
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright


Author's personal copy

Interpolatory multipoint methods with memory for solving
nonlinear equations
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a b s t r a c t

A general way to construct multipoint methods for solving nonlinear equations by using
inverse interpolation is presented. The proposed methods belong to the class of multipoint
methods with memory. In particular, a new two-point method with memory with the
order ð5þ

ffiffiffiffiffiffi
17
p
Þ=2 � 4:562 is derived. Computational efficiency of the presented methods

is analyzed and their comparison with existing methods with and without memory is per-
formed on numerical examples. It is shown that a special choice of initial approximations
provides a considerably great accuracy of root approximations obtained by the proposed
interpolatory iterative methods.

� 2011 Elsevier Inc. All rights reserved.

1. Introduction

The main goal and motivation in constructing iterative methods for solving nonlinear equations is to attain as fast as pos-
sible order of convergence with minimal computational costs. The most efficient existing root-solvers are based on multi-
point iterations, first studied in Traub’s book [29] and some papers and books published in the second half of the 20th
century (see, e.g., [7–11,14–17,20]). Multipoint iterative methods have again become an interesting and challenging task
at the beginning of the 21st century since they overcome theoretical limits of one-point methods concerning the conver-
gence order and computational efficiency. The highest possible computational efficiency of these methods is closely con-
nected to the hypothesis of Kung and Traub [11] from 1974. They have conjectured that the order of convergence of any
multipoint method without memory, requiring n + 1 function evaluations per iteration, cannot exceed the bound 2n (called
optimal order). Multipoint methods with this property are usually called optimal methods. An extensive (but not exhausting)
list of optimal methods may be found, for example, in [21] and [24].

The convergence of multipoint methods can be accelerated without additional computations using information from the
points at which old data are reused. Let yj represent the s + 1 quantities xj,x1(xj), . . . ,xs(xj) (s P 1) and define an iterative
process by

xkþ1 ¼ uðyk; yk�1; . . . ; yk�mÞ:

Following Traub’s terminology [29], u is called a multipoint iterative function with memory. Two simple examples of this type
of iterative functions were presented in Traub’s book [29, pp. 185–187]. In the recent paper [22] the two-point methods of
the fourth order were modified to the methods with memory which possess the increased order 2þ

ffiffiffi
5
p
� 4:236 and

2þ
ffiffiffi
6
p
� 4:449.
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In this paper we present multipoint methods for solving nonlinear equations, constructed by inverse interpolation. These
methods will be referred to as interpolatory iterative methods. The basic idea comes from one of the authors who derived
very fast three-point method of the R-order 10:81 _5 at the eighties of the last century, see [16]. In Section 2 we construct a
two-point method with memory of the order of convergence ð5þ

ffiffiffiffiffiffi
17
p
Þ=2 � 4:561: Multipoint methods with memory of

higher order, also based on inverse interpolation, are presented in Section 3. The comparison of computational efficiency
of multipoint methods with and without memory is the subject of Section 4. Numerical examples are given in Section 5
to illustrate convergence behavior of multipoint methods. It can be seen from these examples that a special choice of initial
approximations provides considerably great accuracy of approximations to the roots, obtained by the proposed methods.

2. Two-point interpolatory iterative methods

Let x0 and y�1 be two starting initial approximations of the sought zero a of a given real function f. We will now construct
a two-point method calculating first yk on the basis of the values of f at xk, yk�1 and the value of f0 at xk. Then a new approx-
imation xk+1 is calculated using the values of f at xk, yk and the value of f0 at xk.

We use inverse interpolation to compute yk. Let

Rðf ðxÞÞ ¼ aþ bðf ðxÞ � f ðxkÞÞ þ cðf ðxÞ � f ðxkÞÞ2 ð1Þ

be a polynomial of degree two satisfying

xk ¼ Rðf ðxkÞÞ; ð2Þ
1

f 0ðxkÞ
¼ R0ðf ðxkÞÞ; ð3Þ

yk�1 ¼ Rðf ðyk�1ÞÞ: ð4Þ

From (2) and (3) we obtain

a ¼ xk; b ¼ 1
f 0ðxkÞ

: ð5Þ

Let us introduce

UðtÞ ¼ 1
f ðtÞ � f ðxkÞ

t � xk

f ðtÞ � f ðxkÞ
� 1

f 0ðxkÞ

� �
ð6Þ

and let

NðxÞ ¼ x� f ðxÞ
f 0ðxÞ

denote Newton’s iterative function. In view of (1) and (4) we obtain c = U(yk�1) so that, together with (5), it follows from (1)

yk ¼ Rð0Þ ¼ xk �
f ðxkÞ
f 0ðxkÞ

þ f ðxkÞ2Uðyk�1Þ ¼ NðxkÞ þ f ðxkÞ2Uðyk�1Þ: ð7Þ

In the next step, to find xk+1 we carry out the same calculation but using yk instead of yk�1. The constant c appearing in (1)
is now given by c = U(yk) and we find from (1)

xkþ1 ¼ xk �
f ðxkÞ
f 0ðxkÞ

þ f ðxkÞ2UðykÞ ¼ NðxkÞ þ f ðxkÞ2UðykÞ; ð8Þ

where yk is calculated by (7).

Remark 1. To start the iterative process we need two initial approximations x0 and y�1. However, let us observe that y�1

may take the value N(x0) at the first iteration without any additional computational cost. Indeed, N(x0) appears anyway in (7)
and (8) for k = 0. To avoid unnecessary evaluation at the last step of iterative process, N(xk) is calculated only if the stopping
criterion is not fulfilled. In that case we calculate N(xk),increase k to k + 1 and apply the next iteration. Practical examples
show that such a choice of y�1 in (9) and (14) (see Section 3) considerably increases the accuracy of obtained approximations,
see Tables 4–11.

The relations (7) and (8) define the two-point method with memory,

given x0; y�1 ¼ Nðx0Þ;
yk ¼ NðxkÞ þ f ðxkÞ2Uðyk�1Þ; ðk ¼ 0;1; . . .Þ
xkþ1 ¼ NðxkÞ þ f ðxkÞ2UðykÞ;

(
ð9Þ

where U is given by (6). The order of convergence of the method (9) is given in the following theorem.
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Theorem 1. The two-point method (9) has the R-order of convergence at least qðMð2ÞÞ ¼ ð5þ
ffiffiffiffiffiffi
17
p
Þ=2 � 4:56115; where q(M(2))

is the spectral radius of the matrix

Mð2Þ ¼
3 4
1 2

� �
:

Proof. We shall use Herzberger’s matrix method [6] on the order of a single step s-point method xk = G(xk�1,xk�2, . . . ,xk�s). A
matrix M(s) = (mij), associated to this method, has the elements

m1;j ¼ amount of information required at point xk�j; ðj ¼ 1;2; . . . ; sÞ;
mi;i�1 ¼ 1 ði ¼ 2;3; . . . ; sÞ;
mi;j ¼ 0 otherwise:

The order of an s-step method G = G1 � G2� � � � � Gs is the spectral radius of the product of matrices M(s) = M1 �M2 � � �Ms.
According to the relations (7) and (8) we form the respective matrices,

M1 ¼
2 1
1 0

� �
; M2 ¼

1 2
1 0

� �
:

Hence

Mð2Þ ¼ M1 �M2 ¼
2 1
1 0

� �
1 2
1 0

� �
¼

3 4
1 2

� �
:

The characteristic polynomial of the matrix M is

P2ðkÞ ¼ k2 � 5kþ 2:

Its roots are 4:561 _2; 0:4384 _5; therefore the spectral radius of the matrix M(2) is qðMð2ÞÞ ¼ 4:561 _6, which gives the lower
bound of the R-order of the method (9). h

Remark 2. Let yk = xk � f(xk)/f0(xk) be calculated in advance and let us express the condition (4) in the form yk = R(f(yk)). Find-
ing the coefficients a, b, c from the inverse interpolation (1) and the conditions (2)–(4) we arrive at the two-point method

yk ¼ xk � f ðxkÞ
f 0 ðxkÞ

ðk ¼ 0;1; . . .Þ

xkþ1 ¼ yk �
f ðxkÞ2 f ðykÞ

f 0 ðxkÞ f ðykÞ�f ðxkÞð Þ2
:

8<
:

This method of optimal order four is a special case of the Kung-Traub family of arbitrary order of convergence presented in
[11].

3. Multipoint interpolatory iterative methods

Now we will present in short the three-point method with memory derived by Neta [16] in 1983. This method was pre-
sented in [16] without numerical examples and comparison with existing methods and our intention is to complete numer-
ical experiments. Neta’s method requires three initial approximations x0,y�1,z�1 and it was constructed using inverse
interpolatory polynomial

Rðf ðxÞÞ ¼ aþ bðf ðxÞ � f ðxkÞÞ þ cðf ðxÞ � f ðxkÞÞ2 þ dðf ðxÞ � f ðxkÞÞ3

of degree three satisfying

xk ¼ Rðf ðxkÞÞ; ð10Þ
1

f 0ðxkÞ
¼ R0ðf ðxkÞÞ; ð11Þ

yk�1 ¼ Rðf ðyk�1ÞÞ; ð12Þ
zk�1 ¼ Rðf ðzk�1ÞÞ: ð13Þ

Let us define

WðtÞ ¼ t � xk

ðf ðtÞ � f ðxkÞÞ2
� 1
ðf ðtÞ � f ðxkÞÞf 0ðxkÞ

:

Using the conditions (10), (12), (13), Neta derived the following three-point method

M.S. Petković et al. / Applied Mathematics and Computation 218 (2011) 2533–2541 2535
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yk ¼ NðxkÞ þ f ðyk�1ÞWðzk�1Þ � f ðzk�1ÞWðyk�1Þ½ � f ðxkÞ2
f ðyk�1Þ�f ðzk�1Þ

;

zk ¼ NðxkÞ þ f ðykÞWðzk�1Þ � f ðzk�1ÞWðykÞ½ � f ðxkÞ2
f ðykÞ�f ðzk�1Þ

;

xkþ1 ¼ NðxkÞ þ f ðykÞWðzkÞ � f ðzkÞWðykÞ½ � f ðxkÞ2
f ðykÞ�f ðzkÞ

8>>><
>>>:

ð14Þ

for k = 0,1, . . .. It is preferable that y�1 takes the value N(x0) at the first iteration, see Remarks 1 and 3.
Respective matrices corresponding to the steps of the three-point method (14) are

M1 ¼
2 1 1
1 0 0
0 1 0

2
64

3
75; M2 ¼

1 2 1
1 0 0
0 1 0

2
64

3
75; M3 ¼

1 1 2
1 0 0
0 1 0

2
64

3
75:

According to this, the following theorem was proved in [16].

Theorem 2. The three-point method (14) has the R-order of convergence at least q(M(3)) � 10.815, where q(M(3)) is the spectral
radius of the matrix

Mð3Þ ¼ M1 �M2 �M3 ¼
8 5 6
3 2 2
1 1 2

2
64

3
75:

In a similar way we could continue to construct the four-point methods using inverse interpolatory polynomial of degree
four

Rðf ðxÞÞ ¼ a0 þ a1ðf ðxÞ � f ðxkÞÞ þ a2ðf ðxÞ � f ðxkÞÞ2 þ a3ðf ðxÞ � f ðxkÞÞ3 þ a4ðf ðxÞ � f ðxkÞÞ4:

The corresponding 4 � 4 matrices M1,M2,M3,M4 and the resulting matrix M(4) are presented below:

Mð4Þ ¼ M1 �M2 �M3 �M4 ¼

2 1 1 1
1 0 0 0
0 1 0 0
0 0 1 0

2
6664

3
7775

1 2 1 1
1 0 0 0
0 1 0 0
0 0 1 0

2
6664

3
7775

1 1 2 1
1 0 0 0
0 1 0 0
0 0 1 0

2
6664

3
7775

1 1 1 2
1 0 0 0
0 1 0 0
0 0 1 0

2
6664

3
7775 ¼

14 16 11 16
5 6 4 6
2 3 2 2
1 1 1 2

2
6664

3
7775:

The spectral radius q(M(4)) of the final matrix is q(M(4)) � 22.704 and it determines the R-order of the four-point method
with memory, constructed by the inverse interpolatory polynomial of degree four. However, we regard that the convergence
speed of the described method is too fast that it exceeds practical requirements and, for this reason, we will not discuss this
method here.

Computational efficiency of the methods (9) and (14), constructed by inverse interpolation, and their comparison with
the existing methods of order four and eight is discussed in the next section. Results of numerical experiments are given
in Tables 4–11 in Section 5.

4. Comparison of computational efficiency

In this paper we consider two-point methods and three-point methods with and without memory from the computa-
tional point of view. For comparison purpose, we present Kung-Traub’s n-point methods with/without memory arising from
Kung-Traub’s family whose order of convergence is at least 2n (n P 2), see [11]. For n = 2 the following two-point method is
generated,

yk ¼ xk � bkf ðxkÞ2
f ðxkþbkf ðxkÞÞ�f ðxkÞ

;

xkþ1 ¼ yk � f ðykÞf ðxkþbkf ðxkÞÞ
f ðxkþbkf ðxkÞÞ�f ðykÞð Þf ½xk ;yk �

;

8<
: ðk ¼ 0;1; . . .Þ; ð15Þ

where f[x,y] = [f(x) � f(y)]/(x � y) is a divided difference and bk is either a nonzero constant or self-accelerating variable
parameter, see [29, pp. 185–187] and [22] for details.

The following three-point method is obtained as the next special case of Kung-Traub’s family taking n = 3,

yk ¼ xk � bkf ðxkÞ2
f ðxkþbkf ðxkÞÞ�f ðxkÞ

;

zk ¼ yk � f ðykÞf ðxkþbkf ðxkÞÞ
f ðxkþbkf ðxkÞÞ�f ðykÞð Þf ½xk ;yk �

; ðk ¼ 0;1; . . .Þ;

xkþ1 ¼ zk �
f ðykÞf ðxkþbkf ðxkÞÞ yk�xkþ

f ðxk Þ
f ½xk ;zk �

� �
ðf ðykÞ�f ðzkÞÞðf ðxkþbkf ðxkÞÞ�f ðzkÞÞ

þ f ðykÞ
f ½yk ;zk �

:

8>>>>><
>>>>>:

ð16Þ
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If the parameter bk in (15) and (16) has a constant value during the iterative process, then the order of the two-point
method (15) is four and the order of the three-point method (16) is eight. These methods belong to the class of methods
without memory. The convergence speed of these methods can be accelerated by calculating bk recursively as the iteration
proceeds. Then we shall have the corresponding self-accelerating methods with memory.

For example, the parameter bk may be calculated recursively during the iterative process either as

bk ¼ �
1

�f 0ðaÞ
¼ � bk�1f ðxk�1Þ

f ðxk�1 þ bk�1f ðxk�1ÞÞ � f ðxk�1Þ
ðmethodðIÞÞ ð17Þ

or

bk ¼ �
1

�f 0ðaÞ
¼ � xk � xk�1

f ðxkÞ � f ðxk�1Þ
ðmethod ðIIÞÞ ð18Þ

for k = 1,2, . . ., where �f 0ðaÞ denotes an approximation to f0(a). Then the methods (15)(17/18) and (16)(17/18) with memory have
the increased R-order 2þ

ffiffiffi
6
p
� 4:45 and 4þ 2

ffiffiffi
5
p
� 8:472, respectively, which is the subject of the forthcoming paper [23].

Before estimating the computational efficiency of the considered methods with/without memory, we give in Table 1 a review
of their R-orders and a number of required function evaluations.

From Table 1 and the corresponding iterative formulas, we see that the methods (9) and (14) are realized by different
function evaluations depending on the total number of performed iterative steps necessary to fulfill a given termination cri-
teria (e.g., the required accuracy of approximations to the roots). For this reason it is not possible to compare the methods
listed in Table 1 without taking into account the total number of iterations as a parameter. It is convenient to compute the
efficiency index of an iterative method (IM) by the formula

EsðIMÞ ¼ ðrsÞ1=ðh1þ���þhsÞ;

where s is the total number of iterations, r is the R-order and hj is the number of function evaluations at the jth iteration.
Obviously, if h1 = � � � = hs = h, then the above formula reduces to the well known formula E(IM) = r1/h. This is the case with
the methods (15) and (16).

From Tables 4–11 we observe that the interpolatory iterative method (9) produces more accurate approximations in all
presented examples in relation to the method (15)(17/18) and all the tested fourth-order methods. The method (14), derived
by inverse interpolation of the third degree, also possesses the domination to the method (16)(17/18) and all the tested eight-
order methods regarding the accuracy of approximations, see Tables 8–11. However, one should say that the method (9) uses
one function evaluation more and the method (14) even two function evaluations more at the first iteration. These additional
calculations decrease their computational efficiency, which is evident from Table 2. It is clear that their efficiency indices
approach the efficiency indices of the methods (15)(17/18) and (16)(17/18) when the number of total iterations increases since
the negative effect of expensive first iterations fades away.

Remark 3. At first sight, the need for three initial approximations to start the methods (14) is a disadvantage. This would
have been true if we calculated additional initial approximations y�1 and z�1 by some iterative method, spending extra
function evaluations. However, as explained in Remark 1, assuming that we have found an initial approximation x0

(necessary for any iterative method), the next initial approximation y�1 can be calculated as y�1 = N(x0) not requiring extra
cost since N(x0) is anyway needed at the first iteration. A lot of practical experiments showed that another approximation z�1

can be taken sufficiently close to the already calculated y�1, for example

z�1 ¼ y�1 � d; with d � jf ðx0Þj=10:

Note that the methods (9) and (14) may converge slowly at the beginning of iterative process if the initial value x0 (and, con-
sequently, y�1 and z�1) is not sufficiently close to the sought root a, but this is the case with all iterative methods with local

Table 1
Characteristics of multipoint methods with memory.

Methods Number of function evaluations R-order Number of initial approximations

(15), bk fixed 3 4 1
(9) 3+a

4:5 _6 2b

(15)(17/18), bk by (17) or (18) 3 4:4 _5 1

(16), bk fixed 4 8 1
(14) 4+a

10:81 _5 3 b

(16)(17/18), bk by (17) or (18) 4 8:47 _2 1

a The number of function evaluation of the methods (9) and (14) is denoted with 3+ and 4+ to point that the number of function evaluations is respectively
4 and 6 at the first iteration.

b Taking y�1 = N(x0) (see Remarks 1 and 3), this number is decreased by one.

M.S. Petković et al. / Applied Mathematics and Computation 218 (2011) 2533–2541 2537
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convergence. This possible drawback can be solved in most ‘‘non-pathological’’ situations by applying an efficient procedure
for finding sufficiently good initial approximations recently proposed by Yun [31] and later discussed in [32].

5. Numerical examples

In this section we compare (1) the two-point method (9) with some existing two-point methods of the fourth order and
(2) the three-point method (14) with some existing three-point methods of the eight order. The Kung-Traub methods with
self-accelerating parameter (15)(17/18) and (16)(17/18) were also tested. The tested functions f, together with the sought zero a
and used initial approximation x0, are listed in Table 3. The two-point methods have been applied in Examples 1–4 and the
three-point methods in Examples 5–8, noting that the second and fourth function in Table 3 have been tested by both types
of methods.

To save space, we will give only references in which the tested methods were presented, except the King method which
appears in both cases (1) and (2).

King’s family [10]:

uðxkÞ ¼ xk � f ðxkÞ
f 0ðxkÞ

;

Kf ðb; xkÞ ¼ uðxkÞ � f uðxkÞð Þ
f 0 ðxkÞ

� f ðxkÞþbf uðxkÞð Þ
f ðxkÞþðb�2Þf uðxkÞð Þ ðb 2 RÞ:

8<
: ð19Þ

The following two-point optimal methods were also tested:

– Jarratt’s method [7].
– Maheshwari’s method [13].
– Ren-Wu-Bi’s method [26].
– Kung-Traub’s method [11] without derivatives (version 1), order 4.
– Kung-Traub’s method [11] with derivative (version 2), order 4.

For brevity, in Tables 4–11 the Kung-Traub methods, versions 1 and 2, are denoted as K-T-1 and K-T-2, respectively. Recall
that the Kung-Traub families of n-point methods (n P 2) have the order of convergence 2n; we dealt with n = 2 in Examples
1–4 and n = 3 in Examples 5–8.

We employed the computer algebra system Mathematica with multiple-precision arithmetic relying on the GNU
multiple-precision package GMP developed by Granlund [5]. The errors jxk � aj for the few first iterations are given in Tables
4–11, where the denotation A(�h) means A � 10�h.

(1) Two-point methods: numerical examples
We observe from Tables 4–7 that the two-point methods (9) and (15)(17/18) with memory produce approximations of
higher accuracy compared to the two-point methods of order four. Regarding these two methods, it is evident that the
new method (9) gives more accurate approximations in all tested examples. This dominance is especially stressed in

Table 2
Efficiency index as a function of the total number of iterations.

Methods E2 E3 E4

(15), bk fixed 1:58 _7 1:58 _7 1:58 _7
(9) 1:54 _3 1:57 _6 1:59 _5
(15)(17/18), bk by (17) or (18) 1:64 _5 1:64 _5 1:64 _5
(16), bk fixed 1:68 _2 1:68 _2 1:68 _2
(14) 1:6 _1 1:66 _6 1:69 _7
(16)(17/18), bk by (17) or (18) 1:70 _6 1:70 _6 1:70 _6

Table 3
Test functions.

Example Function Root a Initial approximation x0

1 (x � 2)(x10 + x + 1)e�5x 2 1.7
2, 5 e�x2þxþ2 � cosðxþ 1Þ þ x3 þ 1 �1 �0.5(Ex.2), � 0.2(Ex.5)

3 log(x2 + x + 2) � x + 1 4.1525907367. . . 5
4, 6 exsinx + log(x2 + 1) 0 0.25 (Ex. 4),0.3 (Ex. 6)
7 ex2�1 sin xþ cos 2x� 2 1.4477948574. . . 1.3

8 (x � 1)(x10 + x3 + 1)sinx 1 1.1

2538 M.S. Petković et al. / Applied Mathematics and Computation 218 (2011) 2533–2541
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Table 4
Results of Example 1 – two-point methods.

Methods jx1 � aj jx2 � aj jx3 � aj jx4 � aj

King’s IM, b = 0 1.39(�2) 2.14(�9) 3.45(�37) 2.35(�148)
King’s IM, b = 1 2.92(�2) 7.46(�8) 5.12(�31) 1.14(�123)
King’s IM, b = 2 5.55(�2) 1.77(�6) 1.61(�25) 1.12(�101)
Jarratt’s IM 1.37(�2) 4.57(�10) 1.05(�39) 2.97(�158)
Maheshwari’s IM 4.24(�2) 4.58(�7) 7.26(�28) 4.60(�111)
Ren-Wu-Bi’s IM 1.58(�2) 4.30(�9) 6.21(�36) 2.69(�143)
K-T-1, order 4, b = 0.01 1.96(�2) 1.09(�8) 2.31(�34) 4.68(�137)
K-T-1–(17), order 4.45, b0 = 0.01 1.96(�2) 1.07(�9) 5.17(�45) 2.51(�201)
K-T-1–(18), order 4.45, b0 = 0.01 1.96(�2) 7.85(�11) 3.36(�49) 2.42(�220)
K-T-2, order 4 1.96(�2) 1.08(�8) 2.23(�34) 4.12(�137)

Two-point IM (9) 4.50(�3) 1.18(�11) 1.37(�50) 4.20(�228)

Table 5
Results of Example 2 – two-point methods.

Methods jx1 � aj jx2 � aj jx3 � aj jx4 � aj

King’s IM, b = 0 4.26(�4) 2.12(�15) 1.31(�60) 1.93(�241)
King’s IM, b = 1 2.57(�3) 2.44(�12) 1.99(�48) 8.80(�193)
King’s IM, b = 2 4.79(�3) 2.42(�11) 1.58(�44) 2.91(�177)
Jarratt’s IM 2.27(�3) 2.04(�12) 1.34(�48) 2.50(�193)
Maheshwari’s IM 3.68(�3) 9.35(�12) 3.90(�46) 1.18(�183)
Ren-Wu-Bi’s IM 1.50(�3) 1.63(�11) 2.26(�43) 8.23(�171)
K-T-1, order 4, b = 0.01 1.68(�3) 5.39(�13) 5.73(�51) 7.28(�203)
K-T-1–(17), order 4.45, b0 = 0.01 1.68(�3) 3.66(�14) 1.39(�62) 8.29(�278)
K-T-1–(18), order 4.45, b0 = 0.01 1.68(�3) 9.39(�15) 3.70(�65) 2.76(�289)
K-T-2, order 4 1.30(�3) 1.73(�13) 5.37(�53) 5.02(�211)

Two-point IM (9) 1.38(�5) 6.18(�24) 1.71(�107) 1.37(�488)

Table 6
Results of Example 3 – two-point methods.

Methods jx1 � aj jx2 � aj jx3 � aj jx4 � aj

King’s IM, b = 0 1.86(�4) 7.48(�19) 1.94(�76) 8.70(�307)
King’s IM, b = 1 2.84(�4) 6.86(�18) 2.35(�72) 3.21(�290)
King’s IM, b = 2 3.74(�4) 2.92(�17) 1.09(�69) 2.13(�279)
Jarratt’s IM 2.16(�4) 1.51(�18) 3.61(�75) 1.18(�301)
Maheshwari’s IM 3.29(�4) 1.49(�17) 6.35(�71) 2.08(�284)
Ren-Wu-Bi’s IM 3.00(�5) 7.97(�23) 3.93(�93) 6.18(�371)
K-T-1, order 4, b = 0.01 2.34(�4) 2.50(�18) 3.25(�74) 9.26(�298)
K-T-1–(17), order 4.45, b0 = 0.01 2.34(�4) 1.70(�20) 1.66(�92) 6.71(�413)
K-T-1–(18), order 4.45, b0 = 0.01 2.34(�4) 5.06(�21) 1.10(�94) 1.16(�422)
K-T-2, order 4 2.37(�4) 2.65(�18) 4.11(�74) 2.39(�297)

Two-point IM (9) 1.70(�6) 3.81(�31) 3.88(�143) 8.36(�654)

Table 7
Results of Example 4 – two-point methods.

Methods jx1 � aj jx2 � aj jx3 � aj jx4 � aj

King’s IM, b = 0 6.54(�3) 1.28(�8) 1.96(�31) 1.08(�122)
King’s IM, b = 1 1.17(�2) 3.82(�7) 4.99(�25) 1.45(�96)
King’s IM, b = 2 1.49(�2) 1.58(�6) 2.45(�22) 1.43(�85)
Jarratt’s IM 6.47(�3) 1.21(�8) 1.59(�31) 4.66(�123)
Maheshwari’s IM 1.33(�2) 8.26(�7) 1.46(�23) 1.42(�90)
Ren-Wu-Bi’s IM 1.89(�2) 3.16(�6) 2.93(�21) 2.16(�81)
K-T-1, order 4, b = 0.01 9.90(�3) 1.37(�7) 5.59(�27) 1.53(�104)
K-T-1–(17), order 4.45, b0 = 0.01 9.90(�3) 3.45(�8) 1.81(�32) 8.28(�141)
K-T-1–(18), order 4.45, b0 = 0.01 9.90(�3) 1.56(�8) 3.42(�34) 2.03(�148)
K-T-2, order 4 9.71(�3) 1.25(�7) 3.76(�27) 3.05(�105)

Two-point IM (9) 1.63(�3) 3.82(�12) 2.37(�51) 3.94(�230)
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the case of Examples 2–4. Besides, from Table 1 we note that the R-order of convergence of the new method (9)
(� 4.56) is slightly higher than the R-order of Kung-Traub’s method (15)(17/18) with memory (�4.45). On the other
hand, the method (9) requires one function evaluation more in the first iteration (compared with (15)(17/18) and other

Table 8
Results of Example 5 – three-point methods.

Methods jx1 � aj jx2 � aj jx3 � aj

K-T-1, order 8, b = 0.01 2.05(�4) 1.73(�32) 4.37(�257)
K-T-1–(17), order 8.47, b0 = 0.01 2.05(�4) 1.59(�34) 7.75(�291)
K-T-1–(18), order 8.47, b0 = 0.01 2.05(�4) 2.88(�35) 2.80(�297)
K-T-2, order 8 1.90(�4) 7.41(�33) 3.97(�260)
Bi-Wu-Ren’s IM, method 1 2.14(�4) 1.34(�32) 3.22(�258)
Bi-Wu-Ren’s IM, method 2 3.14(�4) 4.08(�31) 3.28(�246)
Petković-King’s IM, order 8, b = 0 2.84(�4) 8.01(�32) 3.22(�252)
Petković-King’s IM, order 8, b = 1 3.44(�4) 3.03(�31) 1.09(�247)
Neta-Petković’s IM 1.62(�4) 2.26(�33) 3.17(�264)

Neta’s IM (14) 5.51(�8) 7.76(�77) 6.94(�775)

Table 9
Results of Example 6 – three-point methods.

Methods jx1 � aj jx2 � aj jx3 � aj

K-T-1, order 8, b = 0.01 8.13(�4) 2.16(�22) 5.45(�171)
K-T-1–(17), order 8.47, b0 = 0.01 8.13(�4) 1.97(�23) 1.02(�189)
K-T-1–(18), order 8.47, b0 = 0.01 8.13(�4) 4.40(�24) 1.08(�195)
K-T-2, order 8 7.84(�4) 1.56(�22) 3.96(�172)
Bi-Wu-Ren’s IM, method 1 6.53(�5) 1.14(�32) 9.57(�255)
Bi-Wu-Ren’s IM, method 2 4.08(�4) 2.44(�25) 3.53(�195)
Petković-King’s IM, order 8, b = 0 1.92(�4) 1.85(�28) 1.39(�220)
Petković-King’s IM, order 8, b = 1 5.71(�4) 1.18(�23) 4.08(�181)
Neta-Petković’s IM 5.54(�4) 4.66(�24) 1.17(�184)

Neta’s IM (14) 1.62(�6) 1.38(�55) 3.56(�552)

Table 10
Results of Example 7 – three-point methods.

Methods jx1 � aj jx2 � aj jx3 � aj

K-T-1, order 8, b = 0.01 6.23(�4) 1.45(�23) 1.22(�180)
K-T-1–(17), order 8.47, b0 = 0.01 6.23(�4) 7.85(�24) 4.01(�199)
K-T-1–(18), order 8.47, b0 = 0.01 6.23(�4) 1.38(�25) 1.49(�208)
K-T-2, order 8 4.67(�4) 1.04(�24) 6.59(�190)
Bi-Wu-Ren’s IM, method 1 3.68(�4) 8.88(�26) 1.03(�198)
Bi-Wu-Ren’s IM, method 2 0.16 1.30(�4) 1.56(�28)
Petković-King’s IM, order 8, b = 0 2.20(�5) 2.21(�36) 2.31(�284)
Petković-King’s IM, order 8, b = 1 1.73(�3) 6.73(�20) 3.53(�151)
Neta-Petković’s IM 1.20(�4) 6.37(�30) 3.92(�232)

Neta’s IM (14) 1.70(�6) 2.28(�56) 1.59(�458)

Table 11
Results of Example 8 – three-point methods.

Methods jx1 � aj jx2 � aj jx3 � aj

K-T-1, order 8, b = 0.01 3.89(�4) 9.36(�23) 1.05(�171)
K-T-1–(17), order 8.47, b0 = 0.01 3.89(�4) 1.50(�23) 4.30(�188)
K-T-1–(18), order 8.47, b0 = 0.01 3.89(�4) 2.76(�24) 7.60(�195)
K-T-2, order 8 3.41(�4) 2.94(�23) 9.00(�176)
Bi-Wu-Ren’s IM, method 1 9.21(�4) 1.17(�19) 7.76(�147)
Bi-Wu-Ren’s IM, method 2 1.35(�3) 1.94(�17) 3.09(�128)
Petković-King’s IM, order 8, b = 0 1.11(�4) 3.05(�28) 9.75(�217)
Petković-King’s IM, order 8, b = 1 5.79(�4) 5.68(�21) 4.93(�157)
Neta-Petković’s IM 1.38(�4) 4.47(�27) 5.39(�207)

Neta’s IM (14) 1.26(�6) 3.08(�54) 4.04(�536)
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two-point methods of optimal order four), which decreases its computational efficiency to a certain extent, see Table
2. For these reasons, it is hard to say which of the methods (9) and (15)(17/18) is better. It is only clear that a negative
effect of the mentioned additional function evaluation in the first iteration decreases with the growth of the total
number of iterations, increasing in this way the effectiveness of the new method (9) (see Table 2).

2) Three-point methods: numerical examples
Beside Neta’s method (14) and already mentioned the Kung-Traub methods (with order 8 in this part), we have also
tested the following three-point methods:

– Bi-Wu-Ren’s method, choosing two variants denoted by method 1 and method 2 in the same manner as in [1].
– Petković-King’s method, [21,24]. Note that a more general method, based on the Hermite interpolatory polynomial of

degree 3, can use arbitrary two-point methods of optimal order four in the first two steps. We have chosen King’s method,
which is stressed by the given specific name of the tested method.

– Neta-Petković’s method, [19].
Note that several three-point methods with optimal order eight have appeared recently, e.g., [2–4,12,18,25,27,28,30].
However, these methods have a similar convergence behavior to the tested three-point methods and we omitted them.

From Tables 8–11 we notice that the method (14), constructed by inverse interpolation, produces approximations of the
greatest accuracy. Also, its R-order (�10.815) is higher than the R-order of the remaining tested methods. On the other hand,
the method (14) requires two function evaluations more in the first iteration, which decreases its computational efficiency
(see Table 2). Therefore, the discussion and comments given above for the two-point methods also hold for the three-point
methods.
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M.S. Petković et al. / Applied Mathematics and Computation 218 (2011) 2533–2541 2541


