0 ðznÞ and zn ¼ xn � 2
3 w1ðxnÞ. This method is suggested by Jarratt in order to reduce the possibil-

ity of cancelation in the denominator.

If we take HðtÞ ¼ 3
4

t ctþ3
2ð Þ

atþ3
2ð Þ btþ3

2ð Þ, where c ¼ aþ b� 3
2 ;a; b 2 R, then (21)–(23) leads to the optimal Kou et al.’s fourth-order

family of methods [5]

xnþ1 ¼ xn � 1� 3
4

ðf 0ðynÞ � f 0ðxnÞÞðcf 0ðynÞ þ ð1� cÞf 0ðxnÞÞ
ðaf 0ðynÞ þ ð1� aÞf 0ðxnÞÞðbf 0ðynÞ þ ð1� bÞf 0ðxnÞÞ

� �
f ðxnÞ
f 0ðxnÞ

:
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In the case that HðtÞ ¼ 1þ t
2þ t2

2 , (21)–(23) gives a new fourth-order optimal method

xnþ1 ¼ xn �
f ðxnÞ
f 0ðxnÞ

1þ 3
4

f 0ðxnÞ � f 0ðynÞ
f 0ðxnÞ

þ 9
8

f 0ðxnÞ � f 0ðynÞ
f 0ðxnÞ

� �2
" #

;

where yn ¼ xn � 2
3

f ðxnÞ
f 0 ðxnÞ.

In the case that HðtÞ ¼ 1þ 2
t�2þ 4

ðt�2Þ2
, we obtain from (21)–(23) another new optimal fourth-order method

xnþ1 ¼ xn �
f ðxnÞ
f 0ðxnÞ

1� 4f 0ðxnÞ
3f 0ðynÞ þ f 0ðxnÞ

þ 4f 0ðxnÞ
3f 0ðynÞ þ f 0ðxnÞ

� �2
" #

;

where yn ¼ xn � 2
3

f ðxnÞ
f 0 ðxnÞ.

In the case that HðtÞ ¼ � t
2� 4

t�2� 1, (21)–(23) reduces to the method

xnþ1 ¼ xn �
f ðxnÞ
f 0ðxnÞ

3
4

f 0ðynÞ � f 0ðxnÞ
f 0ðxnÞ

þ 8f 0ðxnÞ
3f 0ðynÞ þ f 0ðxnÞ

� 1
	 


;

where yn ¼ xn � 2
3

f ðxnÞ
f 0 ðxnÞ.

In the case that HðtÞ ¼ 4
4�2t�t2, we obtain from (21)–(23) another new optimal fourth-order method

xnþ1 ¼ xn �
16f ðxnÞf 0ðxnÞ

�5½f 0ðxnÞ�2 þ 30f 0ðxnÞf 0ðynÞ � 9½f 0ðynÞ�
2 ; ð24Þ

where yn ¼ xn � 2
3

f ðxnÞ
f 0 ðxnÞ.

4. Conjugacy classes

Throughout the remainder of this paper we study the dynamics of the rational map Rf arising from the method (24)

Rf ðzÞ ¼ zþ 16f ðzÞf 0ðzÞ
5½f 0ðzÞ�2 � 30f 0ðzÞf 0ðyÞ þ 9½f 0ðyÞ�2

; ð25Þ

where

y ¼ z� 2
3

f ðzÞ
f 0ðzÞ

applied to a generic polynomial with simple roots. We tried other possibilities and they are not competitive. Let us first recall
the definition of analytic conjugacy classes.

Definition 9 [16]. Let f and g be two maps from the Riemann sphere into itself. An analytic conjugacy between f and g is an
analytic diffeomorphism h from the Riemann sphere onto itself such that h�f = g � h.

Rf has the following useful property for an analytic function f.

Theorem 4.1 (The Scaling Theorem). Let f(z) be an analytic function on the Riemann sphere, and let T(z) = az + b,a – 0, be an
affine map. If g(z) = f � T(z), then T � Rg � T�1(z) = Rf(z). That is, Rf is analytically conjugate to Rg by T.

Proof. With the iteration function R(z), we have

RgðT�1ðzÞÞ ¼ T�1ðzÞ þ 16g0ðT�1ðzÞÞgðT�1ðzÞÞ 5g02ðT�1ðzÞÞ � 30g0ðT�1ðzÞÞg0 T�1ðzÞ � 2
3

gðT�1ðzÞÞ
g0ðT�1ðzÞÞ

 !"

þ9g02 T�1ðzÞ � 2
3

gðT�1ðzÞÞ
g0ðT�1ðzÞÞ

 !#�1

:

Since g � T�1ðzÞ ¼ f ðzÞ; ðg � T�1Þ0ðzÞ ¼ 1
a g0ðT�1ðzÞÞ, we get g0(T�1(z)) = a (g�T�1)0(z) = af0(z), g00(T�1(z)) = a2f00(z). We therefore

have

T �Rg �T�1ðzÞ¼ TðRgðT�1ðzÞÞÞ¼aRgðT�1ðzÞÞþb¼aT�1ðzÞþa �16g0ðT�1ðzÞÞgðT�1ðzÞÞ

� 5g02ðT�1ðzÞÞ�30g0ðT�1ðzÞÞg0 T�1ðzÞ�2
3

gðT�1ðzÞÞ
g0ðT�1ðzÞÞ

 !
þ9g02 T�1ðzÞ�2

3
gðT�1ðzÞÞ
g0ðT�1ðzÞÞ

 !" #�1

þb

¼ zþ16a2f 0ðzÞf ðzÞ 5a2½f 0ðzÞ�2�30af 0ðzÞg0 T�1ðzÞ�2
3

gðT�1ðzÞÞ
g0ðT�1ðzÞÞ

 !
þ9g02 T�1ðzÞ�2

3
gðT�1ðzÞÞ
g0ðT�1ðzÞÞ

 !" #�1

: ð26Þ
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On the other hand, we have

g0 T�1ðzÞ � 2
3

gðT�1ðzÞÞ
g0ðT�1ðzÞÞ

 !
¼ g0 T�1ðzÞ � 2

3
f ðzÞ

af 0ðzÞ

� �
¼ g0ðT�1ðzÞÞ � g00ðT�1ðzÞÞ2

3
f ðzÞ

af 0ðzÞ þ � � �

¼ af 0ðzÞ � a2f 00ðzÞ2
3

f ðzÞ
af 0ðzÞ þ � � � ¼ a f 0ðzÞ � f 00ðzÞ2

3
f ðzÞ
f 0ðzÞ þ � � �

� �
¼ af 0 z� 2

3
f ðzÞ
f 0ðzÞ

� �
¼ af 0ðyÞ:

We thus obtain from (26) T�Rg � T�1(z) = Rf(z), this completing the proof. h

The scaling theorem established above indicates that up to a suitable change of coordinates the study of the dynamics of
the iteration function (25) for polynomials can be reduced to the study of the dynamics of the same iteration function for
simpler polynomials. For example, for any quadratic and any cubic polynomials, we can easily prove the following results
by an affine change of variable and multiplication by a constant that.

Theorem 4.2. Let p(z) = az2 + bz + c, with a – 0 and

qðzÞ ¼ z2 � l; ð27Þ

where l ¼ b2�4ac
4a . Then there is an analytic conjugacy between Rp and Rq.

Theorem 4.3. Let p(z) = (z � z0) (z � z1) (z � z2), with 0 6 jz0j 6 jz1j 6 jz2j and let

qðzÞ ¼ z3 þ ðk� 1Þz� k; k 2 C: ð28Þ

Then there is an analytic conjugacy between Rp and Rq.
Thus analyzing the iteration function (25) for any quadratic and cubic reduces to analyzing it for the q’s in (27) and (28),

respectively.

Definition 10 [9]. We say that a one-point iterative root-finding algorithm p ? Tp has a universal Julia set (for polynomials
of degree d) if there exists a rational map S such that for every degree d polynomial p, J(Tp) is conjugate by a Möbius
transformation to J(S).

The following theorem establishes a universal Julia set for quadratics for our method (24).

Theorem 4.4. For a rational map Rp(z) arising from the method (24) applied to p(z) = (z � a)(z � b), a – b, Rp(z) is conjugate via
the Möbius transformation given by MðzÞ ¼ z�a

z�b to

Fig. 1. Basin of attraction for SðzÞ ¼ z4 zþ2
2zþ1.
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SðzÞ ¼ z4 zþ 2
2zþ 1

Proof. Let p(z) = (z � a)(z � b), a – b and Let M be the Möbius transformation given by MðzÞ ¼ z�a
z�b with its inverse

M�1ðuÞ ¼ ub�a
u�1 , which may be considered as a map from C [ f1g. We then have

M � Rp �M�1ðuÞ ¼ M � Rp
ub� a
u� 1

� �
¼ u4 uþ 2

2uþ 1

	 

: �

Fig. 1 illustrates the dynamic structure of SðzÞ ¼ z4 zþ2
2zþ1. The basin of attraction for S(z) clearly reveals the structure of the uni-

versal Julia set for S when p is quadratic. The points in the blue area converge to the origin, the red area points converge to
the point at infinity.

5. Fixed points and critical points

In the following theorem, we establish the dynamical characterization regarding the fixed points of Rp.

Theorem 5.1. Assume p is a generic polynomial of degree d P 2 with simple roots. If z0 is a simple root of p, then it is a super-
attracting fixed point of Rp. All other additional fixed points of Rp are roots of p0(z) = 0.

Proof. Let p(z) be a generic polynomial of degree d P 2 with simple roots. Suppose that z0 is a root of p(z). Then Rp satisfies
that Rpðz0Þ ¼ z0; RðjÞp ðz0Þ ¼ 0; j ¼ 1;2;3; Rð4Þp ðz0Þ – 0 since it is of order four [1]. Hence Rp has a super-attracting fixed point at
each root of p. Since Rp(z0) = z0 only when p(z0) = 0 or p0(z0) = 0, all other additional fixed points of Rp are roots of p0(z) = 0.
Note that if p0(z0) = 0, then we have p(z0) – 0 since z0 would otherwise be a multiple root. h

For a generic polynomial p, additional fixed points of Rp and their dynamical behavior can be found and determined by
Theorem 5.1. For example, for the cubic polynomial p(z) = z3 � 1, Rp has the additional fixed point z0 = 0. Since jR0pð0Þj ¼ 1 (see
(5)), it is an indifferent fixed point, this altering the basins of attraction of the roots of the cubic.

Critical values of a function f are those values v 2 C for which f(z) = v has a multiple root. The multiple root z = c is called
the critical point of f. This is equivalent to the condition f0(c) = 0. Let p(z) be a generic polynomial with simple roots. The free
critical points of Rp are those critical points that are not roots of p(z). The underlying reason for studying the free critical
points is due to the following well-known fact.

Theorem 5.2 (Fatou-Julia). Let R(z) be a rational map. If z0 is an attracting periodic point, then the immediate basin of attraction
B⁄(z0) contains at least one critical point.

As a consequence of Theorem 5.2, it is important to detect the existence of attracting periodic cycles. If there exist an
attracting periodic cycle, then there exists at least one critical point near the cycle, and the iterates of Rp starting with the
critical point converge to that cycle and not to a root. Thus the existence of attracting periodic cycles could interfere with
our Rp search for a root of the equation p(z) = 0. To detect the existence of attracting periodic cycles, the orbits of the free
critical points of the Rp function should be observed and their set of limit points determined.

Upon differentiating (25) we have

R0pðzÞ¼1þ½5p02ðzÞ�30p0ðzÞp0ðyÞþ9p02ðyÞ��2 ð16p02ðzÞþ16pðzÞp00ðzÞÞð5p02ðzÞ�30p0ðzÞp0ðyÞþ9p02ðyÞÞ
�

�16pðzÞp0ðzÞ 10p0ðzÞp00ðzÞ�30p00ðzÞp0ðyÞ�30p0ðzÞp00ðyÞp
02ðzÞþ2pðzÞp00ðzÞ

3p02ðzÞ þ18p0ðyÞp00ðyÞp
02ðzÞþ2pðzÞp00ðzÞ

3p02ðzÞ

� �

: ð29Þ

It follows from (29) that the equation for the critical points of the iterative method Rp is given by

0 ¼ p0ðzÞð5p02ðzÞ � 30p0ðzÞp0ðyÞ þ 9p02ðyÞÞð21p02ðzÞ � 30p0ðzÞp0ðyÞ þ 9p02ðyÞ þ 16pðzÞp00ðzÞÞ � 16pðzÞ½10p03ðzÞp00ðzÞ
� 30p02ðzÞp00ðzÞp0ðyÞ � 2ðp02ðzÞ þ 2pðzÞp00ðzÞÞð5p0ðzÞp00ðyÞ � 3p0ðyÞp00ðyÞÞ�:

For the cubic p(z) = z3 � 1, we have Rp ¼ zð206z12þ544z9�6z6�14z3�1Þ
449z12þ301z9�6z6�14z3�1 which is of degree d = 13. R0pðzÞ ¼ 0 gives us

R0pðzÞ ¼
ð92494z15 þ 36994z12 þ 2062z9 � 298z6 � 31z3 � 1Þðz3 � 1Þ3

ð449z12 þ 301z9 � 6z6 � 14z3 � 1Þ2
:

So, the critical points of Rp are roots of the equation (92494l5 + 36994l4 + 2062l3 � 298l2 � 31l � 1)(l � 1)3 = 0, where
l = z3. The roots are

z3 ¼ 1;1;1;�0:301495723260134;�0:110677387489009;0:102269175468264;�0:0450285716377835

� 0:0337719969533516i:

6434 C. Chun et al. / Applied Mathematics and Computation 218 (2012) 6427–6438



Author's personal copy

Rp has d + 1 = 14 fixed points and 2d � 2 = 24 critical points in C1 ¼ C [ f1g, counting multiplicity. The use of Maple shows
that nine of these critical points z0 have eigenvalue jR0(z0)j = 1, and the rest have jR0(z0)j < 1.

Given a polynomial p(z), an iteration function Tp(z) is said to be generally convergent if for almost all z 2 C its orbit con-
verges to a root of p(z). The fact that Newton’s method is not generally convergent for polynomials was investigated by Barna
[17]. We also investigate this aspect for the method (24) by constructing a specific polynomial p(z) such that the rational
map Rp arising from (24) applied to the polynomial has an attracting periodic orbit of period 2. Our approach is based on
an argument of Smale [18,19] and we have the following result.

Proposition 5.1. The method (24) is not generally convergent for the polynomial

pðzÞ ¼ z3 þ az2 þ bzþ c;

where

a ¼ �0:24862826203703351651;
b ¼ �1:0865745919948851643;
c ¼ 0:72915055282835616542:

Proof. Consider the polynomial p(z) = z3 + a z2 + b z + c. We find the coefficients a, b and c so that Rp arising from (24) applied to
p(z) will have a super-attracting periodic point of period 2 at the origin, that is, Rpð0Þ ¼ 1; Rpð1Þ ¼ 0; R0pð0Þ ¼ 0; R0pð1Þ –1,
which by the chain rule would give R2

pð0Þ ¼ 0; R2
p

� �0
ð0Þ ¼ R0pðRpð0ÞÞR0pð0Þ ¼ R0pð1ÞR

0
pð0Þ ¼ 0. Hence there exists an open neigh-

borhood of the origin such that the fixed point iteration does not converge to any of the roots of p(z). Therefore the method (24)
is not generally convergent for this polynomial. The conditions Rpð0Þ ¼ 1; Rpð1Þ ¼ 0; R0pð0Þ ¼ 0 imply that a, b and c are the
solution of the system

c3ðc5 � 2c3b3 þ 2cb6 � 4c4abþ 16c2ab4 � 4ab7 þ 6c3a2b2 � 22ca2b5 � 4c2a3b3 þ 8a3b6 þ ca4b4Þ

� ðb3c2 þ b6 � c4 � b4ac þ 2c3ab� a2c2b2Þ�2 ¼ 0; ð30Þ

16cb

5b2 � 30l1bþ 9l2
1

¼ 1; ð31Þ

16ð1þ aþ bþ cÞð3þ 2aþ bÞ
5ð3þ 2aþ bÞ2 � 30l2ð3þ 2aþ bÞ þ 9l2

2

¼ �1; ð32Þ

where

l1 ¼
4c2

3b2 �
4ac
3b
þ b;

l2 ¼ 3 1� 2ð1þ aþ bþ cÞ
3ð3þ 2aþ bÞ

	 
2

þ 2a 1� 2ð1þ aþ bþ cÞ
3ð3þ 2aþ bÞ

	 

þ b:r:

Solving the system (30)–(32) by Maple with the number of digits set to 20 produces

a ¼ �0:24862826203703351651;
b ¼ �1:0865745919948851643;
c ¼ 0:72915055282835616542:

Thus the polynomial

pðzÞ ¼ z3 � 0:24862826203703351651z2 � 1:0865745919948851643zþ 0:72915055282835616542

makes the method (24) fail to converge to a root of p(z) over a set of positive Lebesgue measure. h

6. Numerical results

Four fourth order optimal methods are considered, which are King’s method [20] with b ¼ � 1
2 given by

wn ¼ xn �
f ðxnÞ
f 0ðxnÞ

;

xnþ1 ¼ wn �
f ðwnÞ
f 0ðxnÞ

f ðxnÞ þ bf ðwnÞ
f ðxnÞ þ ðb� 2Þf ðwnÞ

;

ð33Þ
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Kung–Traub’s method [4] given by

wn ¼ xn �
f ðxnÞ
f 0ðxnÞ

;

xnþ1 ¼
f ðwnÞ
f 0ðxnÞ

1

½1� f ðwnÞ=f ðxnÞ�2
;

ð34Þ

Kou et al.’s method [21] given by

wn ¼ xn �
f ðxnÞ
f 0ðxnÞ

;

xnþ1 ¼ xn �
f 2ðxnÞ þ f 2ðwnÞ

f 0ðxnÞ½f ðxnÞ � f ðwnÞ�

ð35Þ

and our method (24).

Fig. 2. King’s with b ¼ � 1
2 (left) and Kung–Traub’s method (right) for the roots of the quadratic polynomial z2 � 1.

Fig. 3. Kou’s method (left) and the method (24) (right) for the roots of the quadratic polynomial z2 � 1.
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The basins of attraction of the four methods applied to the quadratic polynomial z2 � 1 are presented and compared in
Figs. 2 and 3. The results for the cubic polynomial z3 � 1 are given in Figs. 4 and 5.

The basin of attraction for the method (24) is better than any of the other methods. For our method (24) applied to the
quadratic polynomial with distinct roots, an almost arbitrary point converges to the root closer to the point.

7. Conclusion

In this paper we have constructed new optimal fourth order root-finding methods for solving nonlinear equations, which
contains well-known Jarratt’s methods as special cases. We presented results which describe the conjugacy classes and
dynamics of presented optimal methods for complex polynomials of degree two and three. We constructed a specific poly-
nomial such that the rational map arising from our method applied to the polynomial has an attracting periodic orbit of per-
iod 2. The basins of attraction of existing optimal methods and our method are considered to deal with initial value problems
of iteration methods and compared to illustrate their performance as a criterion for comparison.

Fig. 4. King’s with b ¼ � 1
2 (left) and Kung–Traub’s method (right) for the roots of the cubic polynomial z3 � 1.

Fig. 5. Kou’s method (left) and the method (24) (right) for the roots of the cubic polynomial z3 � 1.
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