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a b s t r a c t

The contemporary powerful mathematical software enables a new approach to handling
and manipulating complex mathematical expressions and other mathematical objects.
Particularly, the use of symbolic computation leads to new contribution to constructing and
analyzing numerical algorithms for solving very difficult problems in applied mathematics
and other scientific disciplines. In this paper we are concerned with the problem of
determining multiple zeros when the multiplicity is not known in advance, a task that
is seldom considered in literature. By the use of computer algebra system Mathematica,
we employ symbolic computation through several programs to construct and investigate
algorithms which both determine a sought zero and its multiplicity. Applying a recurrent
formula for generating iterative methods of higher order for solving nonlinear equations,
we construct iterative methods that serve (i) for approximating a multiple zero of a given
function f when the order of multiplicity is unknown and, simultaneously, (ii) for finding
exact order of multiplicity. In particular, we state useful cubically convergent iterative
sequences that find the exactmultiplicity in a few iteration steps. Such approach, combined
with a rapidly convergent method for multiple zeros, provides the construction of efficient
composite algorithms for finding multiple zeros of very high accuracy. The properties
of the proposed algorithms are illustrated by several numerical examples and basins of
attraction.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The development of digital computers, circa 1970, has enabled easy and successful computations in many scientific
disciplines such as engineering disciplines, physics, chemistry, communication, biology, education, astronomy, geology,
banking, business, insurance, health care, social science, as well as many other fields of human activities. In this paper
we pay our attention to applied mathematics, in particular, to the construction of algorithms in numerical analysis, and
a specific application of computers—symbolic computation. In the course of the development of numerical methods, it
turned out in the last quarter of the 20th century that further development of new algorithms of higher efficiency and
greater accuracy was not possible due to the lack of fast hardware and advanced software. At the beginning of the 21st
century the rapid development of computer power and accessibility, computer multi-precision arithmetics and symbolic
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computation enabled the construction, testing and analysis of very efficient numerical algorithms, even ‘‘confirmation
analytically derived results’’ [1]. Simply, symbolic computation replaced lengthy hand derivations and manipulation with
computer-based derivation and manipulation.

Symbolic computation, employed in solving mathematical problems, is concerned with software for handling and
manipulatingmathematical expressions and othermathematical objects. It is important to emphasize that these expressions
contain variables in general form such as f (a, b, c, . . .), where a, b, c are not numerical values and f mayormay not be given
explicitly. Variousmanipulations (automatic simplification of expressions, differentiation, indefinite integration, polynomial
decomposition, polynomial factorization, etc.) treat these variables as symbols (hence the name symbolic computation) and
provide exact computation. It is superfluous to emphasize that, in the case of complex and lengthy expressions, symbolic
computation is the only tool for solving given problems; their solution and analysiswould not be possible by a classic ‘‘paper-
and-pencil’’ fashion. Note that software applications that execute symbolic computation aremost frequently called computer
algebra systems (shorter CAS) although some authors make distinction between ‘‘symbolic computation’’ and ‘‘computer
algebra’’, see, e.g., [2]. For more details on symbolic computation and its applications see the book [3].

Asmentioned in [4], ‘‘newer generation ofmathematicians and computer scientists can really take advantage of computer
aided research supported by themodern CAS’’. Among themajor general purposes CAS are certainlyMathematica andMaple,
although Axiom, GAP, Maxima, Sage and SymPy are very useful within their symbolic functionality. All of these CAS are
available of the platforms Windows, Mac OS X and Linux (with the exception of Sage which works in Windows as ‘‘virtual
machine’’). All of these computational packages perform sophisticated mathematical operations.

In this paper we present a class of iterative methods for the determination of multiple zeros of functions when the
multiplicity is not known in advance. One should say that there is a vast literature concerned with iterative methods for
finding multiple zeros were developed, see. e.g., [5–13]. However, in most papers one assumes that the order of multiplicity
is known. Procedures for the determination of exact value of multiplicity m and sufficiently close initial approximation x0
were very seldom discussed in the literature. The knowledge of multiplicity m and a good initial approximation x0 are two
very important tasks and should be a composite part of any root-finder. The latter taskwas considered in some recent papers
and books, see, for instance, [14–18].

Here we are concerned with generating iterative methods of higher order for solving nonlinear equations. More
precisely, we study iterative methods for finding a multiple zero of a given function f when the order of multiplicity is
unknown (Section 2). At the same time, we develop iterative methods for approximating multiplicity and prove their cubic
convergence (Sections 3 and 4). Such approach, combined with fourth order two-point method for multiple zeros proposed
in [7], provides the construction of an efficient algorithm for findingmultiple zeros of very high accuracy, which is presented
in Section 5. Throughout the text it is assumed that order of multiplicity is a positive integer. The case of fractional order is
discussed in Section 7 and demonstrated on a numerical example.

It is worth noting that numerical experiments and the study of computational efficiency of considered root-finding
methods based on convergence order and computational costs (see [19, p. 12]) are not often sufficient to give a real
estimation of the quality of these methods and, consequently, their proper ranking. For this reason, a powerful tool for
comparison and analysis of root-finding algorithms, using basins of attraction, is presented in Section 6 for six examples.
This approach gives a much better insight into visualization in approximating function zeros, especially in regard to areas
of convergence. The mentioned tools provide considerably better understanding of iterative processes.

Properties of the presented iterative methods are demonstrated on numerical examples in Section 7. Our main tools
in developing and analyzing these methods are symbolic computation realized through several programs (implemented
in computer algebra system Mathematica) and dynamic study by plotting basins of attraction for four methods and seven
polynomials.

2. Generator of root-finders

Approximating zeros of a given scalar function f belongs to the most important problems appearing not only in applied
mathematics but also in many disciplines of physics, finance, engineering branches, and so on. Solution of the mentioned
task often requires from the user to combine numerical analysis and computing science, first of all symbolic computation
(assuming, of course, the use of necessary computer hardware). During the last three centuries, many one-point methods
were stated, such as Newton’s, Halley’s, Laguerre’s, Chebyshev’s method. Particular attention is due to the so-called the
Traub–Schröder basic sequence (often called Schröder’s family of the first kind, see [19,20]) and the Schröder–König
sequence or Schröder’s family of the second kind [20]. Both families explicitly depend on f and its n − 1 derivatives and
have the order at most n. The latter of these families will be considered in this section.

Let f be a given function with isolated zero α in some interval. If α is a zero of multiplicity m, then we have the
representation f (x) = (x − α)mp(x), p(α) ≠ 0. An iterative method for approximating a single (simple or multiple zero)
α will be written in the form xk+1 = g(xk), assuming that the initial approximation x0 is known. The applied iterative
method will produce the sequence {xk} that converges to the zero α if x0 is reasonably close to α. Iterative methods for
findingmultiple zeros usually require the knowledge of order of multiplicitym, otherwise, many of themwill converge only
linearly. In this paper wemainly consider a class of methods for finding multiple zeros which do not require the multiplicity
but their order of convergence is higher than 1.

We start with the following assertion proved in [21].
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Theorem 1. Let xk+1 = gn(xk) (k = 0, 1, . . .) be an iterative method of order n for finding a simple or multiple zero α of a given
function f (sufficiently many times differentiable). Then the iterative method

xk+1 = gn+1(xk) := xk −
xk − gn(xk)
1 −

1
ng

′
n(xk)

(n ≥ 2; k = 0, 1, . . .) (1)

has the order of convergence n + 1.

Remark 1. The iterative formula (1) was derived in [22] and later in [21] using a different approach. In the latter paper some
useful properties of this formula were presented.

Remark 2. The ability of the iterative formula (1) to generate root-finding methods of an arbitrary order of convergence for
both simple and multiple zeros is the main advantage of the generating formula (1). For this very useful property it will be
sometimes called accelerating generator and denoted by AG (1), the term introduced in [21].

Remark 3. The equivalence of the iterativemethod (1) and the Schröder–Königmethodwas proved in [23] for simple zeros
taking Newton’s method as the starting method. We recall that the Schröder–König method is defined by

xk+1 = xk −
Rn−2(xk)
Rn−1(xk)

(n ≥ 2; k = 0, 1, . . .), (2)

where Rk is calculated from the recursive relation

R0 = 1, Rn(x) =

n
λ=1

(−1)λ+1Aλ(x)Rn−λ(x), where Aλ(x) =
f (λ)(x)
λ!f (x)

. (3)

Both iterative formulas (1) and (2) generate the samemethods g3, g4, . . . for finding simple zeros starting from the Newton
method xk+1 = g2(xk) = xk−f (xk)/f ′(xk). However, Theorem1 does not require any assumption on the order ofmultiplicity
of the zero α which means that the iterative formula (1) can generate methods for finding multiple zeros too, without
alternation to its structure. It is sufficient to start with a suitably chosen initial iterative function gn(x) (n ≥ 2) assuming
that the order of multiplicity is known. Besides, AG (1) has additional advantage since it can start from anymethod of order
n, not necessary from the Newton method, as in the case of the Schröder–König method (2). This is evident from the fixed
structure of the recurrent relation R0 = 1, R1 = f ′(x)/f (x) arising from (3).

The main goal of this paper is to consider some iterative formulas for finding multiple zeros of a given differentiable
function when the order of multiplicity is not known in advance, together with efficient method for finding the order of
multiplicity. The combination of these twomethods leads to a very efficient two-point iterativemethod for findingmultiple
zero of the known multiplicity.

First, we apply generating accelerator AG (1) to produce iterative methods for finding simple or multiple zero of a
function f . If α is a multiple zero of f (x), then α is obviously a simple zero of the function u(x) = f (x)/f ′(x). Indeed, starting
from the factorization f (x) = (x − α)mp(x), p(α) ≠ 0, and assuming that α has the order of multiplicitym, we obtain

f (x)
f ′(x)

=
(x − α)mp(x)

m(x − α)m−1p(x)+ (x − α)mp′(x)
=

(x − α)p(x)
mp(x)+ (x − α)p′(x)

= (x − α)q(x), q(α) ≠ 0.

Applying Newton’s method N(x) = x − ϕ(x)/ϕ′(x) to the function ϕ(x) = u(x), we obtain the iterative method

g2(x) = x −
f (x)f ′(x)

f ′(x)2 − f (x)f ′′(x)
= x −

u(x)
1 − 2A2(x)u(x)

, (4)

where Ar is defined in (3). The iterative method (4) has the order of convergence two and it was derived for the first time by
Schröder in his paper [20].

The construction of methods of higher order is very hard and tedious work since handling with very complicated
expressions is needed. For this reason we will use symbolic computation for their construction, as presented by a program
written in CASMathematica, developed byWolfram Research company [24]. For simplicity, we omit argument x in u(x) and
Ak(x).

PROGRAM 1: METHODS FOR MULTIPLE ZEROS WITH UNKNOWNMULTIPLICITY

Clear["Global‘*"];
r=5; t[0]=f[x];

Do[t[k]=D[t[k-1],x],{k,1,r}];

s[2]=t[0]*t[1]/(t[1]ˆ2-t[0]*t[2]); g2[2]=x-s[2];

Do[s[k]=Simplify[(x-g[k-1])/(1-D[g[k-1],x]/(k-1))]; g[k]=x-s[k],{k,3,r}];
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f[x]=u*t[1]; Do[t[k]=k!*A[k]*t[1],{k,2,r}];
Do[w[n]=FullSimplify[s[n]/.Table[Derivative[k][f][x]->t[k],{k,2,n}]],{n,2,r}];
Do[g[n]=x-w[n];Print["g(",n ",g[n]],{n,2,r}]

g(2) = x −
u

1 − 2uA[2]

g(3) = x −
u − 2A[2]u2

1 − 3A[2]u + 3A[3]u2
(5)

g(4) = x −
u(1 − 3u(A[2] − uA[3]))

1 − 4A[2]u + 2(A[2]2 + 2A[3])u2 − 4A[4]u3
(6)

g(5) = x −
u − 4A[2]u2

+ 2u3(A[2]2 + 2A[3])− 4A[4]u4

1 − 5A[2]u + 5(A[2]2 + A[3])u2 − 5(A[2]A[3] + A[4])u3 + 5A[5]u4
. (7)

Remark 4. The iterative function g3(x) can be obtained by applying Halley’s method

H(x) = x −
ϕ(x)

ϕ′(x)−
ϕ(x)ϕ′′(x)
2ϕ′(x)

to the function u(x) = f (x)/f ′(x). We refer to (5) as Halley-like method. This method was derived in [21] but it is possible
that the iteration function g3(x) had been stated earlier; the authors have not found a reliable source.

PROGRAM 1 can generate new sequences g6(x), g7(x), . . . but we finished with g5(x) since the next formulas obtained
by AG (1) are too cumbersome and inefficient in practice. From the computational cost of view, even the method (7) is
expensive.We emphasize that the derivation of the formulas (6) and (7) by classical ‘‘pencil-and-paper’’ method is laborious
since very complicated expressions appear.

It was proved in many references that the order of convergence of Schröder’s iterative methods (4) is two. According to
Theorem 1 it follows that the order of (5)–(7) is three, four and five, respectively.

3. Iterative methods for finding order of multiplicity

Let us introduce the error εk = xk − α of the approximation xk to the zero α of f . Later we will need the following
well-known assertion:

Theorem 2 (Traub [19, Theorem 2.2]). Let

xk+1 = ϕ(xk) (k = 0, 1, . . .) (8)

be an iterative method such that ϕ(n) is continuous in the neighborhood of the zero α of a given function f . Then ϕ is of order n if
and only if

ϕ(α) = α, ϕ′(α) = · · · = ϕ(n−1)(α) = 0, ϕ(n)(α) ≠ 0. (9)

Furthermore,

εk+1

εnk
→

ϕ(n)(α)

n!
. (10)

The limit

C(ϕ) =
ϕ(n)(α)

n!
= lim

k→∞

ϕ(xk+1)− α

(ϕ(xk)− α)n

in (10) is called the asymptotic error constant (shorter AEC) in Traub’s sense for the method ϕ, see [25]. We need the
asymptotic error constant of the method (5) and we will find it by symbolic computation using Theorem 2.

Themotivation for the construction of iterative formulas for finding the order of multiplicity of α arises from the formula

S1(x) = x − m
f (x)
f ′(x)

(11)

for approximating a multiple zero of the known multiplicitym and the formula (4), which can be written in the form

S2(x) = x −
f (x)
f ′(x)

·
f ′(x)2

f ′(x)2 − f (x)f ′′(x)
= x −

f (x)
f ′(x)

· µ2(x). (12)



I. Petković, B. Neta / Journal of Computational and Applied Mathematics 308 (2016) 215–230 219

Obviously,

µ2(x) =
f ′(x)2

f ′(x)2 − f (x)f ′′(x)
=

1
u′(x)

. (13)

The letter S in (11) and (12) stands for Schröder who derived both formulas in his pioneering paper [20] in 1870. Comparing
(11) and (12)we assume that the factorµ2(x) could present a formula for approximating the order ofmultiplicitym. Actually,
this is true since µ2(x), defined by (13), is the known Lagouanelle’s formula [26] for approximating order of multiplicity.
Indeed, setting f (x) = (x − α)mp(x) (p(α) ≠ 0), we find

µ2(x) =
1

u′(x)
=

(mp(x)+ (x − α)p′(x))2

mp(x)2 + (x − α)2p′(x)2 − (x − α)2p(x)p′′(x)
and, hence,

µ2(x) =
1

u′(x)
→ m when x → α.

Wewish to show that such approach is valid for the iterative formulas arising from higher-order methods generated by AG
(1).

We need the following assertion given in [19, Theorem 2–5].

Theorem 3. Let φ(x) be an iterative function of order n, for some set of multiplicities m. Then for these values of m there exists
a function ω(x) such that

φ(x) = x − u(x)ω(x), ω(α) ≠ 0.

Theorem 3 gives an idea for developing suitable formulas for the approximation of order of multiplicity. In this paper we
will concentrate to the formula of the form

gn(x) = x − u(x)µn(x), (14)

where gn(x) (=φ(x)) defines the iterative method of order n generated by AG (1) starting from Newton-like method g2
given by (4). Obviously,

µn(x) = ω(x) =
x − gn(x)

u(x)
.

Theorem 4. µn(x) → mwhen x → α.

Proof. From (14) we have

g ′

n(x) = 1 − u′(x)µn(x)− u(x)µ′

n(x), x − gn(x) = u(x)µn(x). (15)

According to (15) AG (1) can be written in the form

gn+1(x) = x −
u(x)µn(x)

1 −
1−u′(x)µn(x)−u(x)µ′

n(x)
n

, (16)

or, in the spirit of (14), as

gn+1(x) = x − u(x)µn+1(x),

where

µn+1(x) =
µn(x)

1 −
1−u′(x)µn(x)−u(x)µ′

n(x)
n

. (17)

Now we use the induction and assume that µn → mwhen x → α for some n ≥ 2. Let x → α. Then

u(x) =
f (x)
f ′(x)

=
(x − α)p(x)

mp(x)+ (x − a)p′(x)
→ 0.

Previously we have proved that 1/u′(x) → m (Lagouanelle’s formula (13)) so that u′(x)µn(x) → 1 when x → α. Having in
mind these facts we have that

g ′

n(x) = 1 − u′(x)µn(x)− u(x)µ′

n(x) → 0 as x → α

and from (17)we find thatµn+1 → mwhen x → α. Since the inductive assumption is valid for n = 2 (Lagouanelle’s formula
(13)) we conclude that µn → m for arbitrary n ≥ 2. �



220 I. Petković, B. Neta / Journal of Computational and Applied Mathematics 308 (2016) 215–230

According to the iterative formulas (4)–(6) we obtain the following formulas for the approximation of order of
multiplicity:

µ2(x) =
1

1 − 2A2(x)u(x)
(Lagouanelle’s formula), (18)

µ3(x) =
1 − 2A2(x)u(x)

1 − 3A2(x)u(x)+ 3A3(x)u(x)2
, (19)

µ4(x) =
1 − 3A2(x)u(x)+ 3A3(x)u(x)2

1 − 4A2(x)u(x)+ 2

2A3(x)+ A2(x)2


u(x)2 − 4A4(x)u(x)3

. (20)

In this paper we are concentrating to the iterative formula (5) of Halley-like type for finding zero approximations and
the formulas (18) and (19) as parts of coupled algorithms for finding multiple zeros. Obviously, the formula (20) is not
convenient since additional calculation of f (4) is required and we will restrict ourselves to the formulas (18) and (19).

Our root-finder consists from two parts (I) and (II). Part (I) deals with a couple of sequences for finding (i) approximations
to the multiple zeros (5) and (ii) approximations to the multiplicity defined by (18) or (19) (in this order). After the
determination of both approximations to the zero approximation xk and the order of multiplicity m with sufficiently high
precision, the process of refinement continues with Part (II) consisting of an efficient two-point method dealing with the
known multiplicity to improve additionally the accuracy of the zero approximation.

Before establishing the described algorithmswe need the asymptotical error constant of the Halley-like iterativemethod
(5). We will use the following development of a function f about the zero α of multiplicitym

f (x) =
f (m)(α)

m!


1 + C1ε + C2ε

2
+ C3ε

3
+ · · ·


, Ck =

m!

(m + k)!
f (m+k)(α)

f (m)(α)
(k = 1, 2, . . .),

with ε = x − α.

Theorem 5. Let x0 be sufficiently close to a simple or multiple zero of a function f . Then the iterative method g3(xk) defined
by (5) converges cubically and

g3(xk)− α

(xk − α)3
→

2C2 − C2
1

m
. (21)

Proof. We use symbolic computation in the programMathematica since expressions appearing in the convergence analysis
are pretty cumbersome and lengthy.

Let ϕ(x) is the iteration function defined in Theorem 2 and let ψ(x) = ϕ(x)− α. Then the condition (9) reduces to

ψ(α) = 0, ψ ′(α) = 0, ψ ′′(α) = 0, . . . , ψ (n−1)(α) = 0, ψ (n)(α) ≠ 0.

We introduce the notation fx = f (x), fx1 = f ′(x), e = ε = x − α; fma = f (m)(α); e1 = ε̂ = ψ(x) = g3(x)− α and let

e1 = ψ(x) = H0 + H1ε + H2ε
2
+ H3ε

3
+ · · ·

be Taylor’s series of e1 about the point 0. Now we use the following program.
PROGRAM 2: CONVERGENCE RATE AND AEC OF HALLEY-LIKE METHOD

Clear["Global‘*"];
fx = fma/m! eˆm (1 + C1e + C2eˆ2 + C3eˆ3);

f1x = D[fx, e] // Simplify;

u = Simplify[Series[fx/f1x, {e, 0, 4}], Assumptions -> Element[m, Integers]];

u1 = D[u, e]; u2 = D[u1, e];

e1 = Series[e - u/(u1 - (u u2)/(2 u1)), {e, 0, 4}];

H0 = Coefficient[e1, e, 0] // Simplify

Out[H0]= 0
H1 = Simplify[Coefficient[e1, e, 1], Assumptions -> Element[m, Integers]]

Out[H1]= 0
H2 = Simplify[Coefficient[e1, e, 2], Assumptions -> Element[m, Integers]]

Out[H2]= 0
H3 = Simplify[Coefficient[e1, e, 3], Assumptions -> Element[m, Integers]]

Print["H3=",H3]
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H3 =
2C2−C12

m .
According to the outcomes given above we conclude that

g3(x)− α = ε̂ = H3ε
3
+ O(ε4), H3 =

2C2 − C2
1

m
and, introducing the iteration index k,

lim
k→∞

g3(xk)− α

(xk − α)3
= H3 =

2C2 − C2
1

m
. (22)

From (22) there follows that the Halley-like method xk+1 = g3(xk), given by (5), is of third order. Besides, the asymptotic
error constant is

H3 =
2C2 − C2

1

m
=

1
m(m + 1)


2

m + 2
f (m+2)(α)

f (m)(α)
−

1
m + 1

 f (m+1)(α)

f (m)(α)

2

. � (23)

Note that from the last relation we have

εk+1 = xk+1 − α = g3(xk)− α = H3ε
3
k + O(ε4k ). (24)

Using slight modifications of PROGRAM 2 it is easy to prove that the order of convergence of the iterative methods (6)
and (7) is four and five, respectively.

4. Coupled algorithms for multiple zeros

Now we state two algorithms that are constituted by two sequences.

Algorithm 1.
xk+1 = g3(xk) = xk −

u(xk)

1 − 2A2(xk)u(xk)


1 − 3A2(xk)u(xk)+ 3A3(xk)u(xk)2

µ2(xk+1) =
1

1 − 2u(xk+1)A2(xk+1)

(25)

Algorithm 2.
xk+1 = g3(xk) = xk −

u(xk)

1 − 2A2(xk)u(xk)


1 − 3A2(xk)u(xk)+ 3A3(xk)u(xk)2

µ3(xk+1) =
1 − 2A2(xk+1)u(xk+1)

1 − 3A2(xk+1)u(xk+1)+ 3A3(xk+1)u(xk+1)2
.

(26)

Remark 5. The second step in both Algorithms 1 and 2 serves for finding the order of multiplicity using improved
approximations calculated in the first step. At the first sight, it seems that the second step couldworkwith functions f , f ′, f ′′

(for Algorithm 1) and f , f ′, f ′′, f ′′′ (for Algorithm 2), already evaluated in the first step at the point xk. However, note that
the values calculated at xk+1 (as in (25) and (26)) are reused in the next iteration for the first step in Algorithms 1 and 2. The
exception is the last iteration when the stopping criterion concerning the first step is satisfied, which eliminates the need
for the second step (see the criterion (2) in the flow chart in Fig. 1). A number of numerical examples have shown that the
values of the function f and its derivatives at the point xk do not provide sufficiently accurate approximation tomk (see the
condition (1) in the flow chart in Fig. 1), which requires additional iteration(s). In other words, the increased computational
cost due to the mentioned unutilized values in the last iteration is the price that has to be paid in order to decrease the total
number of iterations in PART (I) of the algorithm presented in Fig. 1.

One of themain goals of this paper is to determine the convergence speed of sequencesµ2(xk), µ3(xk) andµ4(xk)defined
by (18)–(20), respectively. Since the argument of these sequences is xk+1, we deal in PROGRAM 3 with e1 = xk+1 − α. Also,
we use the notation a = α; e = x − α; mi4 = µ4(x). We give the program for µ4(x), the remaining two sequences µ2(xk)
and µ3(xk) can be analyzed by small modifications of PROGRAM 3.

PROGRAM 3: CONVERGENCE RATE OF METHODS FOR FINDING ORDER OF MULTIPLICITY

Clear["Global’*"]
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f[e1] = fma/m!*e1ˆm(1 + C1*e1 + C2*e1ˆ2 + C3*e1ˆ3);
g = f[e1]; g1 = D[g, e1]; g2 = D[g1, e1]; g3 = D[g2, e1]; g4 = D[g3, e1];
u = g/g1 // Simplify; A2 = g2/(2g1) // Simplify;
A3 = g3/(6g1) // Simplify; A4 = g4/(24g1) // Simplify;

mi4 = Series[Simplify[1 - 3 A2*u + 3 A3*uˆ2], {e, 0, 3}]*Series[1/Simplify
[1 - 4 A2*u + 2 uˆ2 (A2ˆ2 + 2 A3) - 4 A4*uˆ3], {e, 0, 3}] // Simplify;

r4 = mi4 - m; Print["r4=",r4]
r4 = C1e1 + (2C2 − C12)e12

+ O(e13).
From the expression given by r4 and (24) we observe that

η
(4)
k+1 := µ4(xk+1)− m = C1H3ε

3
k + O(ε6k ) = Kε3k + O(ε6k ), K = C1H3, (27)

where H3 is given by (23). Now we will prove that the iterative sequence {µ4(xk)} of approximations to the order of
multiplicity m, defined by (19), is also cubically convergent as the root-finding method (5) that appears in the first step
of Algorithms 1 and 2.

In view of (24) we have εk = O(e3k−1), and taking into account (27) we obtain

M(µ4) := lim
k→∞

µ4(xk+1)− m
(µ4(xk)− m)3

= lim
k→∞

Kε3k + O(e6k)
Kε3k−1 + O(e6k−1)

3

= lim
k→∞

K

Kε3k−1

3
+ O(e12k−1)

Kε3k−1

3
+ O(e12k−1)

= K.

According to the last expressions and (21) and (23), the asymptotic error constant of the sequence {µ4(xk)} is equal to

AEC(µ4) = M(µ4) = K = C1H3 =
C1(2C2 − C2

1 )

m

=
1

m(m + 1)2
f (m+1)(α)

f (m)(α)


2

m + 2
f (m+2)(α)

f (m)(α)
−

1
m + 1

 f (m+1)(α)

f (m)(α)

2

.

In the same way, using a small modification of PROGRAM 3, we find

η
(3)
k+1 := µ3(xk+1)− m = C1εk+1 + (2C2 − C2

1 )ε
2
k+1 + O(ε3k+1) = C1H3ε

3
k + O(ε6k ). (28)

In a similar way as above we obtain

M(µ3) = lim
k→∞

µ3(xk+1)− m
(µ3(xk)− m)3

= C1H3

and

AEC(µ3) = M(µ3) = C1H3 =
C1(2C2 − C2

1 )

m
= AEC(µ4).

Using the same procedure and simplified PROGRAM 3 we find

η
(2)
k+1 := µ2(xk+1)− m = 2C1εk+1 + O(ε3k+1) = 2C1H3ε

3
k + O(ε9k ). (29)

Hence

M(µ2) = lim
k→∞

µ2(xk+1)− m
(µ2(xk)− m)3

= 2C1H3

and

AEC(µ2) = M(µ2) = 2C1H3 =
2C1(2C2 − C2

1 )

m
= 2 AEC(µ4).

According to the last results we conclude that the sequences {µ2(xk)} and {µ3(xk)} of approximations to the order of
multiplicitym, defined by (18) and (19), respectively, have also the order three.

Summarizing the above consideration we can state the following assertion:

Theorem 6. Let {xk} be the sequence of approximations to the zero α of multiplicity m, produced by the Halley-like method (5).
Then the iterative sequences {µ2(xk)} (18), {µ3(xk)} (19) and {µ4(xk)} (20) of approximations to the order of multiplicity m of
the multiple zero α of a given function f are cubically convergent.
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Fig. 1. Flow chart of Algorithm 2.

Remark 6. The order of convergence of the sequences {µ3(xk)}, {µ4(xk)} etc. does not increase since all errors |µk(xk) −

m| (k ≥ 2) are of the order of |xk−α| = |εk|. More general, the order of convergence of the sequence {µk(xk)} (k ≥ 2) is equal
to the order of iterative method that produces approximations xk, used in the next step for the calculation of multiplicity.
For example, using the iterative function g2(xk) of the second order we obtain that all sequences {µ2(xk)}, {µ3(xk)} etc. are
of second order. In fact, the use of higher derivatives in {µλ(xk)} gives approximations to the order of multiplicity with the
main part which is very close to the exact multiplicitym plus additional ‘‘parasite terms’’ of order O(εν) (ν > 1), which are
negligible. A simple analysis of the proof given in the Appendix also leads to the same conclusion.

5. Algorithm for finding multiple zeros of great accuracy

Now we state an efficient composite algorithm for finding multiple zero. For simplicity, we will write mk instead of
µλ(xk) (λ ≥ 2) in what follows. The flow chart of this algorithm is shown in Fig. 1 and it consisted of the parts (I) and (II):

(I): Starting from a sufficiently good initial approximation x0 to the zero α of a given function f , Algorithms 1 or 2 (defined
by the couple of iterative sequences (25) and (26)) is applied iteratively until the termination criterion given by the
inequality δ := |f (xk)|1/m < τ is met, where the multiplicity m is rounded to the nearest integer by the command
ROUND(mk) in the flow chart on Fig. 1. In fact, having in mind that |xk − α| = O


|f (xk)|1/m


, by the termination

constant δ we control the wanted accuracy of the approximation xk in the first part of algorithm putting in practice,
say 10−5. The improvement of this accuracy is carried out by the two-step method (30) presented in PART (II) of the
algorithm. The flow chart in Fig. 1 is the same for both Algorithms 1 and 2; the approximation of order of multiplicity
mk is calculated by (18) or (19). Note that two IF criteria provides both the exact value of the multiplicitym (condition
IF(1)) and sufficient accuracy of the approximation xk (condition IF(2)).

(II): In this part we use sufficiently good approximation xk to the zero α and the knowledge of the multiplicity m found in
PART (I). To improve this approximation to a great accuracy, we apply recently stated two-point method for finding a
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multiple zero given by Li et al. [7]:
yk = xk −

2m
m + 2

· u(xk),

xk+1 = xk −

m(m−2)
2


m+2
m

m
zk −

m2

2

1 −


m+2
m

m
zk

· u(xk), u(xk) =
f (xk)
f ′(xk)

, zk =
f ′(yk)
f ′(xk)

.

(30)

For more details on multipoint root-finders see the monograph [8].
Although the first two-point fourth order method for simple zeros, consuming only three function evaluations, was

derived in 1960 by Ostrowski [27], a half of century was needed until the construction of two-point methods of fourth
order for multiple zeros, see [6,7,10,11] and other related papers. The only reason for this delay was the lack of symbolic
computation; its application has provided that very complicated expressions can be handled. Note that themethod (30) was
generalized in [6,11].

As mentioned, the two-point method (30) possesses great computational efficiency since it has the order four requiring
only three function evaluations: f (xk), f ′(xk), f ′(yk). Due to its very fast convergence, it is sufficient to apply only one
iteration for solving most practical problems. If we wish a very accurate approximation (rarely required in practice), we can
apply themethod (30) iteratively, usually two or three iterations, which is emphasized by dash lines in Fig. 1. The numerical
examples presented in Section 7 have been executed with only one iteration of the method (30).

6. Basins of attraction of the presented methods

The improvement of computer graphics has provided a new methodology for visual study of convergence behavior of
root-findingmethods as a function of the various starting points. This approach is based on the notion of basins of attraction.
Let α1, α2, . . . , αr ∈ S be simple or multiple zeros of a given sufficiently many times differentiable function f in some
complex domain S ⊆ C. If an iterative method is defined by xk+1 = g(xk), then the basin of attraction of the zero αi is the
set

Bf ,g(αi) = {ζ ∈ S | the iteration xk+1 = g(xk)with x0 = ζ converges to αi}.

The basin of attraction is used to compare methods (4)–(7) by taking a square containing all the zeros and using many
points (usually equally distributed) as initial points to see which zero the method converges to. In the simple case of two
zeros at±1, one would like to have the square divided by a straight vertical line through the origin with all points to the left
converge to the zero at −1 and all the point to the right converge to +1.

In our work we have taken 7 examples with various number of zeros and a variety of multiplicities. We will show how
each of the four methods performs in each case by plotting the basins of attraction and collecting data about the number of
function evaluations per point on average used by each method for each example. We also collect the CPU time in seconds
required to run each method on the 360000 equally spaces points in the 6 by 6 square centered at the origin. We allow a
maximum of 40 iterations from every initial point. If the method did not converge we paint the point black. Each basin will
have a different color and the shading is darker when the number of iterations is higher.

Example 1. In the first example we have taken the polynomial

p1(z) = (z2 − 1)2

with roots at ±1 each with multiplicity 2. The basins of attraction are given in Fig. 2 where the leftmost is for method g2
and the rightmost is for g5. It is clear that all performed very well and the boundary of the basins is a vertical straight line.
This is, by the way, is not always true. There are methods for multiple zeros that require the knowledge of multiplicity and
will not have straight line as boundary, for example, one of Dong’s methods [28]. To have a more quantitative comparison,
we have collected the data in Table 1. Method g3 uses the least number of function evaluations per point on average (15.50)
and g2 uses the most number (17.48). Based on CPU time, we have the same conclusion.

Example 2. The second example is different from the first in the fact that the multiplicity is 3,

p2(z) = (z2 − 1)3.

We will not show the basins, but the conclusions are the same.

Example 3. Here we increased the multiplicity to 4,

p3(z) = (z2 − 1)4.

Again the conclusions are independent of the multiplicity.
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Fig. 2. g2 (left), g3 (second from left), g4 (third from left) and g5 (right) for the roots of the polynomial (z2 − 1)2 .

Table 1
Iteration data for the methods g2 − g5 and Examples 1–7.

Examples Methods A B C D E

g2 251.83 5.83 3 17.48 601
Example 1 g3 247.85 3.88 4 15.50 601
p1(z) = (z2 − 1)2 g4 285.42 3.20 5 15.98 601

g5 347.55 2.84 6 17.04 601

g2 321.5 5.83 3 17.48 601
Example 2 g3 329.91 3.88 4 15.50 601
p2(z) = (z2 − 1)3 g4 335.22 3.20 5 15.98 601

g5 387.04 2.84 6 17.04 601

g2 345.95 5.83 3 17.48 601
Example 3 g3 356.45 3.88 4 15.50 601
p3(z) = (z2 − 1)4 g4 433.42 3.20 5 15.98 601

g5 470.9 2.84 6 17.04 601

g2 581.37 8.24 3 24.72 25
Example 4 g3 484.43 4.20 4 16.81 1
p4(z) = (z3 − 1)3 g4 529.12 3.42 5 17.12 64

g5 588.62 3.00 6 18.02 1

g2 1030.5 11.82 3 35.46 2545
Example 5 g3 708.4 4.88 4 19.53 1201
p5(z) = (z4 − 1)4 g4 769.38 3.82 5 19.11 1201

g5 915.27 3.50 6 20.99 1329

g2 1097.73 15.08 3 45.24 88546
Example 6 g3 1142.18 7.51 4 30.04 23008
p6(z) = (z3 − z)4 g4 953.63 4.64 5 23.22 3856

g5 1648.18 16.19 3 48.56 8562

g2 1648.18 16.19 3 48.56 8562
Example 7 g3 1010.11 5.80 4 23.18 9
p7(z) = (z5 − 1)5 g4 1045.97 4.09 5 20.46 1

g5 1187.59 3.42 6 20.54 2

Average over all examples

g2 753.87 9.83 3 29.49 14497.29
g3 611.33 4.86 4 19.44 3717.43
g4 621.74 3.65 5 18.26 989.29
g5 700.94 3.13 6 18.76 477.86

A—CPU time in second; B—Average number iterations per point; C—Number of function evaluations per step; D—Average number of function evaluations
per point; E—Number of points required 40 iterations.

Example 4. The next example is a polynomial with the three roots of unity each with multiplicity 3, i.e.,

p4(z) = (z3 − 1)3.

The basins are displayed in Fig. 3. Now the boundary of the three basins is no longer a straight line. There is only onemethod,
known to the authors, forwhich the boundaries are straight lines and it is Euler–Cauchy. Thismethod requires the knowledge
of the multiplicity.

The basins for each root are divided into two disjoint areas. The best method is g5 which shows the largest basin for each
root. The number of function evaluation per point is the lowest for g3 and the highest for g2. The fastest method is g3 and
the slowest is g5. Both of these two methods have only one black point.

Example 5. The polynomial has four root at ±1 and ±i, each with multiplicity 4, that is,

p5(z) = (z4 − 1)4.
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Fig. 3. g2 (left), g3 (second from left), g4 (third from left) and g5 (right) for the roots of the polynomial (z3 − 1)3 .

Fig. 4. g2 (left), g3 (second from left), g4 (third from left) and g5 (right) for the roots of the polynomial (z4 − 1)4 .

The basins are displayed in Fig. 4. Again the basin for each root is made up of several disjointed areas. The best method is
again g5. In terms of the number of function evaluations per point, we have g4 as best and g2 as worst. The fastest method is
g3 followed closely by g4 and the slowest is g2. The number of black point is the smallest for g3 and g4 (1201) and the largest
for g2. Based on the data we can say that g3 is best, even though the largest contiguous basins are for g5.

Example 6. Here we have roots of multiplicity 4 at 0 and ±1, i.e.,

p6(z) = (z3 − z)4.

The basins are displayed in Fig. 5. This is a very hard problem for these methods. The only one without black points is g5.
The worst is g2. In terms of CPU time g4 is faster than g5 but it uses more function evaluations than g5.

Example 7. The last example is

p7(z) = (z5 − 1)5.

The basins are displayed in Fig. 6. The conclusions are similar: the method g5 has the largest contiguous basin for each root.
Themethod g4 is faster than g5 but slower than g3. The number of black points is the smallest for g5 followed by g4. The largest
number of black points is 8562 for g2. This method is also the slowest and uses the highest number of function evaluations.

Concluding remarks on basins of attraction: In order to decide on potentially best method overall, we have averaged
the data across 7 examples. The method g3 is the fastest (611.33 s) followed by g4 (621.74 s) and g5 (700.94 s). Method g5
has the lowest number of black points and the largest contiguous basins. In terms of the number of function evaluations
per point, g4 is best with 18.26 followed by g5 with 18.78. It is assumed that the above conclusions hold for the tested
polynomials p1 − p7; in general, it is hard to rank iterative methods regarding their quality, even when they possess the
same order of convergence and approximately same computational efficiency.

7. Numerical examples

In this section we present results obtained by the combination of Algorithm 1/Algorithm 2 and the two-point method
(30) to six examples. All computations were performed by CAS Mathematica using multi-precision arithmetic. We choose
the termination constant δ = 10−5; it turned out that three iterations were sufficient to meet the termination criterion
for all six examples. The outcome approximation xk and the exact order of multiplicity m serve as the initial values for one
iteration of the two-point method (30) in order to improve the accuracy of the wanted multiple zero. We used the six test
functions, including f2(x) taken from [5] and f4 from [29].
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Fig. 5. g2 (left), g3 (second from left), g4 (third from left) and g5 (right) for the roots of the polynomial (z3 − z)4 .

Fig. 6. g2 (left), g3 (second from left), g4 (third from left) and g5 (right) for the roots of the polynomial (z5 − 1)5 .

Table 2
Errors of approximation for f1(x).

k = 1 k = 2 k = 3

|g3(xk)− α| 4.84(−2) 4.79(−4) 4.93(−10)
|µ2(xk)− m| 0.992 1.17(−2) 1.20(−8)
|µ3(xk)− m| 0.583 5.84(−3) 6.02(−9)
(30)|x4 − α| 1.94(−36)

Table 3
Errors of approximation for f2(x).

k = 1 k = 2 k = 3

|g3(xk)− α| 3.85(−2) 9.22(−5) 1.37(−12)
|µ2(xk)− m| 0.421 1.11(−3) 1.65(−11)
|µ3(xk)− m| 0.23 5.54(−4) 8.24(−12)
(30)|x4 − α| 1.05(−47)

f (x) m x0 α

f1(x) =

ex

2
+6x−16

− 1
2
(x − 1)3 − 1

2
4 1.7 2

f2(x) =

xex

2
− sin2 x + 3 cos x + 5

4
4 −0.7 −1.207647827130918927009. . .

f3(x) =

x sin x − 2 sin2(x/

√
2)


x8 + x4 + 100


6∗

−1.2 0∗

f4(x) = x10 − 20x9 + 175x8 − 882x7 + 2835x6 − 6072x5

+8777x4 − 8458x3 + 5204x2 − 1848x + 288 3∗
−40 2∗

f5(x) =

−177147 + 649539x − 1082565x2 + 1082565x3

−721710x4 + 336798x5 − 112266x6 + 26730x7

−4455x8 + 495x9 − 33x10 + x11
1/4

×(x + 1)4(x2 + 2x + 2)2 11/4∗ 2 3∗

f6(x) =

ex

2
+4x+8

− 1
3

sinh(2 + 2i + ix)
2

5 −1.6 + 1.7i −2 + 2i
List of tested functions

Tables 2–7 show the errors |g3(xk) − α|, |µ2(xk) − m| and |µ3(xk) − m| for k = 1, 2, 3 while |x4 − α| is the error
of approximation obtained by the method (30). The notation A(−τ) means A × 10−τ . The meaning of ∗ is explained in
Remark 7. The multiplicity of the sought zero of the function f5 is a fraction so that we have slightly modified the program
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Table 4
Errors of approximation for f3(x).

k = 1 k = 2 k = 3

|g3(xk)− α| 0.798 4.56(−2) 2.25(−6)
|µ2(xk)− m| 0.78(−2) 8.91(−4) 2.17(−12)
|µ3(xk)− m| 0.402 8.49(−7) 5.05(−24)
(30)|x4 − α| 1.33(−31)

Table 5
Errors of approximation for f4(x).

k = 1 k = 2 k = 3

|g3(xk)− α| 6.94(−2) 7.62(−4) 9.21(−10)
|µ2(xk)− m| 0.293 2.27(−3) 2.76(−9)
|µ3(xk)− m| 0.103 1.14(−3) 1.16(−9)
(30)|x4 − α| 9.07(−37)

Table 6
Errors of approximation for f5(x).

k = 1 k = 2 k = 3

|g3(xk)− α| 0.389 7.57(−3) 7.26(−8)
|µ2(xk)− m| 1.47 2.94(−2) 2.82(−7)
|µ3(xk)− m| 0.759 1.47(−2) 1.41(−8)
(30)|x4 − α| 1.69(−29)

Table 7
Errors of approximation for f6(x).

k = 1 k = 2 k = 3

|g3(xk)− α| 0.0982 1.92(−4) 2.08(−12)
|µ2(xk)− m| 0.809 2.29(−4) 7.37(−12)
|µ3(xk)− m| 0.391 1.15(−4) 3.69(−12)
(30)|x4 − α| 3.07(−47)

using Mathematica statement Rationalize[z,10ˆ(-4)] (instead of Round[z]) that provides the representation of a
real number z in the form of a fraction a/b (a, b ∈ N). We assume that such fraction exists, otherwise, the program does
not work. Fortunately, order of multiplicity unrepresentable as a fraction appears in artificially constructed functions, not
in practical problems. The methods works for complex zeros too, as the example for f6 shows. In this case we assume that
the multiplicity is a positive integer and use the command Re[µλ(x)] (λ = 2, 3) to eliminate imaginary part since the
calculation of µλ is performed with complex approximations to the complex zero.

Remark 7. From the expressions for the functions f1, f2 and f6 it is clear that the multiplicity is m = 4, 4, 5, respectively.
However, it is hard to assume that f3 has a zero (α = 0) of multiplicity 6. Besides, for the polynomial f4(x) given above in the
expanded form, it is not possible to detect zeros and their multiplicities without a checking procedure. In fact, the factorized
form of f4 reads

f4(x) = (x − 1)4(x − 2)3(x − 3)2(x − 4),

whence we can observe the values of zeros and multiplicities. Furthermore, since the initial approximation x0 =

−40 (taken from [30]) is rather far from actual zeros, the determination of the zero and its multiplicity was left to
Algorithm 1/Algorithm 2, which have perfectly done this job. The same story is valid for the zero of f5 whose multiplicity is
a fraction. With regard to the described facts Tables 3–5 were formed a posteriori, which is marked with ∗ in the list of test
functions.

From Tables 2–7 we observe that the presented algorithms (25) and (26) successfully detect the order of multiplicity,
which is the necessary condition for the application of very fast method (30) working with known multiplicity of the zero.
The application of simpler formulaµ2(xk) (Algorithm 1) gives satisfactory results, which is clear having in mind thatµ2(xk)
and µ3(xk) are both cubically convergent. For less computational cost it is recommendable to apply Algorithm 1.

8. Conclusions

The main goal of this paper is to present the application of symbolic computation in solving mathematical problems
which belong to the group of problems unsolvable by hand derivation andmanipulation due to very lengthy and complicated
expressions. In particular, we have demonstrated the use of symbolic computation (i) for generating higher order iterative
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methods for finding multiple zeros of nonlinear equations with unknown multiplicity of zeros and (ii) for constructing
coupled algorithms that calculate simultaneously approximations to the sought zero and the exact order of multiplicity
during the iterative process. In our concrete case symbolic computation was used basically for automatic differentiation
and simplification of very complicated expressions, but also for other manipulations with mathematical objects such as
expanding out products, finding limit values and collecting together terms involving the same powers of objects matching
some variables. These operations with mathematical symbols are not possible by classical methods, which points out that
symbolic computation is a powerful modern tool that enables developing new methods and ideas, their testing, checking
derived results and analysis. Its application is supported by computer algebra systems, in our case byWolfram’sMathematica.

Another methodology used in this paper is dynamic study of iterative methods based on basins of attraction. Namely, in
many situations numerical experiments and the study of computational efficiency of considered iterative methods do not
give sufficiently good measures/data for a real estimation of the quality of these methods and their ranking. To overcome
this flaw to a certain extent, basins of attraction are considered in Section 6 in order to offer additional quantitative iteration
data as well as a visual convergence behavior of iterative methods depending on areas of starting points. This approach
provide considerably better understanding of iterative processes although numerous open questions leave to be answered,
see the book [31].
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Appendix

Although two iterative sequences in (25) and (26) are independent, we can consider them as a couple of sequences {ε
(k)
i }

and {η
(k)
i } and determine their convergence order using the following very useful assertion [32]:

Theorem A. Given the error-recursion

v
(k+1)
i ≤ ai

q
j=1


v
(k)
j

tij
, (i ∈ Iq := {1, . . . , q}; k ≥ 0), (A.1)

where tij ≥ 0, ai > 0, 1 ≤ i, j ≤ q, and v(k)i are some convergent sequences. Denote the matrix of exponents appearing
in (A.1) with Tq, that is Tq = [tij]q×q. If the non-negative matrix Tq has the spectral radius ρ(Tq) > 1 and the corresponding
eigenvector xρ > 0, then all sequences {v

(k)
i } (i ∈ Iq) have the R-order at least ρ(Tq).

Let OR(IM) denote the R-order of convergence of an iterative method IM , and let

v
(k)
1 = εk = xk − α, v

(k)
2 = ηk = mk − m, wheremk = µλ(xk) (λ = 2, 3, 4).

According to Theorem 4 (see relation (21)) we can write for the method (5)

εk+1 ∼ ε3k , (A.2)

where the notation a ∼ bmeans a = O(b). Further, from (27)–(29) we have

η
(λ)
k+1 ∼ ε3k , (λ = 2, 3, 4). (A.3)

According to the relations (A.2) and (A.3) we form the matrix T2 = [tij] that appears in Theorem A:

T2 =


3 0
3 0


.

The spectral radius of T2 is ρ(T2) = 3 and the corresponding eigenvector is xρ = (1, 1) > 0. Hence, according to Theorem A,
we obtain the lower bound of the R-order of the coupled sequences (εk, η

(λ)
k )

OR(g3, µλ) ≥ ρ (T2) = 3.

Since the limits

|H3| = lim
k→∞

|g3(xk)− α|

|xk − α|3
and |M(µλ)| = lim

k→∞

|mk+1 − α|

|mk − α|3

exist, 0 < |H3| < ∞ and 0 < |M(µλ)| < ∞, according to Ortega and Rheinboldt [25, E 9.3-4] it follows that the R-order and
Traub’s C-order are equal. Therefore, the methods defined by iteration functions g3(x) and µλ(x) (λ = 2, 3, 4) have cubic
convergence.
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