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There are several third order methods for solving a nonlinear algebraic equation having roots

of a given multiplicity m. Here we compare a recent family of methods of order three to Euler–

Cauchy’s method which is found to be the best in the previous work. There are fewer fourth

order methods for multiple roots but we will not include them here.
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1. Introduction

There is a vast literature on the solution of nonlinear equations, see for example Ostrowski [1], Traub [2], Neta [3] and Petković

et al. [4]. Here we are interested in algorithms for finding a multiple root of a nonlinear equation f (x) = 0. A root α of f(x) is of

multiplicity m > 1 if f (α) = 0, f (i)(α) = 0 for i = 1, 2, . . . , m − 1 and f (m)(α) �= 0. The first method is due to Schröder [5] and it is

also referred to as modified Newton,

xn+1 = xn − m
f (xn)

f ′(xn)
. (1)

The method is based on Newton’s method for the function G(x) = m
√

f (x) which obviously has a simple root at α, the multiple

root with multiplicity m of f(x).

Another method based on the same G is Laguerre’s method

xn+1 = xn −
λ f (xn)

f ′(xn)

1 + sgn(λ − m)
√(

λ−m
m

)[
(λ − 1) − λ f (xn) f ′′(xn)

f ′(xn)2

] (2)

where λ ( �= 0, m) is a real parameter. When f(x) is a polynomial of degree n, this method with λ = n is the ordinary Laguerre

method for multiple roots, see Bodewig [6]. This method converges cubically. One special case is Euler–Cauchy for λ = 2m

xn+1 = xn −
2m f (xn)

f ′(xn)

1 +
√

(2m − 1) − 2m f (xn) f ′′(xn)
f ′(xn)2

. (3)
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Other special cases include Halley’s method [7], Ostrowski’s method, and Hansen–Patrick’s family [8]. Two other cubically con-

vergent methods are: Euler–Chebyshev [2] and Osada’s method [9]. Another variation on Chebyshev’s method is given by Neta

[10]. Sbibih et al. [11] has recently developed a new family of third order methods for multiple roots. The family depends on a

weight function given by

yn = xn − μ
f (xn)

f ′(xn)
,

wn = f (yn)

f (xn)

xn+1 = xn − φ(wn)
f (xn)

f ′(xn)
, (4)

where the weight function φ is a complex function, and μ is a non-zero real or complex number. They have shown that the

family is of order three, for m ≥ 2, and of order four for simple roots, if the function φ satisfies the following conditions:

φ(tm) = m

φ ′(tm) = 1
tm−1(1−t)2∣∣∣( 1

φ ′
)′
(tm)

∣∣∣ < ∞
(5)

where t = 1 − μ
m .

They have also demonstrated that the following methods are special cases:

• Dong (two methods) [12]

• Victory and Neta [13]

• Neta [10]

• Chun and Neta [14]

• Homeier [15]

• Geum and Kim [16]

• Kim and Geum [17]

The authors picked four different weight functions and compared these four methods to existing ones by solving four nonlin-

ear equations each having a root with a different multiplicity. The members are:

• SSTZ1

φ(x) = ax + b

a = 1
tm−1(1−t)2

b = m − t
(1−t)2

(6)

• SSTZ2

φ(x) = a
b−x

a = m2tm−1(1 − t)2

b = mtm−1(1 − t)2 + tm

(7)

• SSTZ3

φ(x) = x2 + ax + b

a = 1
tm−1(1−t)2 − 2tm

b = m + t2m − t
(1−t)2

(8)

• SSTZ4

φ(x) = x2+ax+b
(1−x)2

a = −2tm − 2m(1 − tm) + (1−tm)2

tm−1(1−t)2

b = t2m + m(1 − t2m) − t(1−tm)2

(1−t)2

(9)

In the next section we will discuss basins of attraction for these four methods and compare the basins with the best known

third order method for multiple roots, namely Euler–Cauchy’s method (see [18]).
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Fig. 1. The top left for SSTZ1, top right for SSTZ2, center left for SSTZ3, center right for SSTZ4 and the bottom is for Euler–Cauchy method for the roots of the

polynomial (z2 − 1)2.
2. Numerical experiments

The Basin of Attraction is a method to visually understand how a method behaves as a function of the various starting points.

This idea was started by Stewart [19] and continued in the work of Amat et al. [20], [21], [22], [23], Scott et al. [24], Chun et al.

[25], Chicharro et al. [26], Cordero et al. [27], Neta et al. [28], Argyros and Magreñan [29], Magreñan [30], and Chun et al. [31].

The only papers comparing basins of attraction for methods to obtain multiple roots are due to Neta et al. [32], Neta and Chun

[33], [34], and Chun and Neta [35].

We have used the above four methods with μ = 1/3 and Euler–Cauchy’s method for seven different polynomials having

multiple roots with multiplicity m = 2, 3, 4, 5. The choice of the parameter μ is based on the numerical experiments reported by

Sbibih et al. [11]. All the examples have roots within a square of [−3,3] by [−3,3]. We have taken 360,000 equally spaced points

in the square as initial points for the methods and we have registered the total number of iterations required to converge to a

root and also to which root it converged. We have also collected the CPU time (in seconds) required to run each method on all

the points using Dell Multiplex 990 desktop computer. We then computed the average number of iterations required per point

and the standard deviation.

Example 1. In our first example, we have taken the polynomial

p1(z) = (z2 − 1)2 (10)

whose roots z = ±1 are both real and of multiplicity m = 2. In Fig. 1 we have presented the basins for the five methods. The top

left plot is for method SSTZ1, the top right for SSTZ2, the center left for SSTZ3 and the center right for SSTZ4. The bottom plot is

for Euler–Cauchy’s method. It is clear that the Euler–Cauchy’s method outperformed the others. The basins are separated by a

straight line in the middle for Euler–Cauchy’s method without any black points (where the method used the maximum number

of iterations). SSTZ2 is the second best. In Table 1 we can see that the average number of iterations per point is very close to

unity for the best method and slightly below 4 for the second best. In Table 2 we have computed the standard deviation (σ ), so

we can see how spread are the number of iterations per point. The smaller the value of σ the closer the number of iterations

per point to the average. Again, Euler–Cauchy’s method is best followed by SSTZ2. In Table 3 we find the CPU time required to

run each method on all the 360,000 points. The same conclusion is reached, namely Euler–Cauchy’s method is best followed by

SSTZ2. The worst methods are SSTZ1 and SSTZ3 which have a polynomial weight function. This is not surprising, since we have

the same conclusion in [35].
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Table 1

Average number of iterations per point for each example (1–7) and each of the five methods.

Example SSTZ1 SSTZ2 SSTZ3 SSTZ4 Euler–Cauchy

1 4.4531 3.8778 4.4535 4.2884 1.0001

2 6.3350 5.0882 6.3364 6.2953 3.4661

3 6.3097 4.8149 6.3185 5.8236 3.8117

4 9.4700 6.1552 9.4724 8.0588 4.7388

5 6.3611 5.0747 6.4000 5.6255 3.8117

6 10.0776 6.6465 10.0779 8.3533 5.6106

7 6.0451 4.9196 6.0460 5.8522 4.1451

Average 7.0074 5.2253 7.0149 6.3282 3.7977

Table 2

Standard deviation for each example (1–7) and each of the five methods.

Example SSTZ1 SSTZ2 SSTZ3 SSTZ4 Euler–Cauchy

1 2.0688 1.8453 2.0770 1.9249 0.0649

2 3.0556 2.2588 3.0693 3.0308 0.5420

3 4.5263 3.8211 4.5845 3.0010 0.6514

4 8.4660 5.8946 8.4598 5.4534 1.0020

5 4.6101 4.8056 4.8322 2.7306 0.6514

6 9.1531 6.7343 9.1552 5.8117 1.4012

7 2.6639 1.3797 2.6705 2.2443 0.6887

Table 3

CPU time (in seconds) required for each example (1–7) and each of the five methods.

Example SSTZ1 SSTZ2 SSTZ3 SSTZ4 Euler–Cauchy

1 197.70 181.27 212.14 229.77 104.00

2 463.07 389.28 464.00 491.40 479.84

3 405.27 333.42 420.17 434.69 482.65

4 657.32 466.61 694.20 642.75 641.05

5 339.42 292.96 371.57 365.90 399.11

6 743.56 522.83 776.07 694.56 776.99

7 373.65 325.88 411.54 415.24 649.07

Average 454.28 358.89 478.53 467.76 504.67
Example 2. The second example is a polynomial whose roots are all of multiplicity three. The roots are −2.68261500670705 ±
.358259359924043i, 1.36523001341410, i.e.

p2(z) = (z3 + 4z2 − 10)3. (11)

The basins are plotted in Fig. 2. Again the best method is Euler–Cauchy’s as can be seen in the bottom sub-plot. This conclusion can

be reached more quantitatively by comparing the average number of iterations per point in Table 1 and the standard deviation in

Table 2. As for the CPU time in Table 3 we notice that Euler–Cauchy’s method is slower. So for this example SSTZ2 could compete

with Euler–Cauchy’s method, at least in terms of CPU time.

Example 3. Our next example is a polynomial with roots of multiplicity four. The polynomial has the three roots of unity,

p3(z) = (z3 − 1)4. (12)

The basins are plotted in Fig. 3. The same conclusion can be reached here. Notice that the CPU time required for SSTZ4 is slightly

higher than that of SSTZ3.

Example 4. The fourth example is a polynomial with roots of multiplicity five

p4(z) = (z4 − 1)5 (13)

where the roots are symmetrically located on the axis. In some sense this is similar to the first example, since in both the cases

we have an even number of roots. The plots of the basins are given in Fig. 4. The best method is the same as before based on the

plots in Table 1 and 2. The CPU time for SSTZ2 is lower than that for Euler–Cauchy’s method (see Table 3).

Example 5. Our next example is also having the three roots of unity with double multiplicity

p5(z) = (z3 − 1)2. (14)
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Fig. 2. The top left for SSTZ1, top right for SSTZ2, center left for SSTZ3, center right for SSTZ4 and the bottom is for Euler–Cauchy method for the roots of the

polynomial (z3 + 4z2 − 10)3.

Fig. 3. The top left for SSTZ1, top right for SSTZ2, center left for SSTZ3, center right for SSTZ4 and the bottom is for Euler–Cauchy method for the roots of the

polynomial (z3 − 1)4.
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Fig. 4. The top left for SSTZ1, top right for SSTZ2, center left for SSTZ3, center right for SSTZ4 and the bottom is for Euler–Cauchy method for the roots of the

polynomial (z4 − 1)5.

Fig. 5. The top left for SSTZ1, top right for SSTZ2, center left for SSTZ3, center right for SSTZ4 and the bottom is for Euler–Cauchy method for the roots of the

polynomial (z3 − 1)2.
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Fig. 6. The top left for SSTZ1, top right for SSTZ2, center left for SSTZ3, center right for SSTZ4 and the bottom is for Euler–Cauchy method for the roots of the

polynomial (z5 − 1)3.
The basins are plotted in Fig. 5. The best method is again Euler–Cauchy’s followed by SSTZ2. Looking at Table 1 we get the same

conclusion. Based on the CPU time, we find that SSTZ2 is faster than Euler–Cauchy’s method. It is interesting to note that even

though the average number of iteration per point for SSTZ4 is slightly higher than that for SSTZ2, the standard deviation is

smaller.

Example 6. In our sixth example we have the five roots of unity all with multiplicity three

p6(z) = (z5 − 1)3. (15)

The basins are plotted in Fig. 6. Again Euler–Cauchy’s method is the best, but now we can see in the bottom sub-plot of Fig. 6 that

there are some lobes around the origin. The CPU time for SSTZ2 is lowest even though the basins for SSTZ2 have more lobes along

the boundaries. The average number of iterations per point (Table 1) and the standard deviation (Table 2) confirm the qualitative

results in Fig. 6.

Example 7. In the last example we have the roots at z = 0, ±1 all with multiplicity four

p7(z) = z4(z2 − 1)4. (16)

The basins are plotted in Fig. 7. The basin for z = 0 for Euler–Cauchy’s method is the smallest. On the other hand, there are no

lobes on the boundaries. It is hard to say which of the two methods (Euler–Cauchy or SSTZ2) is the best. The average number of

iterations per point and the standard deviation are smallest for Euler–Cauchy’s method, followed by SSTZ2.

3. Conclusions

In all seven examples, we find that the best is either Euler–Cauchy’s method or SSTZ2 and the worst are those with polynomial

weight functions, namely SSTZ1 and SSTZ3. In order to choose an overall best performer, we have computed the average of the

values in Table 1 and 3. Based on the average CPU time for all examples, SSTZ2 is better than Euler–Cauchy’s method. But based

on the average number of points, the order is reversed. We must conclude that an iteration step for SSTZ2 is cheaper.
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Fig. 7. The top right for SSTZ1, top left for SSTZ2, center right for SSTZ3, center left for SSTZ4 and the bottom is for Euler–Cauchy method for the roots of the

polynomial (z3 − z)4.
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