
1 23

Numerical Algorithms
 
ISSN 1017-1398
Volume 74
Number 4
 
Numer Algor (2017) 74:1169-1201
DOI 10.1007/s11075-016-0191-y

Comparative study of eighth-order methods
for finding simple roots of nonlinear
equations

Changbum Chun & Beny Neta



1 23

Your article is protected by copyright and

all rights are held exclusively by Springer

Science+Business Media New York (outside

the USA). This e-offprint is for personal

use only and shall not be self-archived

in electronic repositories. If you wish to

self-archive your article, please use the

accepted manuscript version for posting on

your own website. You may further deposit

the accepted manuscript version in any

repository, provided it is only made publicly

available 12 months after official publication

or later and provided acknowledgement is

given to the original source of publication

and a link is inserted to the published article

on Springer's website. The link must be

accompanied by the following text: "The final

publication is available at link.springer.com”.



Numer Algor (2017) 74:1169–1201
DOI 10.1007/s11075-016-0191-y

ORIGINAL PAPER

Comparative study of eighth-order methods for finding
simple roots of nonlinear equations

Changbum Chun1 ·Beny Neta2

Received: 6 May 2016 / Accepted: 5 August 2016 / Published online: 17 August 2016
© Springer Science+Business Media New York 2016

Abstract Recently, there were many papers discussing the basins of attraction of
various methods and ideas how to choose the parameters appearing in families of
methods and weight functions used. Here, we collected many of the eighth-order
schemes scattered in the literature and presented a quantitative comparison. We have
used the average number of function evaluations per point, the CPU time, and the
number of black points to compare the methods. Based on seven examples, we found
that the best method based on the three criteria is SA8 due to Sharma and Arora.

Keywords Iterative methods · Nonlinear equations · Simple roots · Order of
convergence · Extraneous fixed points · Basin of attraction

1 Introduction

There are many iterative methods for the solution of a single nonlinear equation [1].
Most are for simple roots and a few are for a repeated root. Here, we are only inter-
ested in methods for simple roots. In fact, we will not discuss derivative-free methods
or methods with memory. There are many new methods and families of methods,
some of which are just rediscovery of old ones or special cases of known families of
methods, see, e.g., [2] for examples of such cases.
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The usual technique of comparing a new method to existing ones is by comparing
the performance on selected problems using one or two initial points or by comparing
the efficiency index (see [1]). In recent work, one can find a visual comparison, by
plotting the basins of attraction for the methods. The idea of using basins of attraction
appeared first in Stewart [3] and followed by the works of Amat et al. [4–6] and [7],
Scott et al. [8], Chun et al. [9], Chicharro et al. [10], Cordero et al. [11], Neta et al.
[12, 13], Chun et al. [14–16], Argyros and Magreñan [17], and Magreñan [18]. In
later works ([15, 16, 19–21]), we have introduced a more quantitative comparison, by
listing the average number of iterations per point, the CPU time, and the number of
points requiring 40 iterations. We have also discussed how to choose the parameters
appearing in the method and/or the weight function (see, e.g., [22]).

First, we list the eighth-order methods we consider here. The first one is non-
optimal, since it uses five function-evaluation per step instead of four. All the other
methods are optimal in the sense of Kung and Traub [23].

(i) Neta-Johnson’s non-optimal method
(ii) Neta-Petković’s optimal method

(iii) Neta’s optimal method
(iv) Hermite-based King optimal method
(v) Hermite-based Kung-Traub optimal method

(vi) Kung-Traub’s optimal method
(vii) Hermite-based Wang-Liu optimal method

(viii) Chun-Neta optimal family of methods
(ix) Weighted Maheshwari’s optimal method
(x) Thukral-Petković optimal family of methods

(xi) Bi-Ren-Wu’s optimal family of methods
(xii) Lotfi et al.’s optimal family of methods

(xiii) Babajee et al.’s optimal method
(xiv) Cordero et al.’s optimal method
(xv) Wang and Liu’s optimal method

(xvi) Sharma and Sharma’s optimal family of methods
(xvii) Cordero et al.’s optimal family of methods

(xviii) Chun and Lee’s optimal family of methods
(xix) Bi-Wu-Ren’s optimal family of methods
(xx) Khan et al.’s optimal family of methods

(xxi) Kou et al.’s optimal family of methods
(xxii) Džunić and Petković optimal method

(xxiii) Sharma and Arora’s optimal method
(xxiv) Cordero-Torregrosa-Vassileva’s optimal method
(xxv) Džunić-Petković-Petković’s optimal method

(xxvi) Geum and Kim’s optimal method
(xxvii) Liu and Wang’s optimal method

(xxviii) Sharma and Arora Weighted Newton optimal method
(xxix) Sharma-Guha-Gupta’s optimal method
(xxx) Thukral’s optimal method
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We now detail all the above methods.

(i) An eighth-order (NJ8) non-optimal method based on Jarratt’s method [24]
due to Neta and Johnson [25] is given by

yn = xn − un,

zn = xn − fn

1
6f ′

n + 1
6f ′(yn) + 2

3f ′(ηn)
,

ηn = xn − 1

8
un − 3

8

fn

f (yn)
,

xn+1 = zn − f (zn)

f ′
n

f ′
n + f ′(yn) + a2f

′(ηn)

(−1 − a2)f ′
n + (3 + a2)f ′(yn) + a2f ′(ηn)

,

(1)

where

un = fn

f ′
n

, (2)

and fn = f (xn) and similarly for the derivative.
In our experiments, we have used a2 = −1. This method is not optimal

since it requires two function- and three derivative-evaluation per cycle.
(ii) Neta and Petković (NP8) [26] have developed an eighth-order (NP8) opti-

mal method based on Kung and Traub’s optimal fourth-order method [23]
and inverse interpolation

yn = xn − un,

zn = yn − f (yn)

f ′
n

1

[1 − f (yn)/fn]2
,

xn+1 = xn − fn

f ′
n

+ cnf
2
n − dnf

3
n ,

(3)

where

dn = 1

[f (yn) − fn] [f (yn) − f (zn)]

[
yn − xn

f (yn) − fn

− 1

f ′
n

]

− 1

[f (yn) − f (zn)] [f (zn) − fn]

[
zn − xn

f (zn) − fn

− 1

f ′
n

]
,

cn = 1

f (yn) − fn

[
yn − xn

f (yn) − fn

− 1

f ′
n

]
− dn [f (yn) − fn] .

(4)

(iii) An eighth-order (N8) optimal method proposed by Neta [27] is given by

yn = xn − un,

zn = yn − f (yn)

f ′
n

fn + βf (yn)

fn + (β − 2)f (yn)
,

xn+1 = xn − un + γ f 2
n − ρf 3

n ,

(5)
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where

ρ = φy − φz

Fy − Fz

, γ = φy − ρFy, Fy = f (yn) − fn, Fz = f (zn) − fn,

φy = yn − xn

F 2
y

− 1

Fyf ′
n

, φz = zn − xn

F 2
z

− 1

Fzf ′
n

.

(6)
(iv) A Hermite interpolating polynomial with King’s fourth-order method

(HK8).
yn = xn − un,

zn = yn − f (yn)

f ′
n

fn + βf (yn)

fn + (β − 2)f (yn)
,

xn+1 = zn − H3(zn)

f ′(zn)
,

(7)

where H3(zn) is given by

H3(zn) = fn + f ′
n

(zn− yn)
2(zn− xn)

(yn − xn)(xn + 2yn − 3zn)
+ f ′(zn)

(zn−yn)(xn − zn)

xn + 2yn − 3zn

− f [xn, yn] (zn − xn)
3

(yn − xn)(xn + 2yn − 3zn)
.

(8)
(v) A Hermite interpolation-based eighth-order (HKT8) optimal method based

on Kung-Traub fourth-order method (11), see [2], is given by

yn = xn − un,

zn = yn − f (yn)

f ′
n

1

[1 − f (yn)/fn]2
,

xn+1 = zn − f (zn)

H ′
3(zn)

,

(9)

where H ′
3(zn) is given by

H ′
3(zn) = 2(f − f [xn, yn])+ f [yn, zn]+ yn − zn

yn − xn

(f [xn, yn] − f ′
n).

(10)
(vi) Kung-Traub’s eighth-order (KT8) method [23] based on inverse interpola-

tion [26]. It is given by

yn = xn − un,

zn = yn − fn

f ′
n

f (yn)fn

[fn − f (yn)]2
,

xn+1 = zn − fn

f ′
n

fnf (yn)f (zn)

[fn − f (yn)]2

f 2
n + f (yn) [f (yn) − f (zn)]

[fn − f (zn)]2 [f (yn) − f (zn)]
.

(11)
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(vii) Hermite interpolation-based eighth-order (WL8) optimal method proposed
by Wang and Liu [28] is given by

yn = xn − un,

zn = yn − f (yn)

f ′
n

fn

fn − 2f (yn)
,

xn+1 = zn − f (zn)

H ′
3(zn)

,

(12)

where H ′
3(zn) is defined by (10). Note that the first two sub-steps are

Ostrowski’s method [29].
(viii) Chun-Neta family (CN8) of optimal methods of eighth order [20]⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

yn = xn − un,

zn = yn − f (yn)

f ′
n

1

[1 − rn]2
,

xn+1 = zn − f (zn)

f ′
n

1

[1 − H(rn)J (tn)P (vn)]2
,

(13)

where

rn = f (yn)

fn

, (14)

tn = f (zn)

fn

, (15)

vn = f (zn)

f (yn)
, (16)

and H(r), J (t), P (v) are real-valued weight functions satisfying:

H(0)J (0)P (0) = 2,

H ′(0)P (0)J (0) = −1,

H ′′(0)P (0)J (0) = −1,

H ′′′(0)P (0)J (0) = 3,

|H(4)(0)| < ∞,

J ′(0) = −3J (0)/8,

|J ′′(0)| < ∞,

P ′(0) = −P(0)/4,

|P ′′(0)| < ∞.
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Chun and Neta [20] have considered rational polynomials for each of the
weight functions:

H(r) = a + br + cr2

1 + dr + gr2
,

J (t) = α + βt

1 + γ t
,

P (v) = A + Bv

1 + Cv
.

Since we only use the product H(r)J (t)P (v), it is easy to see that

H(r) = 1

2

4 + (2 − 8g)r + (8g − 3)r2

1 + (1 − 2g)r + gr2
,

J (t) = 1

8

8 + (8γ − 3)t

1 + γ t
,

P (v) = 1

4

4 + (4C − 1)v

1 + Cv
.

Thus, we have the three free parameters g, γ , and C.
We will consider the best four cases (denoted CN8a, CN8b, CN8c, and

CN8d, respectively) for the three parameters:

(a) g = −4, γ = 0, C = −4.
(b) g = −4, γ = 0, C = 0.
(c) g = 0, γ = 0, C = 0.
(d) g = 0, γ = 0, C = −4.

(ix) A weight function-based eighth-order (WM8) optimal method [2] using the
fourth-order Maheshwari’s method ([30]) is given by

yn = xn − un,

zn = xn −
[
r2
n − 1

rn − 1

]
un,

xn+1 = zn −
[
φ(rn) + tn

rn − atn
+ 4tn

]
f (zn)

f ′
n

,

(17)

where φ is an arbitrary real function satisfying the conditions

φ(0) = 1, φ′(0) = 2, φ′′(0) = 4, φ′′′(0) = −6. (18)

Chun and Neta [31] have shown that this family cannot compete with
WL8, and we will not experiment with it here.
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(x) Thukral-Petković optimal eighth-order method [32]

yn = xn − un,

zn = yn − f (yn)

f ′
n

[
1 + βrn

1 + (β − 2)rn

]
,

xn+1 = zn − f (zn)

f ′
n

[
φ(rn) + tn

rn − atn
+ 4tn

]
,

(19)

where rn is given by (14) and φ(r) is a real-valued weight function
satisfying the conditions (to ensure eighth-order convergence)

φ(0) = 1, φ′(0) = 2, φ′′(0) = 10−4β, φ′′′(0) = 12β2−72β+72. (20)

Chun and Neta [21] have shown that this family cannot compete with
WL8, and we will not experiment with it here.

(xi) Bi-Ren-Wu’s optimal eighth-order method [33]

yn = xn − un,

zn = yn − f (yn)

f ′
n

1 − 1
2 rn

1 − 5
2 rn

,

xn+1 = zn − p(tn)
f (zn)

f [zn, yn] + f [zn, xn, xn](zn − yn)
,

(21)

where tn is given by (15) and the weight function p(t) should satisfy the
following condition to guarantee eighth order:

p(0) = 1, p′(0) = 2. (22)

Bi et al. [33] have used

p(t) = 1

(1 − αt)2/α
, (23)

with α, a non-zero real number, chosen as unity. In [16], we have
considered the more general weight function

p(t) = a + bt

1 + ct + gt2
, (24)

satisfying the condition (22) and have shown that this family cannot
compete with WL8, and we will not experiment with it here.

The next four methods were analyzed and compared to WL8 in [15] and
found that they cannot compete with WL8. Therefore, we will not show
those results here.
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(xii) Lotfi et al.’s optimal family of methods [34]

yn = xn − un,

zn = yn − un

rn

1 − 2rn
,

xn+1 = zn − f (zn)

f ′(xn)

H(rn) + K(tn)

G(vn)
,

(25)

where rn is given by (14), tn is given by (15), and vn is given by (16). The
weight functions H, K, G satisfy

G(0) = 1, G′(0) = −1, (26)

K(0) = 0, K ′(0) = 2, (27)
H(0) = 1, H ′(0) = 2, H ′′(0) = 10, H ′′′(0) = 72. (28)

(xiii) BCST, a method by Babajee et al. [35]

yn = xn − un(1 + u5
n),

zn = yn − f (yn)

f ′(xn)
(1 − rn)

−2,

xn+1 = zn − f (zn)

f ′(xn)

1 + r2
n + 5r4

n + vn

(1 − rn − tn)2
,

(29)

where rn, tn and vn are given by (14)–(16).
(xiv) CFGT, a method by Cordero et al. [36]

yn = xn − un,

zn = yn − f (yn)

f ′(xn)

1

1 − 2rn − r2
n − r3

n/2
,

xn+1 = zn − 1 + 3tn

1 + tn

f (zn)

f [zn, yn] + f [zn, xn, xn](zn − yn)
,

(30)

where rn and tn are given by (14)–(15) and the divided differences

f [zn, yn] = f (zn) − f (yn)

zn − yn

,

and

f [zn, xn, xn] = f [zn, xn] − f ′(xn)

zn − xn

.

Remark: In the third substep, the second term on the right is similar to
King’s method correction with β = 3. It is possible to use other values of
β without affecting the order.

(xv) WL8-2, a family of methods by Wang and Liu [37]

yn = xn − un,

zn = xn − unG(rn),

xn+1 = zn − f (zn)

f ′(xn)
(H(rn) + V (rn)W(vn)),

(31)
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where rn and vn are given by (14) and (16), respectively, and the weight
functions are

G(rn) = 1 − rn

1 − 2rn
,

H(rn) = 5 − 2rn + r2
n

5 − 12rn
,

V (rn) = 1 + 4rn,

W(vn) = vn.

(32)

The next three methods were analyzed and compared to WL8 in [16] and
found that they cannot compete with WL8. Therefore, we will not show
those results here.

(xvi) Sharma and Sharma’s optimal family of methods [38]

yn = xn − un,

zn = yn − f (yn)

f ′(xn)

1

1 − 2rn
,

xn+1 = zn − W(tn)
f (zn)f [xn, yn]

f [xn, zn]f [yn, zn] ,
(33)

with weight function

W(tn) = 1 + tn

1 + αtn
, (34)

where tn is given by (15) and α is some real parameter. Sharma and Sharma
[38] have used α = 1.

(xvii) Cordero et al.’s optimal family of methods [39]

yn = xn − un,

zn = yn − f (yn)

f ′(xn)

1

1 − 2rn
,

xn+1 = ωn − f (zn)

f ′(xn)

3(β2 + β3)(ωn − zn)

β1(ωn − zn) + β2(yn − xn) + β3(zn − xn)
,

(35)

where

ωn = zn − f (zn)

f ′(xn)

(
1 − rn

1 − 2rn
+ 1

2

vn

1 − 2vn

)2

, (36)

where rn and vn are given by (14) and (16), respectively, and β1, β2,and
β3 are real parameters with β2 + β3 �= 0.

Remark: Cordero et al. [39] have used β1 = β3 = 0 and β2 = 1.
(xviii) Chun and Lee’s optimal family of methods [40]

yn = xn − un,

zn = yn − f (yn)

f ′(xn)

1

(1 − rn)2
,

xn+1 = zn − f (zn)

f ′(xn)

1

(1 − H(rn) − J (tn) − P(vn))2
,

(37)
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where rn, tn, and vn are given by (14)–(16), and the weight functions
should satisfy the following conditions to guarantee eighth order:

H(0) = 0, H ′(0) = 1, H ′′(0) = 1, H ′′′(0) = −3, (38)

J (0) = 0, J ′(0) = 1

2
, P (0) = 0, P ′(0) = 1

2
. (39)

Remark: Chun and Lee [40] have used the following weight functions

H(rn) = −β − γ + rn + r2
n/2 − r3

n/2,

J (tn) = β + tn/2,

P (vn) = γ + vn/2,

(40)

and β and γ are real parameters chosen to be zero for simplicity.
In our previous work, we found that it is better not to use polynomials

as weight functions, therefore we will use the following:

J (t) = a1 + b1t

1 + δ1t
,

P (t) = a2 + b2t

1 + δ2t
,

H(t) = a3 + b3t + c3t
2

1 + δ3t + g3t2
.

(41)

These functions satisfying the conditions (38)–(39) are given by

J (t) = 1

2

t

1 + δ1t
, (42)

P(t) = 1

2

t

1 + δ2t
, (43)

H(t) = 1

2

2t + (3 − 4g3)t
2

1 + (1 − 2g3)t + g3t2
. (44)

(xix) Bi-Wu-Ren’s another optimal eighth-order (BWR8) method [41]

yn = xn − un,

zn = yn − f (yn)

f ′
n

h(rn),

xn+1 = zn − fn + βf (zn)

fn + (β − 2)f (zn)
· f (zn)

f [zn, yn] + f [zn, xn, xn](zn − yn)
,

(45)
where rn is given by (14) and h is a weight function satisfying

h(0) = 1, h′(0) = 2, h′′(0) = 10, |h′′′(0)| < ∞. (46)

We have looked at the four special cases presented in [41] and noticed
that the method denoted G81 there is the best performer. In this case, β = 3
and the weight function

h(t) = 1 − t/2

1 − 5t/2
.

Author's personal copy
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We will call it BWR8 and experiment with it.
(xx) Khan et al.’s optimal eighth-order family of methods (KFS8) [42]

yn = xn − un,

zn = yn − f (yn)

f ′
n

1

1 − 2rn + ω1r2
n

,

xn+1 = zn − 1

1 + ω2t2
n

· f (zn)

f [zn, yn] − C(yn − zn) − D(yn − zn)2
,

(47)

where

D = f ′
n − f [xn, yn]

(xn − yn)(xn − zn)
− f [xn, yn] − f [yn, zn]

(xn − zn)2
, (48)

and

C = f [xn, yn] − f [yn, zn]
xn − zn

− D(xn + yn − 2zn). (49)

Sharma and Arora [44] have used ω1 = ω2 = 1 in their comparison.
(xxi) Kou et al.’s optimal eighth-order family of methods

The previous family can be considered a special case of the family in
Kou et al. [43]

yn = xn − un,

zn = yn − f (yn)

ψ(xn, yn)
,

xn+1 = zn − f (zn)

�(xn, yn, zn)
,

(50)

where ψ(xn, yn) is a real function using the evaluation of fn, f ′
n, and f (yn)

and where �(xn, yn, zn) is a real function using the evaluation of f (zn) as
well as fn, f ′

n, and f (yn). Kou et al. have suggested to use,

ψ(xn, yn) = fn + (β − 2)f (yn)

fn + βf (yn)
f ′

n (51)

and �(xn, yn, zn) is computed by using a cubic interpolating polynomial,
so that the method (50) is eighth order. This suggests �(xn, yn, zn) =

b
�(xn,yn,zn)

with b = f [zn, yn]−C(yn−zn)−D(yn−zn)
2 and C and D are

given by (49) and (48), respectively. Kou et al. suggested two possibilities
for �(xn, yn, zn), denoted KWL81 and KWL82. Khan et al. used another
choice for �(xn, yn, zn) and a different choice for ψ(xn, yn).

(xxii) Džunić and Petković eighth-order (DP8) method, see (4.93) on page 152
of [2]

yn = xn − un,

zn = yn − f (yn)

f ′
n

1

1 − 2rn
,

xn+1 = zn − f (zn)

f ′
n

· 1

(1 − 2rn − r2
n)(1 − vn)(1 − 2tn)

,

(52)

Author's personal copy



1180 Numer Algor (2017) 74:1169–1201

(xxiii) Sharma and Arora’s optimal eighth-order (SA8) method [44]

yn = xn − un,

zn = φ4(xn, yn),

xn+1 = zn − f [zn, yn]
f [zn, xn]

f (zn)

2f [zn, yn] − f [zn, xn] ,
(53)

where

φ4(xn, yn) = yn − f (yn)

2f [yn, xn] − f ′
n

. (54)

The method (53) is of eighth order when φ4(xn, yn) is replaced with
any two-point optimal fourth-order method [44]. Sharma and Arora have
considered three special cases for φ4(xn, yn) and have demonstrated that
the case based on Ostrowski’s iteration given by (54) performs best, so we
will experiment with this here. It is easy to show that (53) with (54) can be
written as

yn = xn − un,

zn = yn − 1

1 − 2rn
· f (yn)

f ′(xn)
,

xn+1 = zn − q(rn, vn)
f (zn)

f ′(xn)
,

(55)

where

q(rn, vn) = 4r2
n(1 − rn)

2

(1 − 2rn)
· (1 − vn)

[(1 − 2rn)2 + (3 − 4rn)rnvn](−1 + rnvn)
.

(56)
(xxv) Cordero-Torregrosa-Vassileva’s (CTV8) optimal method [45]

yn = xn − un,

zn = xn − 1 − rn

1 − 2rn
un,

xn+1 = zn −
(

1 − rn

1 − 2rn
+ vn

a2m2vn − 1

)2
n1 + n2vn

n1 + (n2 − 3n1)vn

f (zn)

f ′(xn)
,

(57)
where n1, n2, a2, and m2 are real parameters with m2 �= 0 and n1 �= 0.

In their experiments, they have used m2 = n1 = 1 and a2 = n2 = 0.
(xxv) Džunić-Petković-Petković’s optimal method (DPP8) [46]

yn = xn − un,

zn = yn − p(rn)
f (yn)

f ′(xn)
,

xn+1 = zn − q(rn, vn)
f (zn)

f ′(xn)
,

(58)
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where p(0) = 1, p′(0) = 2, p′′(0) = 4, q(0, 0) = 1, qr(0, 0) =
2, qv(0, 0) = 1, qrr (0, 0) = 6, qrv(0, 0) = 4. We will experiment with one
of the members they used, namely

p(rn) = 1 + rn + r2
n

1 − rn + r2
n

,

q(rn, vn) = 1 − 4rn + vn

(1 − 3rn)2 + 2rnvn

.

It is clear that (55) and (57) are special cases of (58).
(xxvi) Geum and Kim’s optimal method (GK8) [47]

yn = xn − un,

zn = yn − p(rn)
f (yn)

f ′(xn)
,

xn+1 = zn − q(rn, vn)
f (zn)

f ′(xn)
,

(59)

This is the same as (58), but the authors here have taken

p(rn) = 1 + βrn + λr2
n

1 + (β − 2)rn + μr2
n

and

q(rn, vn) = 1

1 − 2rn − vn
where μ = −3β/2 and λ = −1 + β/2. The authors experimented with
three values of the parameter β = 0, 2, −4/3.

(xxvii) Liu and Wang’s optimal method (LW8) [48]

yn = xn − un,

zn = yn − 1

1 − 2rn

f (yn)

f ′(xn)
,

xn+1 = zn −
[(

1 − rn

1 − 2rn

)2

+ vn

1 − αvn

+ G(tn)

]
f (zn)

f ′(xn)
,

(60)

where G(0) = 0, G′(0) = 4. They have experimented with three members
and we will pick the one with α = 5 for which

G(tn) = 4tn

1 − 7tn
.

Note that tn = rnvn and thus this family is also included in (58).
(xxviii) Sharma and Arora weighted Newton optimal method (SAWN8) [49]

yn = xn − un,

zn = φ4(xn, yn),

xn+1 = zn − f ′(xn) − f [yn, xn] + f [zn, yn]
2f [zn, yn] − f [zn, xn]

f (zn)

f ′(xn)
.

(61)
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We will experiment with one of the three members suggested by the
authors, namely when

φ4(xn, yn) = yn − f (yn)

2f [yn, xn] − f ′(xn)
.

(xxix) Sharma-Guha-Gupta’s optimal method (SGG8) [50]

yn = xn − un,

zn = yn − 1 + arn

1 + (a − 2)rn

f (yn)

f ′(xn)
,

xn+1 = xn − P + Q + R

Pf [zn, xn] + Qf ′(xn) + Rf [yn, xn]f (xn),

(62)

where
P = (xn − yn)f (xn)f (yn),

Q = (yn − zn)f (yn)f (zn),

R = (zn − xn)f (zn)f (xn).

(63)

They used a = 0 in their experiments.
(xxx) Thukral’s optimal method (T8) [51]

yn = xn − un,

zn = xn − 1 + r2
n

1 − rn
un = yn − rn(1 + rn)

1 − rn
un,

xn+1 = zn −
[(

1 + r2
n

1 − rn

)2

− 2r2
n − 6r3

n + vn + 4tn

]
f (zn)

f ′(xn)
.

(64)

2 Extraneous fixed points

In this section, we introduce the notion of extraneous fixed points and show how to
find those for any given method. It is easy to see that any method can be written as

xn+1 = xn − Hf

fn

f ′
n

, (65)

where the function Hf depends on xn and other intermediate values. In Tables 1
and 2, we list the function Hf for each of the methods discussed here.

It is clear that if xn is a zero of the function f (x) then xn is a fixed point of the
iterative method (65). But even if xn is a zero of Hf and not of f (x), it is a fixed
point. Those fixed points that are zeroes of Hf and not of f (x) are called extraneous
fixed points. For example, Newton method does not have any extraneous fixed point,
since Hf = 1. In order to find the extraneous fixed points, we substitute the quadratic
polynomial z2 −1 for f (z) and then find the zeros of Hf . For example, Super Halley
method has extraneous fixed points which are the solution of Lf = 2,which are (see

[12]) ±
√

3
3 i.
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Table 1 The function Hf for each of the methods

Method Hf

NJ8
f ′

n

1
6 f ′

n + 1
6 f ′(yn) + 2

3 f ′(ηn)
+ tn

f ′
n + f ′(yn) + a2f

′(ηn)

(−1 − a2)f ′
n + (3 + a2)f ′(yn) + a2f ′(ηn)

NP8 1 − cnfnf
′
n + dnf

2
n f ′

n

N8 1 − γfnf
′
n + ρf 2

n f ′
n

HK8 1 + rn
1 + βrn

1 + (β − 2)rn
+ H3(zn)

fn

f ′
n

f ′(zn)

HKT8 1 + rn
1

(1 − rn)2
+ tn

f ′
n

H ′
3(zn)

KT8 1 + rn[1 − rn]2 + rnf (zn)

[1 − rn]2

1 + rn [rn − tn]

[1 − tn]2 [f (yn) − f (zn)]

WL8 1 + rn

1 − 2rn
+ f ′

n

H ′
3(zn)

tn

CN8 1 + rn

[1 − rn]2
+ tn

[1 − H(rn)J (tn)P (vn)]2

BWR8 1 + rnh(rn) + f ′
n

fn

1 + βtn

1 + (β − 2)tn

f (zn)

f [zn, yn] + f [zn, xn, xn](zn − yn)

KFS8 1 + rn

1 − 2rn + ω1r2
n

+ tn

1 + ω2t2
n

· f ′
n

f [zn, yn] − C(yn − zn) − D(yn − zn)2

KWL81 1 + rn
1 + βrn

1 + (β − 2)rn
+ tnf

′
n

b

KWL82 1 + rn
1 + βrn

1 + (β − 2)rn
+ tnf

′
n

b
·
[

1 + Cf (zn)

b2 − αCf (zn)

]

DP8 1 + rn

1 − 2rn
+ tn

(1 − 2rn − r2
n)(1 − vn)(1 − 2tn)

SA8 1 + f ′
nrn

2f [yn, xn] − f ′
n

+ f ′
n

fn

f [zn, yn]
f [zn, xn] · f (zn)

2f [zn, yn] − f [zn, xn]

In our previous work, we found that methods without extraneous fixed point or
those having such points on the imaginary axis perform better than others. For fami-
lies of methods, we showed how to choose the parameter(s) such that the extraneous
fixed points are on or close to the imaginary axis. When a method contains a weight
function, we suggested a rational function as a weight function. This leading to a fam-
ily of methods with at least one parameter. We also demonstrated that a polynomial
weight function does not give as good results.

To choose the parameters in the methods, the following criterion can be used,
which was developed in [21] and is defined below.

Let E = {z1, z2, ..., zn} be the set of the extraneous fixed points corresponding to
the values given to the parameters. We define

d = max
zi∈E

|Re(zi)|. (66)
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Table 2 The function Hf for each of the methods (continued)

Method Hf

CTV8
1 − rn

1 − 2rn
+

(
1 − rn

1 − 2rn
+ vn

a2m2vn − 1

)2
tn

1 − 3vn

DPP8 1 + rn
1 + rn + r2

n

1 − rn + r2
n

+ tn
1 − 4rn + vn

(1 − 3rn)2 + 2tn

GK8 1 + rn
1 + βrn + λr2

n

1 + (β − 2)rn + μr2
n

+ tn

1 − 2rn − vn

LW8 1 + rn

1 − 2rn
+

[(
1 − rn

1 − 2rn

)2

+ vn

1 − 5vn

+ 4tn

1 − 7tn

]
tn

SAWN8 1 + rn
2f [yn,xn]

f ′(xn)
− 1

+ f ′(xn) − f [yn, xn] + f [zn, yn]
2f [zn, yn] − f [zn, xn] tn

SGG8
(P + Q + R)f ′(xn)

Pf [zn, xn] + Qf ′(xn) + Rf [yn, xn]

T8
1 + r2

n

1 − rn
+

⎡
⎣

(
1 + r2

n

1 − rn

)2

− 2r2
n − 6r3

n + vn + 4tn

⎤
⎦ tn

We look for the parameters which attain the minimum of the function d given in (66).
We now quote the results obtained previously for each of the methods. For the

method N8, we have used β = 2 for simplicity. We have also taken β = −0.53
(denoted N8d).

For HK8, we have previously used β = 3 − 2
√

2 which is the optimal parameter
for King’s method (see [12]). Here, we have taken β = 0 (denoted HK8d). There are
other values of β leading to purely imaginary extraneous fixed points, but β = 0 has
the least number of such points (7 vs 10).

For WL8, we found that the method has six purely imaginary extraneous
fixed points, ±2.07652139657i, ±0.797473388882i, ±0.228243474390i. All fixed
points are repulsive. In our previous paper [13], we made a mistake saying that WL8
has no extraneous fixed points.

For KFS8, we found that the extraneous fixed points are purely imaginary when
ω1 = ω2 = 0. This means that the additional factor in the third substep is unity and
therefore the method is identical to the one suggested by Kou et al.

For KWL81, the case when �(xn, yn, zn) = 1, we have purely imaginary fixed
points only when β = 0. This is identical to KFS8. Therefore, we do not need to
show KFS8 here. For KWL82, the case that �(xn, yn, zn) = 1 + Cf (zn)

b2−αCf (zn)
, the

extraneous fixed point are purely imaginary when β = 0 and α is in the interval
[1, 3]. We will present only the case β = 0, α = 2 which we denote KWL82a2. The
reason is that other values of α lead to inferior results.

The extraneous fixed points for KWL81 are: ±2.07652139657i, ±0.797473388882i,
and ±0.228243474390i. All extraneous fixed points are repulsive. Note that these are
the same as the extraneous fixed points for WL8. In fact, we can show that the two
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methods are identical. The numerical results in the tables are not identical because of
the way the iterates are computed.

The extraneous fixed points for KWL82a2 are ±4.70463011i, ±2.24603677i,
±1.37638192i, ±0.900404044i, ±0.577350269i, ±0.324919696i, and ±0.105104235i.
All extraneous fixed points are repulsive.

For SA8, we found that the method has eight purely imaginary extrane-
ous fixed points, ±2.74747741945462i, ±1.19175359259421i, ±0.5773502692i,
±0.176326980708465i. All extraneous fixed points are repulsive.

The extraneous fixed points for CTV8 are ±0.310198439929491±0.971937369
115815i, ±0.169642214518236, ±3.25348840711669i, ±1.180338081i, ±0.4858
509501i, and ±0.2759381566i. All extraneous fixed points are repulsive.

The extraneous fixed points for DPP8 are ±1.15744508259162±0.975896
785413439i, ±0.483003623093895±0.529644104091676i, ±0.417259030165903
±0.354453089732201i, ±0.390469097431474±0.242913168967612i, ±0.3669150
96535168±0.397205750373932i, ±0.184782116230004±0.107079573283538i, and
±0.305847098351993. All extraneous fixed points are repulsive.

For GK8 when β = 0, we have ±0.229435172737268±0.770167980885006i,
±0.193629632701682±0.303836169651621i, ±2.41371611097065i, ±0.6821976
662i, ±0.400870978608947 and when β = 2

±0.570582062587072, ±0.547435187983705, ±0.540696888276458, ±0.30807
7251841470,±0.658552579276995i, ±2.41868237788682i, ±0.310587859633575i
and when β = −4/3

±0.316170911320087±0.244928706792940i, ±0.292265018108880±0.468142
542228367i, ±0.161858034057866±1.15243503420192i, ±2.41315986399038i,
±1.149218897i, ±0.337486852528835. All extraneous fixed points are repulsive for
all the values of β.

The extraneous fixed points for LW8 are ±0.443428970837523±0.404034320
627720i, ±0.430878047225417±1.12786914351688i, ±0.208822949226219±0.33
9321998846708i, ±2.391136235i, ±0.7836279605i, ±4.29516917647657, ±0.2984
01332673525. All extraneous fixed points are repulsive.

The extraneous fixed points for SAWN8 are ±0.230237981705881±0.949019
368568498i, ±2.70750917598407i, ±0.454012206979393i, ±0.158407505492566.
All extraneous fixed points are repulsive.

For SGG8, we found that the method has six purely imaginary extraneous fixed
points, ±2.07652139657234i, ±0.797473388882404i, ±0.228243474390150i. All
fixed points are repulsive.

The extraneous fixed points for T8 are ±0.560031644976194±0.91532972811
8228i, ±0.524296783378056±0.451348385219899i, ±0.481521406531424±0.179
771147270053i, ±0.286425022277987±0.247206249464381i, ±0.471756447060
788, ±0.195796636991793i. All extraneous fixed points are repulsive.

3 Numerical experiments

In this section, we detail the experiments we have used with each of the methods.
For some methods, we have taken more than one case. All the examples have roots
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within a square of [−3, 3] by [−3, 3]. We have taken 360,000 equally spaced points
in the square as initial points for the methods and we have registered the total number
of iterations required to converge to a root and also to which root it converged. We
have also collected the CPU time (in seconds) required to run each method on all
the points using Dell Optiplex 990 desktop computer. We then computed the average
number of function evaluations required per point and the number of points requiring
40 iterations.

Example 1 The first example is the quadratic polynomial

p1(z) = z2 − 1 (67)

whose roots are at ±1.

The best results will be when the basins are divided by the imaginary axis. We
have plotted the basins in Figs. 1 and 2. We used a different color for each basin,
so that we can tell if the method converged to the closest root. We have also used
lighter shade when the number of iterations is lower and at the maximum number of
iterations we color the point black. Therefore ideally, the method should show lighter
shades. The best methods are HK8d, WL8, KWL81, KWL82a2, SA8, and SGG8.

Now, we check Table 3 to see the average number of function evaluations per
point. The minimum is 8.0 function evaluations per point on average, and it is
achieved by KWL82a2 followed by methods: SA8 (8.65), KWL81 (9.04) and HK8d,
WL8, GK8 with β = −4/3 and SGG8 with 9.06 and SAWN8 with 9.08 function
evaluations per point on average. The highest number (36.82) was used by NP8. All
other methods used 9.33–13.99 function evaluations per point on average. For this
reason, we will not experiment with NP8 in the rest of the examples.

Based on the CPU time in seconds, we find that the fastest method is SA8 with
152.381 s. The slowest is NP8 with 1163.71 s. We can see that the basins for this
method have many black points (Fig. 1, middle of top row). In terms of the number
of black points (see Table 5), we find that most methods have 601 such points except
NP8 (30825 points).

Example 2 The second example is the cubic polynomial

p2(z) = z3 − 1 (68)

having the three roots of unity.

The basins of attraction are given in Figs. 3 and 4. Based on these plots, we find
that HK8d, WL8, KWL81, KWL82a2, SA8, and SGG8 are best. Based on Table 3,
we find that the minimum number of function evaluations per point is achieved by
KWL82a2 (8.8) followed by SA8 (9.68). The worst are DPP8 (29.66), T8 (29.19),
and BWR8 (18.19). All the other methods use 10.17–17.12.

The fastest method is SA8 method (224.969 s) and the slowest are T8 (743.937 s),
DPP8 (678.355 s), BWR8 (618.7 s), KT8 (493.353 s), and N8 (466.022 s). Therefore,
we will remove these five methods. Based on the number of black points, clearly we
have BWR8 being the worst with 16,517 such points, T8 (13,994) and DPP8 (9729).
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Fig. 1 The top row for NJ8 (left), NP8 (center), and N8 (right). The second row for N8d (left), HK8d
(center), and HKT8 (right). The third row for KT8 (left), CN8a (center), and CN8b (right). The fourth row
for CN8c (left), CN8d (center), and WL8 (right).The bottom row for KWL81 (left), KWL82a2 (right) for
the roots of the polynomial z2 − 1
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Fig. 2 The top row for BWR8 (left), SA8 (center), and DP8 (right). The second row for CTV8 (left),
DPP8 (center), and GK with β = 0 (right). The third row for GK with β = 2 (left) and β = −4/3
(center) and LW8 (right). The last row for SAWN8 (left), SGG8 (center) and T8 (right) for the roots of
the polynomial z2 − 1
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Table 3 Average number of function evaluations per point for each example (1–6) and each of the
methods

Method Ex1 Ex2 Ex3 Ex4 Ex5 Ex6 Average

NJ8 12.77 17.12 16.59 13.71 25.02 24.05 18.21

NP8 36.82 − − − − − −
N8 10.22 13.34 − − − − −
N8d 9.63 12.45 12.32 − − − -

HK8d 9.06 10.83 11.23 10.12 14.88 13.95 11.68

HKT8 9.53 12.59 12.04 10.28 18.57 16.73 13.29

KT8 10.60 14.11 − − − − −
WL8 9.06 10.83 11.23 9.45 16.17 13.74 11.75

CN8a 11.45 14.54 14.73 − − − −
CN8b 10.57 13.83 13.52 − − − −
CN8c 10.30 13.52 13.39 11.43 18.27 17.13 14.01

CN8d 11.41 14.55 14.78 − − − −
KWL81 9.04 10.83 11.23 9.45 16.17 13.74 11.74

KWL82a2 8.0 8.8 9.36 9.44 14.60 13.04 10.54

BWR8 9.36 18.19 − − − − −
DP8 9.76 11.89 12.62 10.8 15.03 14.24 12.39

SA8 8.65 9.68 10.46 10.20 12.11 11.57 10.45

CTV8 9.36 10.76 11.19 10.87 15.73 13.89 11.97

DPP8 13.46 29.66 − − − − −
GK8 (β = 0) 9.33 12.01 − − − − −
GK8 (β = 2) 9.40 11.66 12.07 13.16 24.37 − −
GK8 (β = −4/3) 9.06 11.87 − − − − −
LW8 10.23 13.88 13.84 12.21 20.99 18.81 14.99

SAWN8 9.08 10.66 11.00 10.77 15.13 13.09 11.62

SGG8 9.06 10.17 11.14 9.72 12.27 11.83 10.70

T8 13.99 29.19 − − − − −

We will also remove from consideration the two cases of GK8 with (β = 0 and
β = −4/3), since the third one (β = 2) performed better in terms of the number of
function evaluations per point on average.

Example 3 The third example is another cubic polynomial, but with real roots only,
i.e., the polynomial is given by:

p3(z) = z3 − z. (69)
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Fig. 3 The top row for NJ8 (left), N8 (center), and N8d (right). The second row for HK8d (left), HKT8
(center), and KT8 (right). The third row for CN8a (left), CN8b (center), and CN8c (right). The fourth row
for CN8d (left) and WL8 (center). The bottom row for KWL81 (left), KWL82a2 (right) for the roots of
the polynomial z3 − 1
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Fig. 4 The top row for BWR8 (left), SA8 (center), and DP8 (right). The second row for CTV8 (left),
DPP8 (center), and GK with β = 0 (right). The third row for GK with β = 2 (left) and β = −4/3
(center) and LW8 (right). The last row for SAWN8 (left), SGG8 (center), and T8 (right) for the roots of
the polynomial z3 − 1

The basins of attraction are displayed in Figs. 5 and 6. It seems that the best meth-
ods are HK8d, WL8, KWL81, KWL82a2, SA8, and SGG8. Consulting the number
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Fig. 5 The top row for NJ8 (left), N8d (center), and HK8d (right). The second row for HKT8 (left) and
CN8a (center) and CN8b (right). The third row for CN8c (left), CN8d (center), WL8 (right). The fourth
row for KWL81 (left), KWL82a2 (center), and SA8 (right). The bottom row for DP8 for the roots of the
polynomial z3 − z
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Fig. 6 The top row for CTV8 (left), GK with β = 2 (center), and LW8 (right). The bottom row for
SAWN8 (left) and SGG8 (right) for the roots of the polynomial z3 − 1

of function evaluations per point, we find that KWL82a2 is best (9.36) followed by
SA8 (10.46), SAWN8 (11), SGG8 (11.14), CTV8 (11.19), HK8d, WL8, and KWL81
(11.23). The worst is NJ8 (16.59). All the others use 12.04–14.73 function evalua-
tions per point. The fastest method is again SA8 (241.178 s). The slowest are CN8a
(435.929), CN8d (419.33 s), CN8b (402.358), and N8d (398.036 s). We will remove
these methods from further consideration. All method have no black points.

Example 4 The fourth example is a quartic polynomial with real roots at ±1, ±3.

p4(z) = z4 − 10z2 + 9. (70)

The basins are displayed in Fig. 7. The best methods are HK8d, WL8, KWL81,
KWL82a2, SA8, and SGG8. Based on the average number of function evaluations
per point (see Table 3), we find that the minimum is achieved by KWL82a2 (9.44),
followed closely by KWL81 and WL8 (9.45), SGG8 (9.72), HK8d (10.12), and SA8
(10.20). The worst method in this sense is NJ8 which uses 13.71 function evaluation
per point on average. The rest of the methods use 10.28–13.16 function evaluations
per point on average. In terms of the CPU time, the fastest method is SA8 (318.273 s).
The slowest are KWL82a2 with 441.139 s and SGG8 with 438.909 s. All others use
323.983–430.079 s. Based on the number of black points, we see that all methods
have 601 black points, except LW8 with 605 black points.

Example 5 The fifth example is a fifth degree polynomial

p5(z) = z5 − 1. (71)
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Fig. 7 The top row for NJ8 (left), HK8d (center), and HKT8 (right). The second row for CN8c (left),
WL8 (center), and KWL81 (right). The third row for KWL82a2 (left), SA8 (center), and DP8 (right). The
fourth row for CTV8 (left), GK with β = 2 (center), and LW8 (right). The bottom row for SAWN8 (left)
and SGG8 (right) for the roots of the polynomial z4 − 10z2 + 9
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Fig. 8 The top row for NJ8 (left), HK8d (center), and HKT8 (right). The second row for CN8c (left),
WL8 (center), and KWL81 (right). The third row for KWL82a2 (left), SA8 (center), and DP8 (right). The
fourth row for CTV8 (left), GK with β = 2 (center), and LW8 (right). The bottom row for SAWN8 (left)
and SGG8 (right) for the roots of the polynomial z5 − 1
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Table 4 CPU time (in seconds) required for each example (1–6) and each of the methods

Method Ex1 Ex2 Ex3 Ex4 Ex5 Ex6 Average

NJ8 189.963 369.878 366.696 411.531 711.521 2713.263 793.81

NP8 1163.71 − − − − − −
N8 284.624 466.022 − − − − −
N8d 249.118 391.718 398.036 − − − −
HK8d 236.342 340.862 345.058 414.152 551.557 1839.49 621.24

HKT8 199.759 349.723 317.867 369.129 629.776 2207.695 678.99

KT8 286.059 493.353 − − − − −
WL8 196.858 300.145 317.977 351.002 550.995 1887.59 600.76

CN8a 278.446 435.929 435.929 − − − −
CN8b 258.307 402.514 402.358 − − − −
CN8c 244.267 396.492 394.979 430.079 663.363 2072.707 700.31

CN8d 267.026 445.835 419.33 − − − −
KWL81 225.937 334.887 348.647 383.996 614.909 1859.485 627.977

KWL82a2 233.128 323.421 325.246 441.139 622.179 2080.149 670.877

BWR8 243.954 618.700 − − − − −
DP8 184.627 287.556 307.057 362.047 576.536 1629.165 541.165

SA8 152.381 224.969 241.178 318.273 359.240 1272.032 428.01

CTV8 162.475 254.079 254.453 323.983 437.412 1385.491 469.649

DPP8 238.229 678.355 − − − − −
GK8 (β = 0) 165.127 267.276 − − − − −
GK8 (β = 2) 161.757 269.835 268.025 387.1 678.854 − −
GK8 (β = −4/3) 159.791 271.894 − − − − −
LW8 203.238 343.296 341.299 394.152 629.994 1935.146 641.187

SAWN8 166.172 264.219 272.799 356.478 451.935 1569.938 512.923

SGG8 237.512 332.719 372.312 438.909 509.811 1912.962 634.037

T8 282.253 743.937 − − − − −

The basins are displayed in Fig. 8. It seems that the best methods are as before
HK8d, WL8, KWL81, KWL82a2, SA8, and SGG8. The data in Tables 3, 4, and 5
give a quantitative information. Based on Table 3, we find that NJ8 is the worst,
requiring 25.02 function evaluations per point on average. The smallest number of
function evaluations on average is for SA8 (12.11). The rest of the methods use
between 12.27 and 24.37 function evaluations per point. The fastest method is SA8
(359.24 s) and the slowest is NJ8 (711.521 s). The rest use 451.935–678.854 s. In
terms of black points, we find again that the worst are LW8 (3942), CTV8 (1423),
and SAWN8 (1145). All other methods have between 1 and 524 black points.

Example 6 The next example is a polynomial of degree 6 with complex coefficients

p6(z) = z6− 1

2
z5+ 11(i + 1)

4
z4− 3i + 19

4
z3+ 5i + 11

4
z2− i + 11

4
z+ 3

2
−3i. (72)
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Table 5 Number of points requiring 40 iterations for each example (1–6) and each of the methods

Method Ex1 Ex2 Ex3 Ex4 Ex5 Ex6 Average

NJ8 601 1 0 601 62 264 254.83

NP8 30825 − − − − − −
N8 601 3 − − − − −
N8d 605 1 0 − − − −
HK8d 601 1 0 601 1 0 200.67

HKT8 601 3 0 601 54 0 209.83

KT8 791 3 − − − − −
WL8 601 1 0 601 19 0 203.67

CN8a 601 1 0 − − − −
CN8b 601 1 0 − − − −
CN8c 601 1 0 601 16 0 203.17

CN8d 601 1 0 − − − −
KWL81 601 1 0 601 17 0 203.33

KWL82a2 601 1 0 601 4 0 201.17

BWR8 601 16517 − − − − −
DP8 601 1 0 601 3 162 228

SA8 601 1 0 601 1 0 200.67

CTV8 601 14 0 601 1423 128 461.17

DPP8 601 9729 − − − − −
GK8 (β = 0) 601 7 − − − − −
GK8 (β = 2) 601 1 0 601 524 − −
GK8 (β = −4/3) 601 2 − − − − −
LW8 601 20 0 605 3942 536 950.67

SAWN8 601 3 0 601 1145 4 392.33

SGG8 601 1 0 601 1 0 200.67

T8 617 13994 − − − − −

This is an example that was difficult for many methods. The basins are displayed
in Fig. 9. The best methods seem to be KWL82a2, SA8, and SGG8. In terms of
average number of function evaluations per point, SA8 is the best method with 11.57
followed by SGG8 with 11.83. The worst is NJ8 with 24.05 function evaluations per
point on average. The fastest method (Table 4) is SA8 (1272.032 s) and the slowest is
NJ8 (2713.263 s). LW8 and NJ8 have the highest number of black points (Table 5).
It is clear that one has to use quantitative measures to distinguish between methods,
since we have a different conclusion when just viewing the basins of attraction.

In order to pick the best method overall, we have averaged the results in
Tables 3, 4, and 5 across the six examples. The best method based on the three criteria
used is SA8. The method with the fewest number of function evaluations per point is
SA8 (10.45) followed closely by KWL82a2 (10.54) and SGG8 (10.70). The fastest
method is SA8 (428.01 s) followed by CTV8 (469.649 s) and SAWN8 (512.923 s).
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Fig. 9 The top row for NJ8 (left), HK8d (center), and HKT8 (right). The second row for CN8c (left),
WL8 (center), and KWL81 (right). The third row for KWL82a2 (left), SA8 (center), and DP8 (right). The
fourth row for CTV8 (left) and LW8 (right). The bottom row for SAWN8 (left) and SGG8 (right) for the
roots of the polynomial z6 − 1

2 z5 + 11(i+1)
4 z4 − 3i+19

4 z3 + 5i+11
4 z2 − i+11

4 z + 3
2 − 3i
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Fig. 10 The top row for HK8d (left), KWL82a2 (center), and SA8 (right). The second row for CTV8
(left), SAWN8 (center), and SGG8 (right) for the roots of the function (ez+1 − 1)(z − 1)

The methods with the least number of black points on average are HK8d, SA8, and
SGG8 (200.67 points).

We now add an example with a non-polynomial function:

p7(z) = (ez+1 − 1)(z − 1). (73)

This example was ran on the top three performers in each category, namely HK8d,
KWL82a2, SA8, CTV8, SAWN8, and SGG8. The basins are given in Fig. 10, and the
results on the number of function evaluations per point on average, CPU in seconds
and number of black points are summarized in Table 6.

Table 6 Results for example 7

Method Number of function CPU Number of black points

evaluation per point

HK8d 10.36 488.611 898

KWL82a2 9.60 486.100 439

SA8 9.12 333.967 514

CTV8 9.97 356.946 2090

SAWN8 10.21 371.891 2428

SGG8 9.36 446.100 556
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4 Conclusions

We have compared the basins of several methods of order 8 using three quantitative
measures and found that the best method based on all three criteria is SA8.
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