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given. The decay of the numerical solution is compared with the analytical results proven
earlier.
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1. Introduction

Integro-differential equations and systems arise in the study of various problems in physics, chemistry, technology, eco-
nomics, etc. One kind of integro-differential system arises in the mathematical modelling of penetration of a magnetic field
into a substance. A variable magnetic field induces in the material a variable electronic field which causes the appearance of
currents. The currents lead to the heating of the material and elevating its temperature. For quasistationary approximation
the corresponding system of Maxwell’s equations has the form [1]:

6H

- —rot(vyrotH), (1.1)
o0 2

CVE = Vp(rotH)?, (1.2)

where H = (Hq, Hy, H3) is the magnetic field vector, 6 is temperature, ¢, and v, characterize the thermal heat capacity and
electroconductivity of the substance.
If ¢, and v, depend on temperature, then the system (1.1) and (1.2) can be rewritten in the following form [2]:

t
OH _ ot [a (/ |rotH|2dr> rotH}, (1.3)
ot A

where the function a = a(S) is defined for S € [0, ).
If the magnetic field has the form H = (0,U,V) and U = U(x,t), V = V(x,t), then we have

rot(a(S)rotH) = (0, - % <a(S) 2—2) = (% (a(S) 2—‘;)),

where
S(x,t) = /Ot [(g;])Z + (g‘;)z} dr. (1.4)
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Therefore, we obtain the following system of nonlinear integro-differential equations:
ou 0 ou ov. 0 1%
E—&M%ﬂ’&‘ahﬂﬂ’

where S is defined by (1.4).

The model (1.3) is complex and was intensively studied by many authors. The existence and uniqueness of the global
solutions of initial-boundary value problems for equations and systems of type (1.3) were studied in [2-8] and in a number
of other works as well. The existence theorems, that are proved in [2,3], are based on a priori estimates, Galerkin’s method
and compactness arguments as in [9,10] for nonlinear parabolic equations. The asymptotic behavior as t — oo of the solu-
tions of such models have been the object of intensive research in recent years [11-14].

Numerous scientific works are devoted to construction and investigation of discrete analogues for integro-differential
models (see, for example, [15-28]). For integro-differential models described in the paper and problems similar to them
many authors study the convergence of finite difference schemes. Neta and Igwe [16] have developed a second order differ-
ence scheme for a nonlinear parabolic integro-differential model similar to (1.5). This scheme was also compared to the finite
element approximation discussed in [15]. It was shown in [16] that the results of the finite difference scheme are comparable
to those obtained by finite elements for the same mesh spacing using less computer storage. Iskakov et al. [17] discuss a
finite volume method for the solution of an integro-differential equation in higher dimensions. They claim that “spectral ele-
ments suffer from a number of serious limitations.” “Finite volume methods play a major role in the discretization of con-
servation laws.” They “were proposed originally as a means of generating finite difference methods on general grids.” see
Grossmann et al. [18].

The purpose of the present work is to study the numerical solution of initial-boundary value problem for the system (1.5).
The rest of the paper is organized as follows: in Section 2 we consider the finite difference scheme and prove its convergence.
In the last section we conclude with numerical implementations.

(1.5)

2. Finite difference scheme

In the cylinder [0, 1] x [0, T}, where T is a positive constant, we consider finite difference scheme for the following nonlin-
ear integro-differential problem:

Woa{(1+ f5 [+ ()°]de) ¥} = filx.0),

. ‘ 2 (2.1)
-5 { (14 |67 + @37 |dr) 2} = folx.0),

U(07 t) = U(1>t) = (O7t) = (]at) = 0> (22)
U(x,0) = Up(x), V(x,0) = Vo(x). (23)

Here f1,f,, U and V, are given functions of their arguments.

Note that the finite difference scheme for the scalar problem of (2.1)-(2.3) type was first studied in [27]. The present work
can be extended to a system with an arbitrary number of unknown functions.

On [0, 1] x [0, T] let us introduce a net whose mesh points denoted by (x;,t;) = (ih,jt), wherei=0,1,...,M;j=0,1,...,N
with h = 1/M, T = T/N. The initial line is denoted by j = 0. The discrete approximation at (x;, t;) is denoted by u§ v{ and the
exact solution to the problem (2.1)-(2.3) by U’l le We will use the following notations:

. ) ) . ) . 1/2
J J J J Jj+1 J J J-1 M-1
e ;o - j j hi—nh 3
i+1 i —1 —1
Aeri h ) vxrj, =- h ! ) A[r] T 17 vfr]i = Afr]i = T . ) HrH = < rigih> )

Il = (2}&>U?

Let us consider the finite difference scheme

&@—A{(1+f§[wumz+a&ﬁﬂ> w“} 1o

k=1

) j+1 24
4%7A%<1+TZkaﬂAHVﬂM}>Vﬂﬁ} 7, 4
k=1
i=1,2,....M—1, j=0,1,....N—1,
=, =vh=0v,=0 j=0,1,....N, (2.5)
u? :U()_’i7 U? = Voi, i:O,l,...,M. (26)

Multiplying the first equation of the (2.4) by ‘cu{”, summing for each i from 1 to M — 1 and using the discrete analogue of the
integration by parts we get
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J+1

M-1 M 2 M-1
W2 =Rl bty {( +TZ [ (Vi) 4 (Vi) D <qu§*1) } =thy_flu. (2.7)
i=1 i=1 i=1
Taking into account the following relations:
h u}u}H u; Wl th J 1 7112 1 w2
Z S 4 o 2T < I+ g e

and discrete analogue of Poincare’s inequality
W] < (V| (2.8)
from (2.7) we get
WP = ) + Tl V)P < T
From this inequality it is not difficult to get the following estimation:
n
">+ IVad]Pr <C, n=1.2,...,N. (2.9)
=
Analogously, we can show that
n
"2+ Vet <C, n=1.2,...N. (2.10)
j=1

In (2.9) and (2.10) the constant C depends on T and on f; and f, consequently.
The a priori estimates (2.9) and (2.10) guarantee the stability and existence, see [10], of solution of the scheme (2.4)-(2.6).
The principal aim of this section is the proof of the following statement.

Theorem 2.1. If the problem 212223 has a sufficiently smooth solution U= U(x,t), V =V(x,t), then the solution

(u’ u’ Wy ), V= ( ”INH) j=1,2,...,N of the difference scheme 24,2526 tends to U =
(Ul, Yoo U’ A% _(V 71),j:1,2,...,Nasr—>0,h—»Oandthefollowingestimatesaretrue
W — || < C(T+h), ||vi 7vf|| <C(t+h), j=1,2,....N. (2.11)

Proof. For U =U(x,t) and V = V(x, t) we have:

AtU{—AX{(lJrr:é[(VXUf) +(Vy v")D } =fli— ¥,

, (2.12)
i & k2 k2 il gy
AV = A (14T [(VUN + (VY] )V = A, = v,
k=1
U, =U),=Vi=V, =0, (2.13)
U} = Up;, V)=V, (2.14)

In a usual way, it is not difficult to see that

Yy =0(t+h), k=12

Solving (2.4)-(2.6) instead of the problem (2.1)-(2.3) we have the errors ¥/ = 1/ — U} and Z = v} — V/. From (2.4)-(2.6) and
(2.12)-(2.14) we get

. j+1 ‘
Ay - AX{ (1 £ T3 [(Var? + (Vo] > V!
k=1

< +rJ§ [(quk (vxvf)z})vxwﬂ} v,
(2.15)
Az - Ax{ (1 + T’; [(quf)z + (fo/f)z])vxvﬁ”

(14X [Tt + ] et b < v,

k=1

Yo=Yu=2=2y=0, (2.16)
W0 (2.17)
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ey

Multiplying equations of the system (2.15) by yi*! = ()", y,', 1y and 21 = (211 21 .. 201, respectively, sum-

ming for each i from 1 to M — 1, using (2.16) and the dlscrete analogue of formula of integration by parts we get

||yi+1|2_hM§:1y§”y{:+Tth:{<l+T§]:[(quf)z—&—(vxvf)z])vxuéﬂ ( +r§1:[ LUN? + (W, VE)? ]) U1+1} A
i=1 i=1 k=1

M-1 ) M-1 M j+1 )
=ThZ%,-V,-”7 12412 _h24+14+rh2{<1 +‘L’Z [(quff)%r(vxyf)z])vwéﬂ
i=1 i=1 i
j+1
_<1+TZ[(vxuf)2+(vxvf)2D V’“} zJ“_thWZ,z{“ (2.18)
k=1
Note that
gl j+1 G+ _ )2
h;r P 2||r P +2n I - ||r d (2.19)
and
([T + (Ve[ VT = (VU + (VVEP [ V) (V! = v )
= [(Vadl? + (Vi | (V) o+ (VU + (VWD) (V.U
= Val VU (VU (VYD + (T 4 (Viok)?]
1 i1 1) 2 K2 2 k\2 k2] 1 11,2 ) k2] 1
=5 (Ve = VU ) [Vt + (Vo) + (VUL + (VaVE)’] = 5 (V) [(ViUD? + (VaVEY?] =5
< (VU [Vt + (Veth?] + o (Va2 [(Valy? 4 (V] 43 (U2 (V082 + (V2]
> 3 (Va1 — (VU [Ty + (Ve — (U8 — (VY] (2.20)
Analogically,
([(Vtty? + (V)| Vatf"! = [(VaUE)? + (VaVE)? [ ViV ) (Vi) = W)
> 3 [Vt = (V2] [(Vad? + (Vah? — (VU2 — (Vv (2.21)
Taking into account relations (2.19)—(2.21) from (2.18) we have
) 1. . ) 1. . 1 ; 1, 1,
P+ 1! —yfnz IV SR T R g 12— 2 P R
M j+1 . ) ) .
+ T||VXZ’“ H + Z Z [ Vx f)z _ (VXU:-‘)z _ (VXV?)Z] {(quﬁﬂ)z + (va;ﬂ)z _ (VXU]i+l)2 _ (vajiﬂ)z}
i=1 k=
T/ - ; .
<§(W1||2+W2H2)+§(||w1u2+uzf“n2), j=0,1,. ,N-1. (222)

Let us introduce the notation
j
=Y (Vi) + (Vath)? = (VU = (ViV},
k=0

then

A8 = (V) 4+ (V12 — (VU2 — (W, V)2,

1 1

So, from (2.22) we get

M
R = 0+ IV + 20 VP 2 = 1207+ VTP 20 VT 4 AN+ Th Y GAe

i=1

<T(IWIP + 107 ) + T (W17 + 1211 (2223)
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Using (2.17), discrete analogue of Poincare’s inequality (2.8) and the relation
hM"1j+121vj2 7 112
thY_ 84 =g IEIE I8~ 14

from (2.23) we have

n-1 n-1 n-1 n-1 2 n-1
2 412 i+17,2 2 i+1)2 i+172 , T g2, 1 2
72+ 72 Y IV P+ T Y IV 20 T S IV Ty 9P+ 5 S 4 + 5 1€
j=0 j=0 j=0 j=0 j=0

n-1

<o (WA +IWhI%), m=1,2,...N.

Jj=0

(2.24)

From (2.24) we get (2.11) and thus Theorem 2.1 has been proven.

Note, that according to the scheme of proving convergence theorem, the uniqueness of the solution of the scheme (2.4)-
(2.6) can be proven. In particular, if (u, ) and (i, v) are two solutions of the scheme (2.4)-(2.6), for the differencesw =u —u
and w = v — » we get |[w"|? + |W"||> <0,n=1,2,...,N.So,w =w = 0.

3. Numerical implementation

The finite difference scheme (2.4)-(2.6) can be rewritten as follows:

-2

log|u-U| at Time t =0.5

-2

log|v-V| at Time t =0.5

10 . . . ; ; ; ; ; . 10 . . . ; ; ; ; ; .
107} 107° i
107} 107 -
10'5 L L L L L L L L L 10'5 L L L L L L L L L
0 01 02 03 04 05 06 07 08 09 01 02 03 04 05 06 07 08 09 1
log|lu-U| at Time t =1 log|v-V| at Time t =1
107 . . . . . . . . . 107 . . . . . . . . .
107 :
107 b
10° -
10’5 L L L L L L L L L 10’6 L L L L L L L L L
0 01 02 03 04 05 06 07 08 09 01 02 03 04 05 06 07 08 09 1

Fig. 1. The absolute value of the difference between the numerical and exact solutions for u (left) and v (right) at t = 0.5 (top) and t = 1 (bottom) on a semi-

log scale.
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j 1 I uf'{+1 - Uf ’ Z):FH — Z/?‘ ’ u{ﬂ — u{:-ﬂ
TRy ( ) \Th h
Lk —ul N o= N\ T -
1+ T; ( h ) + < h ) h
ALV A | (ke —ue\E ok \P\ | ot i
_ Yi — Y2 il T il i Zitl i
=N p h 1 + TZ h + h h

j+l uk _ u’.‘ 2 Z}’-( . y]; 2 Z}]:Jrl 7 v[:+l
1+'C < i 1—1> + < i 1—1> i i—1
() + (%5 ;

:fg.i’ i=12,...M-1, j=0,1,...,N—1.

Let

, N O T A Y A
A=1+1> (’“h ‘> +< Mh ') . 1=0,1,....M -1,
k=1

then (3.1) becomes

10 T

107 | 1

10° B

107 .
1 2 3

10 10 10

Fig. 2. The norm of the exact error as a function of the mesh size for u (top) and v (bottom) for Example 1.
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7T - 7h i 7’1 i 7’1 1,
1 ' 1 1 Aj+] H»} vi:l Aj+l l:l l—} J ( ’ )
T h i h i-1 h 2

and similarly v/, £, and sz. We also define the symmetric tridiagonal (M — 1) x (M — 1) matrix T as follows:

— LA, s=r—1,
T h]—z(AH—Af_]), s=T,

— LA, s=r+1,

0, otherwise.

Timet=0

0.25

0.2

0.15

0.1

0.05

0.25

0.2

0.15

0.1

0.05

-0.05

-0.1

-0.15

_02 1 1 1 1 1 1 1 1 1
0 01 02 03 04 05 06 07 08 09 1

Fig. 3. The initial solution Uy(x) = x(1 — x) sin(87x) (top) and V,(x) = x(1 — x) cos(4nx) (bottom) for Example 2.
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Thus the system (3.3) becomes

1w ] 1w P00 | |wt! £
5[“’*‘}7{“’%[ 0 T”*‘va“}_[fé - >4

We will use Newton’s method to solve the nonlinear system (3.4). Let

P “’}
v.l

and

P _f’i}
£
and define

1

HP*) :EPM 7%13;' LR P, (3.5)

where T+1 is the 2 by 2 block diagonal matrix with T*! on diagonal. We will now construct the gradient matrix. This matrix
can be written in block form as follows:

Q R
VH =
w z/|
-4
15 X190 : : : : : : . :
—1=0.1
+ 12012
x t=0.3
1L * 1=0.4]]
05 E
O owerorresseemrsaboR Sl
-05 E
-1} i
_15 1 1 1 1 1 1 1 1 1

0 & 10 e
+t=02
x t=0.3
* t=0.4
-0.5 | E
iy e
++++++++#WHW%++++++++
-1 1 4
-15 E
-2 ]
_2.5 I I I I I I I I I

0 01 02 03 04 05 06 07 08 09 1

Fig. 4. The numerical solution at t = 0.1,0.2,0.3,0.4 for u (top) and v (bottom).
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where the tridiagonal matrices Q,R, W, Z are given below. Actually, the matrices R and W are identical.

i1
dTrr—l

41 j+1 arH i -
Ty + ol A ‘*‘;,uirﬁl W, s=r—1,
r— r—
. j+1 . A+l i+l .
1, it 0Tl gk oamt i 9T _
A L L' + 5ty + S + 25, s=T, (36)
i j+1
EES (T G MO N _
Trr+] + ouir«il u{’ + 0L;++11 u]r+17 S=r + 17
r+1 T+1
0, otherwise,
AR TR A T
A o VA s=r—1
i Y T dr
g 1 T ’
ot it TRl et T g
r = T S=r
Rrs _ 61/',“ r + 60’,“ r—1 + f)l/lrﬂ r+1> ) (37)
ol g L Ol g
e+ s=r+1
a1 Ty e ’
0, otherwise,

Z;s and Wi are obtained by replacing u by v in Qs and Ry, respectively.
Now we compute the first partial derivative of T/;" with respect to the components of u. Taking into account (3.2) we get

Fig. 5. The maximum norm of
exponential.

0.4

0.3

0.2

0.1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0 L I I I I I I I
0 10 20 30 40 50 60 70 80 90

100

v

%% (bottom) (Example 2) and e~*/2. Solid line for 2 and 2/ and line marked with * for the

the numerical solution for 22 (top) and
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j+1
aTrr—1 _

1 047} T

8u’;“ - _h_z augﬂ - _? au}g’ﬂ

ot 1 oA 1 oA
ST AR G T AR T

j+1
j+1 i1\ 2 %Vxlt]r ) s=r—1,
9 u - ulffl - 2t j+1
h - - i vxulr , S=T,
0, otherwise,

= P 8ujs'+1 h

T 0 (u’;:%

uirﬂ)z

2 j+1 2 j+1
7h7‘3EAXu}r +h*‘3[vxulr )

2t j+1
- hﬁvxulr 9

21 j+1
h_3 Axu{” I

0,

0.25
0.2
0.15
0.1

0.05

-0.05
-0.1

-0.15

-0.25

0.3
0.25
0.2
0.15
0.1

0.05

LT0 [ (o
h* out! h

S=r,
s=r—1,
s=r+1,
otherwise

0 0.1

02 03 04 05 06 07 08 09 1

Fig. 6. The initial solution of non-homogeneous problem for Uy (x) = x(1 — x) sin(87x) + 0.0002x (top) and V(x) = x(1 — x) cos(4mx) + 0.001x (bottom).
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and
2 j+1 _
aTjJrl] 1 oAt T 9 u1+l] 7u1;+1 2 h—;Athlr ’ S=1,
ml T D . =9 —ZAT, =r+1 (3.10)
R ol R ol h w ’
0, otherwise.

The partial derivatives with respect to v will have v instead of u everywhere in (3.8)-(3.10). Combining (3.6)-(3.10) we have

. . 2
—HAN -5 (V) s=r-1,
. : SN2 SN2
1,1 +1 j+1 2t +1 2T +1 _
Q=47 +z (Ajr +Ar—1) +iz (Axu’r ) +iz (qu"r ) , S=T, (3.11)

—lA”l—E(A u’“)z s=r+1

h2 T h2 xX“r I )
0, otherwise.

Z,s is obtained by replacing u by vin Q,; and

x10°

*x+ ||
i
I
SO0O0
BOWN =

25

1.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

*x+|

Jp———
0000
By

0.5

-1.5

_2 1 1 1 1 1 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fig. 7. The numerical solution of non-homogeneous problem at t = 0.1,0.2,0.3,0.4 for u (top) and v (bottom).
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_%vxu];r]vxvjrﬂy S:T—l,
./ WTARY/ Y ALINEY S VR TALA VAV AL I
Rrs:WrS: hZ xXUYr 1X r ‘thz XUr X¥r ) (312)
_%Axu];r A,ﬂ/’ﬁ, S:T+l,
0, otherwise.

Using definition (3.5) Newton’s method for the system (3.4) is given by
VH (Pi+l> ‘(n) <Pj+1 ‘(n+]) _ pit! ‘(n)) _ —H(PM) |<n)_

Theorem 3.1. Given the nonlinear system of equations

Hi(Py,...,Pay2) =0, i=1,2,...,2M-2.
If H; are three times continuously differentiable in a region containing the solution &, . .., &y_, and the Jacobian does not vanish in
that region, then Newton’s method converges at least quadratically (see [29]).

The Jacobian is the matrix VH computed above. The term 1 on diagonal ensures that the Jacobian does not vanish. The
differentiability is guaranteed, since VH is quadratic.

0.5H R

04 1

03} R

0.2 B

0.1

0.9

0.8

0.7

0.6

05} R

04} .

03} B

0.2} i

01f 1

0 A . ! . . L L L
0 10 20 30 40 50 60 70 80 90 100

Fig. 8. The maximum norm of the numerical solution for 2 (top) and 2% (bottom) (Example 3) and e~*/2. Solid line for 2 and 2/ and line marked with * for the
exponential.



T. Jangveladze et al./Applied Mathematics and Computation 215 (2009) 615-628 627

In our first numerical experiment (Example 1) we have chosen the right-hand side so that the exact solution is given by

Ux,t) =x(1 —x)sin(x+t), V(x,t)=x(1—Xx)cos(x+t).

In this case the right-hand side is
filx,t) =x(1 —x) cos(x +t) — o((1 — 2x) sin(x + t) + x(1 — X) cos(x + t))
—B(=2sin(x+ t) + 2(1 — 2x) cos(x + t) — x(1 — x) sin(x + t)),
Hlx,t) = —x(1 —x)sin(x + t) — a((1 — 2x) cos(x + t) — x(1 — x) sin(x + t))
—pB(=2cos(x+t) — 2(1 — 2x) sin(x + t) — x(1 — x) cos(x + t)),

where
oo = 10xt — 4t + 4x>t — 6x%t, f =1+t + 5x°t — 4xt + x*t — 2x°t.

The parameters used are M = 100 which dictates h = 0.01. Since the method is implicit we can use T = h and we took 100
time steps. In the next four subplots we plotted the absolute value of the difference between the numerical and exact solu-
tions on a semi-log axis at t = 0.5 and t = 1 (Fig. 1) and it is clear that the two solutions are almost identical.

In order to check the rate of convergence of the numerical scheme, we have ran the same example with
h=1/25,1/50,1/100,1/200,1/400 and h = 1/800. We have computed the error for each h for every time step. The norm
is computed and plotted on a log-log scale to show that the finite difference scheme is first order in space, see Fig. 2.

In our next experiment (Example 2) we have taken zero right-hand side and initial condition given by

Uo(x) = U(x,0) = x(1 — x) sin(87x), Vo(x) = V(x,0) = x(1 — X) cos(4mx).

In this case, we know that the solution will decay in time [14]. The parameters M, h, T are as before. In Fig. 3, we plotted the
initial solution and in Fig. 4, we have the numerical solution at four different times. In both figures the top subplot is for u
and the bottom subplot is for ». It is clear that the numerical solution is approaching zero for all x. We have also plotted the
maximum norm of the partial derivatives 2¥ and 2 versus the exponential e-*/2. Fig. 5 shows that the maximum norm of &
(top) and 2% (bottom) decays faster than the exponential. Therefore, the numerical approximation of the x-derivative of the
solution of our experiment fully agrees with the theoretical results given in [14].

We have experimented with several other initial solutions, and in all cases we noticed the decay of the numerical solution
as expected [14].

We have experimented problem with nonhomogeneous boundary conditions on one side of lateral boundary as well
(Example 3). In this case we have taken following initial conditions:

Uo(x) = U(x,0) = x(1 — x) sin(87x) + 0.0002x, Vo (x) = V(x,0) = x(1 — x) cos(4mx) + 0.001x.

We plotted the initial solution in Fig. 6 and the numerical solution at various times in Fig. 7. Now the solution approaches the
steady state solution U(x) = 0.0002x and V(x) = 0.001x, respectively.

We have also plotted the maximum norm of the partial derivatives &Y and 2% versus the exponential e~*/2. Fig. 8 shows that
the maximum norm of % (top) and 2 (bottom) decays faster than the exponential. Therefore, the numerical approximation
of the x-derivative of the solution of our experiment shows exponential decay as in the homogeneous case. Theoretically we
could not prove better than polynomial decay [14]. It is possible that this faster decay happens only under special
circumstances.
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