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Abstract — Zusammenfassung

A Higher Order Method for Determining Nonisolated Solutions of a System of Nonlinear Equations. In
this note, we obtain a method of order at least four to solve a singular system of nonlinear algebraic
equations. This is achieved by enlarging the system to a higher dimensional one whose solution is
isolated. For the larger system we use a method developed by B. Neta,
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1. Introduction

Newton’s method for determining nonisolated solutions of nonlinear algebraic
equations was discussed by Rall [6], Cavanaugh [1], Ortega and Rheinboldt [5],
Reddien [7, 8], Decker and Keiley [2, 3], and recently by Weber and Werner [9].In
[91, Weber and Werner suggested solving an auxiliary problem of higher dimension
which has an isolated solution. F. or the auxiliary probiem they suggest using an
algorithm developed by Werner [10, 11] of order 1 +]/§. In this note, we suggest
solving the same auxiliary problem by a method of order at least four {Neta [47).

* This work was supported by the U.8. National Science Foundation under the N§F Grant No. CPE-
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2. An Auxiliary Problem

Let X be a Banach space and Fe C?(X). Let F(x*)=0 and dim %t {(F (x*)}=1 where
Tt (F (x*)) is the null space of F'(x*). Let 9 be closed, F'{x*) 9 =) and

I=Na9. (1)

Furthermore, let
F'(x)RRnP={0}, (2)
HF" (M nx | zelln) [x],c>0,for all neR, xeX. {3)

Let B=Xx ¥ x R be equipped with the norm
[ g=lx; e+ x| g+|7] (4)

where b=(x,,x,,r), x;,x,€X, reR. In the case 0 is an eigenvalue of algebraic
multiplicity one, the higher dimensional system is

F(x)+ Ay
F(b)=F(x, y,l)Z( Fix}y ) (5a)
a(ysy)_l '

for the case where 0 is an eigenvalue of geometric multiplicity one, but algebraic
multiplicity greater than one, the mapping F is
F(x)"F(x)+ Ay
F(b)=F(x,y, i)=( F(x)y )
a{y,y)—1
where a is a continuous, symmetric, positive definite bilinear form on X x X, and the

superscript “7” in (5 b) denotes transpose. In either case, Weber and Werner [9]
showed that the system

(5b)

F(b)=0 (6)

has an isolated solution.b* =(x*, ¥*,0), since we take the vector y*e 9 to be such
that a(y*, y*)=1.

3. Numerical Selution of the Auxiliary Problem

Since the solution (x*,y*,0) of (6) is isolated, one could apply the following
algorithm developed in [4] for computing solutions of nonlinear systems. This
algorithm is of R-order at least four and requires three function evaluations and one
evaluation of the Yacobian (F’} per step.

()  Given by, F(b,), F'(b,):

(iiy -Solwe
F (by) (w,—by)= —F{by) (7)
for w,.
(i)  Evaluate ¥ (w,) and test for convergence. Either terminate the computation or
proceed to (iv).
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{iv) Evaluate the entries of the diagonal matrix D

F; (bk) —Fw) | .
—————  if denominator #+0
D=1 Fi(b)—3F(wy) * (8)

n

1 otherwise.

{v) Solve
F(b)(z,—wy)=—DF(w) &4
for z,.

(vi) Evaluate F(z) and test for convergence. Either terminate the computation
or proceed to (vii).

{vil) Solve
F(b){byoy—2d=—DF(z) {10)
for b, ..

{viii) Evaluate F(b,, ) and test for convergence. Either terminate the computation
or proceed to (ix).

(ix) Evalvate F' (b, ,), set the counter to k-+1, and return to (ii).
It was shown in [4] that this algorithm is of R-order at least 4. Numerical
experiments described in [4] show that one can save over 20%; of the cost of solving a

system of algebraic equations. The saving is greater when the dimension is higher or
the number of iterations needed is larger.

Remark: Since the dimension of the system is more than doubled and since the
saving is an increasing function of the dimension, it makes even more sense to use
our algorithm,

Let us compare the number of multiplications required by one step of our algorithm
with that of Werner’s. Let n be the dimension of the original system. Let N, be the
number of multiplications required in calculating the entries of the Jacobian matrix,
and N the number required for factorization of that matrix. Then,

N.~2n, (11)

Np~n?, (12)
The number of multiplications required in the step of back substitution is

N,~2n% (13)

The number, N,, of multiplications required in calculating the entries of the
diagonal matrix D and multiplying by F is

Np~4n. (14)
The total number of multiplications required by our algorithm is then
Ty=N,+N+3N+N,
Ty=n(n*+8n+4). (15)
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The total number of multiplications required by Werner’s algorithm is
TW=NC+NF+2NS’

T,=n*{n+6). (16)
Let us now define the efficiency of an algorithm as follows:
p
e {17)

where p is the order and T is the total number of multiplications per step.
The efficiency of our algorithm is

4 4

A 18
N T a4 801 4) (18)

The efficiency of Werner’s algorithm is
1+)/2  1+)2
e, = =— ) a9
T, n'(n+6)

It can be shown easily that, for n>2, our algorithm is more efficient than Werner’s.
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