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There are very few optimal fourth order methods for solving nonlinear algebraic equations
having roots of multiplicity m. Here we compare 4 such methods, two of which require the
evaluation of the ðm� 1Þst root. We will show that such computation does not affect the
overall cost of the method.

Published by Elsevier Inc.
1. Introduction

There is a vast literature on the solution of nonlinear equations and nonlinear systems, see for example Ostrowski [1],
Traub [2], Neta [3] and the recent book by Petković et al. [4] and references therein. Most of the algorithms are for finding
a simple root of a nonlinear equation f ðxÞ ¼ 0, i.e. for a root a we have f ðaÞ ¼ 0 and f 0ðaÞ – 0. In this paper we are interested
in the case that a is a root of multiplicity m > 1. Clearly, one can use the quotient f ðxÞ=f 0ðxÞ which has a simple root where
f ðxÞ has a multiple root. Such an idea will not require a knowledge of the multiplicity, but on the other hand will require
higher derivatives. For example, Newton’s method for the function FðxÞ ¼ f ðxÞ=f 0ðxÞ will be
xnþ1 ¼ xn �
f ðxnÞ

f 0ðxnÞ � f ðxnÞf 00 ðxnÞ
f 0 ðxnÞ

: ð1Þ
If we define the efficiency index of a method of order, p as
I ¼ p1=d; ð2Þ
where d is the number of function- (and derivative-) evaluation per step then this method has an efficiency of 21=3 ¼ 1:2599
instead of

ffiffiffi
2
p
¼ 1:4142 for Newton’s method for simple roots.

There are very few methods for multiple roots when the multiplicity is known. The first one is due to Schröder [5] and it is
also referred to as modified Newton,
xnþ1 ¼ xn �mun; ð3Þ
where
un ¼
f ðxnÞ
f 0ðxnÞ

: ð4Þ
The method is based on Newton’s method for the function GðxÞ ¼
ffiffiffiffiffiffiffiffiffi
f ðxÞm

p
which obviously has a simple root at a, the multiple

root with multiplicity m of f ðxÞ.
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Another method based on the same G is Laguerre’s-like method
xnþ1 ¼ xn �
kun

1þ sgnðk�mÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k�m
m

� �
ðk� 1Þ � kun

f 00ðxnÞ
f 0ðxnÞ

h ir ð5Þ
where k ( – 0; m) is a real parameter. When f ðxÞ is a polynomial of degree n, this method with k ¼ n is the ordinary Laguerre
method for multiple roots, see Bodewig [6] and Neta and Chun [7]. This family of merthods converges cubically.

We now list optimal fourth order methods for multiple roots. The first paper is by Li et al. [8]. Their method is a special
case of one of the families found later by Li et al. [9].

Li et al. [9] have developed six fourth order methods based on the results of Neta and Johnson [10] and Neta [11]. Here we
list the two optimal fourth order.

� LCN5
yn ¼ xn �
2m

mþ 2
un;

xnþ1 ¼ xn � a3
f ðxnÞ
f 0ðynÞ

� f ðxnÞ
b1f 0ðxnÞ þ b2f 0ðynÞ

;

ð6Þ
where
a3 ¼ � 1
2

m
mþ2ð Þ

m
mðm�2Þðmþ2Þ3

m3�4mþ8 ;

b1 ¼ � ðm3�4mþ8Þ2

mðm4þ4m3�4m2�16mþ16Þðm2þ2m�4Þ ;

b2 ¼ m2ðm3�4mþ8Þ
m

mþ2ð Þ
mðm4þ4m3�4m2�16mþ16Þðm2þ2m�4Þ

:

� LCN6
yn ¼ xn �
2m

mþ 2
un;

xnþ1 ¼ xn � a3
f ðxnÞ
f 0ðxnÞ

� f ðxnÞ
b1f 0ðxnÞ þ b2f 0ðynÞ

;

ð7Þ
where
a3 ¼ �
1
2

mðm� 2Þ;

b1 ¼ �
1
m
; b2 ¼

1

m m
mþ2

� �m :
Zhou et al. [14] have also developed fourth-order optimal methods for multiple roots but they will not be included in the
comparison given here. We now give the optimal methods due to Liu and Zhou [12]. These methods require the computation

of the
ffiffiffiffiffiffiffiffiffi
f 0 ðynÞ
f 0 ðxnÞ

ðm�1Þ
q

.

Two methods from the family developed by Liu and Zhou [12]
yn ¼ xn �mun;

xnþ1 ¼ xn �mHðwnÞ
f ðxnÞ
f 0ðxnÞ

;
ð8Þ
where
wn ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
f 0ðynÞ
f 0ðxnÞ

ðm�1Þ

s
ð9Þ
and Hð0Þ ¼ 0; H0ð0Þ ¼ 1; H00ð0Þ ¼ 4m
m�1.

The two members given there are.

� LZ11



Table 2
Timing for the 4 optimal methods to run all 31
examples.

LCN5 4.39 sec
LCN6 5.05 sec
LZ11 5.17 sec
LZ12 16.03 sec

Table 1
The functions used for comparison.

Function x0 a m

x4 � 2x2 þ 1 1.6 1. 2

x6 � 2x3 þ 1 1.6 1. 2

ðsin2 x� x2 þ 1Þ
2 4.5 1.40449 2

ðsin2 x� x2 þ 1Þ
2 2.5 1.40449 2

ðex þ x� 20Þ2 3.0 2.84244 2

ðex þ x� 20Þ2 5.5 2.84244 2

x15 � 3x10 þ 3x5 � 1 3.5 1. 3

x18 � 3x12 þ 3x6 � 1 1.6 1. 3

ðcos x� xÞ3 1.5 .739085 3

ðcos x� xÞ3 2.5 .739085 3

ðx3 þ 4x2 � 10Þ3 3.0 1.36523 3

ðx3 þ 4x2 � 10Þ3 �.4 1.36523 3

x28 � 4x21 þ 6x14 � 4x7 þ 1 4.0 1. 4

ðxex2 � sin2 xþ 3 cos xþ 5Þ
4 3.5 �1.20765 4

ðxex2 � sin2 xþ 3 cos xþ 5Þ
4 2.5 �1.20765 4

ðex2þ7x�30 � 1Þ
4 3.25 3 4

ðex2þ7x�30 � 1Þ4 5. 3 4

ðlnðxÞ þ
ffiffiffi
x
p
� 5Þ4 .5 8.30943 4

ðlnðxÞ þ
ffiffiffi
x
p
� 5Þ4 10. 8.30943 4

ðx4 � 2x2 þ 1Þ2 1.6 1. 4

ðex þ x� 20Þ4 3.0 2.84244 4

x20 � 5x16 þ 10x12 � 10x8 þ 5x4 � 1 1.6 1. 5

ðx2 � ex � 3xþ 2Þ5 1.8 .25753 5

ðx2 � ex � 3xþ 2Þ5 2.0 .25753 5

ðex þ x� 20Þ5 3.0 2.84244 5

ðcos x� xÞ5 1.5 .739085 5

ðex þ x� 20Þ6 3.0 2.84244 6

ðx4 � 2x2 þ 1Þ3 1.6 1. 6

ðx18 � 3x12 þ 3x6 � 1Þ2 1.6 1. 6

ðcos x� xÞ6 1.5 .739085 6

ðx3 þ 4x2 � 10Þ6 3.0 1.36523 6
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yn ¼ xn �m
f ðxnÞ
f 0ðxnÞ

;

xnþ1 ¼ yn �m wn þ
2m

m� 1
w2

n

� �
f ðxnÞ
f 0ðxnÞ

;

ð10Þ
� LZ12
yn ¼ xn �m
f ðxnÞ
f 0ðxnÞ

;

xnþ1 ¼ yn þ
ðm� 1Þwn

1�mþ 2mwn

f ðxnÞ
f 0ðxnÞ

:

ð11Þ
The last two methods (denoted LZ11 and LZ12) are the only ones known to the authors where the root of the function is
required at each step. It may be that this will increase the cost of the method, therefore in the next section we ran these two
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methods for multiple roots with multiplicity m > 2 in order to see the effect of having to evaluate
ffiffiffiffiffiffiffiffiffi
f 0 ðynÞ
f 0 ðxnÞ

ðm�1Þ
q

. We compare that
to other optimal fourth order methods listed above (namely, LCN5 and LCN6).

In the next section we give timing comparison for optimal fourth order methods that require
ffiffiffiffiffiffiffiffiffi
f 0 ðynÞ
f 0 ðxnÞ

ðm�1Þ
q

and those that do
not. We close with concluding remarks.

2. Comparison of optimal fourth order methods

Kung and Traub [13] conjectured that multipoint iterative methods without memory, requiring nþ 1 function-evalua-
tions per iteration, have order of convergence at most 2n. Multipoint methods that satisfy the Kung-Traub conjecture are
called optimal methods. Their efficiency index is 2n=ðnþ1Þ. Of all the methods listed above we have only 4 optimal methods
of order 4, namely (6), (7), (10), and (11). We refer to these methods as LCN5, LCN6, LZ11 and LZ12, respectively. We have
ran these 4 methods on 31 cases having roots of multiplicty m ¼ 2;3;4;5. Table 1 gives the functions, the initial guess, the
root and its multiplicity.

We have ran Maple using Digits:¼128, the tolerance for convergence is 10�25 and no more than 1000 iterations. The tim-
ing required for all examples for each method is given in Table 2.

It is clear that LZ12 requires more than three times as much CPU time than the other three methods use. Since LZ11 does
not require more CPU time than LCN5 and LCN6, we conclude that the reason for the extra cost is due to a slow convergence
of LZ12 and not that the ðm� 1Þst root is costly. As suggested by the referees, we have looked at the reason for the time con-
sumption of LZ12 and found that the method requires more iterations to converge. In a follow-on manuscript we will com-
pare the basins of attraction which hopefully will show that unless one starts very close to the root, LZ12 will require more
iterations.

Conclusion

The computation of
ffiffiffiffiffiffiffiffiffi
f 0 ðynÞ
f 0 ðxnÞ

ðm�1Þ
q

does not significantly increase the CPU time required for convergence.
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