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Introduction

The subject of this paper is the manner in which informa-
tion that is gradually acquired about the status of a target
ought to influence the process of shooting at it. It is a mil-
itary subject that has become increasingly important with
the advent of long-range, accurate, but expensive, weapons.
For example, suppose that the single-shot probability of
killing a target is 0.9, but that the target is so important that
even a 0.1 survival probability is not acceptable. One could
shoot independently twice at the target, thereby achieving
a kill probability of 0.99 at the expense of two shots. Alter-
natively, one could shoot at the target, look to see if it has
been killed, and then shoot again, if necessary. The kill
probability is still 0.99 with this shoot-look-shoot policy,
but the average expenditure of shots is only 1.1—just over
half of the two-shot expenditure. The payoff for acquiring
and using information optimally can be significant.

Use of the term “shoot-look-shoot” sometimes implies
that only a single look is contemplated, but not here. In
general, we will consider multiple error-prone looks and
shots in stages. We will consistently use the term “kill”
because of the problem’s military heritage, but terms such
as “damage,” “identify,” or “find” could also be substituted.
The essential requirements are that the “target” be in one
of two states, one of which is desirable and the other not,
and that the marksman have a succession of opportunities
for altering and discovering the target’s state.

The general problem considered here involves a matrix
P = (P;), where P, is the probability that a shot of type
i is effective against target j. All attempts to kill a target
are assumed to be independent, as in the two-shot example
above. There may also be data associated with the discov-
ery process. Because the targets are not always identical, it
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is necessary to attribute a weight or value v; to target j, and
the firing problem usually takes the form of an optimization
where the object is to maximize the expected value of the
total target value killed.

The expensiveness of shots can take three forms: one
(81) where the number of shots of type i is constrained
to not exceed some given level, one (§2) where shots are
available in unlimited quantities, as long as they are paid
for, and a third form (§3) where shots are constrained
as well as costly. The time at which a target is killed is
usually irrelevant; §4 is an exception where rewards are
discounted.

1. The Constrained Case

We assume in this section that the problem is to assign a
given set of shots to a given set of targets.

1.1. Perfect Information, Infinite Time Horizon

Assume that the results of each shot are revealed immedi-
ately after each shot is made, and that shots can be made
one at a time because of the infinite time horizon. The
import of these assumptions is that every shot is made with
exact knowledge of the state of the target set. We take the
state of the firing process to be (S, T'), where S and T are
the sets of remaining shots and live targets, respectively.
The object is to find V (S, T), the largest amount of target
value that can be killed with all remaining shots, on the
average, together with the shot i € S that should be taken
against target j € T. If either S or T is empty, then of
course V(S,T)=0.

V (S, T) can be found by a dynamic programming recur-
sion. Because there are only two possibilities for each shot,
and because all shots are independent, by the conditional
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expectation theorem we have
V(S,T)= iergg};éT{Pij(uj +V(§—i,T—j))
+(1=P)V(S—i, T)}. (1)

If S has m shots left in it, and if 7 has more than m
targets, then (1) will have to be evaluated 2" times in
the process of computing V (S, T'). Computational difficulty
can be expected as m becomes large.

If v;=v and P; = p for all i and j, then (1) simplifies
considerably because the sets S and T merely need to be
counted. Let s and 7 be the numbers of shots and targets,
and let X be a binomial random variable with parameters
s and p. X can be interpreted as the number of effective
shots in the set S. The number of kills will be X unless
the marksman runs out of targets. Therefore V(S,T) =
E(min(X, t)), a relatively simple computation. Anderson
(1989) notes that the same formula applies as long as P;
does not depend on j; X still has the same interpretation,
although it is no longer binomial. See also Przemieniecki
(1990).

Because (1) is computationally challenging for large
problems, we next develop some bounds on V (S, T).

A simple lower bound V_(S, T) can be constructed by
computing the optimal pair (i*, j*) = argmax,g jcr v;P;-
This is the “myopic” firing policy—every shot is taken
without regard to future consequences. Equation (1) (with
(i*, j*) substituted for (i, j) and V_() replacing V() on
both sides) must still be employed to evaluate V_(S, T),
so exact evaluation is still difficult as m becomes large.
However, the myopic policy is trivial to implement because
knowledge of V_(S, T) is not needed.

The myopic policy is not always optimal. For a coun-
terexample, consider two shots and two targets, with P =
[0?9 0(')9] and v = (1, 1). The myopic policy will assign
shot 1 to target 1, after which shot 2 is useless, and the
total score is 1. The optimal policy is to assign shot 2 to
target 1, and then shot 1 to target 1 in case of failure, or
shot 1 to target 2 in case of success. The optimized total
score is 0.9(1 + 0.9) + 0.1(0 + 1) = 1.81—a substantial
improvement over the myopic score.

The reader may wish to download an Excel workbook
SLS.xls from http://diana.gl.nps.navy.mil/~washburn/. On
sheet “Optimal,” SLS.xls computes solutions for small prob-
lems according to the method described above.

V (S, T) can also be usefully bounded from above. See
§1.3 below.

Although the time horizon in this section has been
assumed to be infinite, it should be obvious that enough
time to make m shots is all that is required. Even smaller
amounts of time may suffice. Call a shot “unitary” if it has
a zero kill probability against all targets but one. Because
such shots have no flexibility, they can all be assigned at
once without jeopardizing the maximum score V(S,T).
There may also be less obvious opportunities for shorten-
ing the time horizon. Let H(S, T) be the shortest horizon

within which there still exists a shooting policy that will
guarantee V (S, T). Computation of H(S,T) is itself an
interesting topic, but we will not pursue it further here.

1.2. Perfect Information, Finite Horizon,
Identical Shots and Targets

The analysis in §1.1 is comparatively simple because every
shot is taken in perfect knowledge of the status of the tar-
get set. This is no longer true if either time is constrained
or if information is imperfect. One reason for time to be
constrained is that the “targets” might actually be incoming
missiles, in which case the problem is one of self-defense.
The general problem appears to be difficult, although vari-
ous specializations such as those in this section can still be
solved. We assume that all shots and targets are identical,
so that the sets S and T can be replaced by simple counts
of the number of shots and targets remaining.

Suppose that P; =1 — g for all i, j, where g is the miss
probability for all shots, and that v; =1 for all j. Because
all targets are identical, each salvo should treat the remain-
ing targets as evenly as possible, and the firing question
reduces to determining how many shots to spend in each
salvo. Let random variable X be the number of targets
killed out of ¢ when x shots are allocated, and let F, (s, )
be the maximum expected number that can be killed with s
shots, 7 targets, and n salvos remaining. Then Fy(s, t) =0,
and for n > 0 we have the dynamic programming recursion

EI(S,I)Z&’E??SE(X—}—F,,_](S—X,I—X)). (2)

Calculating the expected value in (2) requires a distri-
bution for X. The distribution is binomial if x is less than
t or an integer multiple of ¢, or otherwise the convolution
of two binomial distributions. In either case, the numerical
solution of (2) is not difficult as long as s and ¢ are not too
large.

Suppose that the “targets” are actually missiles that are
attacking home base, with the shots being defending inter-
ceptors. The number of salvos is limited because of the
speed of the attackers. Let p be the probability that any
given attacker will kill home base if not intercepted, and
let G,(s,t) be the largest home base survival probability
when there are s shots, ¢ targets, and n salvos remaining.
Then G, (s, t) = (1 —p)’, and for n > 0 we have

Gu(s, 1) = max E(G,_ (s —x, 1 = X)). ®)

Computational issues are the same as with (2). Eckler
and Burr (1972) allude to (3) and give some results for
the case n = 2. Wilkening (1999) considers the case where
n=2 and p =1 in the context of ballistic missile defense.
A reader who searches the Internet for “shoot-look-shoot”
will discover that this scenario is frequently referred to.

The aforementioned workbook SLS.xIs includes an
implementation of (3) on sheet “DynProg” for a three-stage
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problem (n = 3). The optimal policy with only one stage
remaining is to use all remaining interceptors, but with
more stages the optimal policy uses fewer interceptors in
order to avoid wasting them on dead targets. Of course, at
least one shot at every stage is always made at every sur-
viving target, as long as sufficient shots remain to do so.
The spreadsheet also permits a minor generalization: The
interceptor kill probability can depend on the number of
stages remaining.

1.3. Imperfect Information

It is possible that when information is imperfect, shots will
be made against targets that are already dead. The proba-
bility that shot i is effective against target j remains P,
but an effective shot will kill its target only if the target is
alive when the shot is taken.

We first develop an upper bound on the best target value
killed that is valid regardless of the information available to
the marksman. Fixed sets of shots and targets are, as usual,
given. Define a collection of indicator random variables that
can be associated with any firing policy that assigns shots
to individual targets:

Y,; =1 if target j is killed by shot i (for each j, at most
one of these can be 1),

Yj =1 if target j is killed, and

X;; =1 if shot i is assigned to target j (for each i, at
most one of these can be 1).

The firing policy will induce many correlations between
these random variables, so independence assumptions
among them are not appropriate, but the collection is still
useful for formulating the problem of finding the optimal
policy. We first note that ¥; =3, Y;;, and that the total
value killed is Z = >, v,Y;. The problem (call it P1) of
finding the optimal policy can therefore be posed as maxi-
mizing z, the expected value of Z, subject to the following
constraints:

(@) 22, X; <1 for all i with certainty;

(b) Y;=3,Y,; for all j with certainty;

(c) ¥;< 1 for all j with certainty; and

(d) other constraints.

The other constraints in P1 include the crucial relation-
ship between X;; and Y;;, the essence of the firing policy.
For example, the (probably foolish) policy of ignoring all
information and simply making X,, = 1 for all i would
probably kill target 1, but would also result in ¥; =0 for
j > 1. There are potentially an astronomical number of fir-
ing policies, because the decision about what to do next
can depend in many ways on the information available.
Nonetheless, regardless of the policy employed, we assume
that E(Y;;) < P;E(X;), with strict inequality being possible
on account of the possibility that target j is already dead
when weapon i attacks it. Now, using lowercase letters for
expected values of random variables, we can construct a
relaxation of P1 that we name P2:

maximize z =) v;y;,
J

subject to

(@) >;x; <1 for all i;

(b) y; <X x;P; for all j;

(c) y; <1 for all j; and

(d) all variables nonnegative.

P2 is a relaxation of P1 because a relationship that is
true with certainty will also be true on the average, because
sums and expected values can be interchanged, because
E(Y;) < x;P;, and because the other constraints of P1
have simply been omitted. P2 is a simple linear program
that provides an upper bound on what is achievable with
any shoot-look-shoot policy. P2 has a direct interpretation
where x;; is the probability of using shot i on target j, and
y; is the probability that target j is killed. In P2, (a) requires
that shot i not be used more than once, (b) requires that
the effect of each shot not exceed P;;, and (c) requires that
target j be killed at most once.

If b, shots of type i are actually identical, then constraints
(a) of P2 can be changed to };x;; < b;, a simple conse-
quence of collecting terms with identical coefficients in P2.
In that case the interpretation of x;; is “average number of
shots of type i used on target j.”

Because perfection is a special case of imperfection, the
P2 upper bound also applies to problems of the type consid-
ered in §1.1. In fact, the aforementioned workbook SLS.xls
also computes the upper bound for problems defined on
sheet “Optimal,” with the upper bound computations being
carried out on sheet “LLP_Upper” when the command but-
ton on sheet “Optimal” is pressed. Using it, the reader can
verify that the upper bound for the small example intro-
duced in §1.1 is actually exact, and that the upper bound
is usually sharp for problems not designed to make it look
bad. For one of the latter, consider a problem with one tar-
get and two shots, each of which will kill the target with
probability 0.5. The optimal, indeed the only, allocation of
weapons to targets produces a kill probability of 0.75, while
the upper bound is 1.

We next turn to the construction of optimal firing policies
in specific circumstances where information is imperfect.

Manor and Kress (1997) consider a firing problem in
which all shots are identical, with each shot having kill
probability p; against target j. If target j is not killed, there
is no feedback to the marksman. If the target is killed, that
fact is confirmed with probability ¢;, or otherwise there
is no feedback. Information would be perfect if g; =1,
because the state of the target could be inferred from feed-
back or lack thereof. If q; < 1, however, lack of feed-
back is possible from live targets, as well as dead ones,
so the marksman will not be certain of the state of a tar-
get unless he has a confirmed kill. Manor and Kress argue
that such a model applies to weapon systems such as fiber-
optic guided missiles (FOG-M). The marksman’s object is
to kill as many targets as possible, on the average, with
a fixed inventory of shots. Manor and Kress demonstrate
that the “greedy” policy of always shooting at the target
for which the immediate gain is largest is actually optimal.
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The targets need not all be identical, but, if they are, the
policy reduces to shooting at the least-shot-at target among
those not known to be dead. This policy results in a lot of
switching from one target to another, a regrettable tendency
when speed is important. Aviv and Kress (1997) explore
other policies that are almost as good but that do not switch
targets so frequently.

One might expect the greedy policy to be optimal under
more general status reporting. Suppose then that there are
s > 0 shots and ¢ > 0 targets, and let random variable X,
indicate whether target i is alive at time k (X, = 1) or
not (X;, =0). Let m,, = P(X;, = 1), with 7, known, i =
1,...,t. Shots are made one at a time. The effect of a shot
at target i at time k — 1 is to kill it with probability 1 — ¢,
if it is not already dead, and to produce a report ¥, in some
countable set. It is assumed that Y, depends only on X,
and that P(Y, =y | X;, = x) is known and independent of
i and k for all y, and for x =0 or 1. The effect of these
assumptions is that, if the shot is aimed at target i and
Y, =y, by Bayes’ theorem,

T = qu,k—IP(Ykzyklxxkzl) (4)
* qu.k—IP(Yk:yk|Xi1<:1)+(1_q771,k—1)P(YkZYk|Xik:0)

Because m;, is a conditional probability, it is not—and
need not be—defined if the probability of the conditioning
event (denominator of (4)) is 0. There is no effect on other
targets; that is, 7, =, ,_, if target 7 is not shot at.

It is sometimes assumed that Y, can have only two
values, typically “Live” and “Dead” reports. However, Y,
might also be some physical measurement such as the tem-
perature of the target or the output of a digital filter that
measures the extent to which the target optically resembles
the thing that was initially shot at. As long as the condi-
tional probabilities in (4) are known for all (i, k), Bayes’
theorem applies.

Let a policy be called myopic if, at every time k > 0, it
chooses a target i for which 1, is largest.

THEOREM 1. Any myopic firing policy will maximize the
expected number of targets killed in total.

PrOOF. The proof of this theorem is long, so we defer it to
the appendix.

If M is the total number of targets killed using a myopic
policy, and N is the total number of targets killed under an
arbitrary policy, then one might expect the stronger result
that M stochastically dominates N. However, this is not
the case. A counterexample is t =2, s =2, and ¢ = 0.5,
with no information between shots and with the first target
being alive and the second very likely dead. The myopic
policy will fire both shots at the first target, thus making
it impossible to kill both of them, whereas the policy of
splitting the two shots has at least a slight chance of killing
both. Therefore, P(M < 1) > P(N < 1); that is, M does
not stochastically dominate N.

It is also not true that only myopic policies can maximize
the expected number of targets killed. A counterexample

is t=3, s =2 and ¢ = 0.5, with no information between
shots and both targets alive. The policy of shooting twice
at target 1 then once at target 2 is optimal, but not myopic.

There is no reason to expect myopic policies to be opti-
mal in more general circumstances where the targets or
shots differ, nor is there any known way of efficiently com-
puting what the optimal policy is in those circumstances.
Oddly, the situation can be simpler if the number of shots
is random rather than fixed. If the number of shots has a
geometric distribution, the firing problem may be indexable
(see §4).

2. The Unconstrained Case

We now assume that shots are available in unlimited quan-
tities, as long as they are paid for at the cost of ¢; for each
shot of type i. We will assume that looks are also expen-
sive. The idea that looks are costly or in short supply was
not incorporated in §1 but is actually an important part of
some shoot-look-shoot problems.

The great analytical advantage of not having explicit con-
straints on shots and looks is that the firing processes at the
several targets decouple. As a result, problems with many
different targets are much easier to solve than in the con-
strained case. Therefore, we will suppress reference to the
target subscript j in this section.

The target value v and the various costs must of course
be measured in commensurate units. This may seem to
make the model unwieldy in a practical sense, because tar-
get values are often just relative valuations of importance,
while shot costs are monetary. The prospects for application
are not as bad as one might suppose. Section 2.4 includes
a discussion of this issue.

2.1. Perfect Information, Infinite Horizon

Let g; be the miss probability for one shot of type i, and
assume each look reveals correctly whether the target is
dead or alive. To avoid trivialities we assume that the look
cost d is positive. The marksman must pay the costs of
all looks and shots and must also pay the target’s value v
if the target is still alive after all shots have finished. The
marksman’s objective is to minimize the expected sum of
all costs.

In general, the marksman will not know whether the
target is dead or alive, so we let p be the probability of
the target being alive, a state in the interval [0,1]. To this
we add, for convenience, one additional state R, in which
the marksman has retired and can take no further action.
Except in state R, the marksman has his choice of looking
or shooting at the target in various ways, or of choosing
the action E (for “End”), which costs nothing but sends the
state to R.

Using the code that L stands for looking and that positive
integer i stands for a shot of type i, a typical firing pol-
icy might be 1123L44L11E. It should be understood that
firing ends immediately after any look that reveals that the
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target is dead. Thus, after shooting four times, the marks-
man looks, shoots two more times if the target is still alive,
looks again, shoots two more times if the target is still alive,
and then quits. Any policy can be encoded in this manner
and then evaluated; for example, the miss probability for
the named policy is ¢/¢,q;q;. It should be obvious, how-
ever, that there is no hope of determining the optimal policy
by exhaustion. Instead, we employ the theory of partially
observable Markov decision processes (Monahan 1982) to
first determine the structure of the optimal policy.

A POMDP requires the specification of two functions:
¢(s,a) and P(s|s, a). The first is the immediate (average)
cost of taking action a when the target is in state s, given
in the present case by

0 ifs=R,
C:

1

d ifs=panda=1L,

o(s, a) = if s=pand a=1,

pv if s=panda=E.

The second function gives the probability that s will be
the next state, given that the current state and action are s
and a. It is given by

1 if =R and either s=R or a=E,

P(s| ) if =pgq;,s=p and a=i,
s'|s,a)= ]
if Y=1,s=pand a=L,

l1—p if ¥=0,s=p and a=L.

The last two lines correspond to looking, with the two
possibilities after a look being that the next state is 1 or 0.

Let V(s) be the minimal total cost over all stages, given
that the initial state is s. Clearly, V(R) = 0, because sub-
sequent action is impossible from state R. Otherwise, for
p in the interval [0,1], the function V(p) is concave and
satisfies the functional equation

V(p)=min{vp: d+ pV (1 min(e, + V(pa))}. ()

where the three expressions correspond to stopping (action
E), looking (action L), or shooting with shot i (Strauch
1966, Theorem 9.1). Furthermore, there is an optimal sta-
tionary policy that, in state p, chooses the action corre-
sponding to the minimal term.

It would be equivalent to let U(p) = vp—V(p), and deal
with the functional equation

U(p)= max{O; —d+pU(1);
max(=¢,+pu(1 =) +U(pq))}. ()

U(p) can be described as the marksman’s gain relative to
quitting, with the gain for choosing E being O and the
immediate gain from shooting being the expected target
value killed minus the cost of the shot. The sum of U(p)
and V(p) is in all cases vp. While the two formulations
are equivalent, we prefer (5).

We have the following structural theorem.

THEOREM 2. Action E is optimal in an interval [0, p,], with
p, =2 0. Action L is optimal over a possibly empty interval

[P2» P3), with p; < p,.

PrOOF. Action E is optimal at 0, so it suffices to show that
the optimality set is convex. Suppose that E is also optimal
at p,, and let U(p) = vp — V(p). The function U(p) is
convex because V(p) is concave, and U(0) = U(p,) =0.
Therefore, U(p) < 0 on the interval [0, p,]. But U(p) >0
for all p by the definition of V(p), so actually U(p) =0 for
0 < p < py; that is, action E is optimal over some convex
set. The proof for action L (or any action whose penalty is
a linear function of p) is similar. The only state p* where
E and L have the same penalty is the one where vp* =d +
p*V(1). The optimality sets for E and L therefore cannot
overlap except perhaps at a single point, so p, cannot be
smaller than p,. O

A stationary policy will always choose the same action
when in state 1, which happens after every look unless the
target is revealed to be dead. Therefore, there is an optimal
stationary policy in state 1 that repeats itself after every
look unless the target is revealed to be dead, unlike the
nonstationary example given earlier. If such a policy begins
1123L, then it must continue 1123L1123L1123L ... indef-
initely until the target is finally revealed to be dead. Let x
be a shot sequence of the form (i, iy, ..., i;), where i; is a
shot type for 1 < j < k. Because the order of shots is imma-
terial in x, we will list them in nondecreasing order. Adopt
the notation xL for stationary policies that shoot x, look,
and repeat the cycle until the target is killed. Another pos-
sibility is that the policy shoots x and then quits, for which
we adopt the notation xE. The final possibility is that the
policy simply chooses E at the first opportunity, a special
case of xE where k = 0. There are no other possibilities,
so we have Theorem 3.

THEOREM 3. Let ¢, = Z’szl

Oand g, =1 if k=0. Then

V(l)Zmin{mxin<cli+cx>;mjn(vqx+cx)}- (7

 Yx

— 17k . N
Ci/ and 4. = Hj:] qijr with C, =

Proor. Stationary policies of the xL type lead to the first
term. The cost d 4 ¢, is paid a geometric number of times,
1/(1 —gq,) on the average, before the target is finally killed.
Stationary policies of type xE lead to the second term,
with £ = 0 corresponding to ending immediately. No other
policies need be considered because there is guaranteed to
be an optimal policy that is either xL or xE. [

A similar expression could be proved for V(p) in gen-
eral, but Theorem 3 will suffice because the target is nor-
mally assumed to start in the live state.

Even though Theorem 3 provides a comparatively simple
way to determine V(1), the amount of computation might
still be significant if there were many shot types. The fol-
lowing corollary concerns a lower bound that is easier to
compute.
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COROLLARY 1. Let i* be the shot type that minimizes
¢;/(=In(g,)), let « = —In(gq,), and let ¢ = c;. Then

V(1) > min{min(

u>0

d+cu .
1 —exp(—au) )’

m>i(r)1(v exp(—au) + cu) }

ProofF. Let o; = —In(g;), and let u; be the number of shots
of type i in the shot sequence x. Then, g, = exp(—)_; a;u;)
and ¢, = Y, c;u;, where both sums extend over all shot
types. By relaxing the minimization (7) to permit noninte-
ger values for u;, we obtain the bound

d+> cu, .
1 —exp(—=_; au;) ’

min(vexp(~ S ) + S |

V() > min{min(

where both inner minimizations are with respect to the
vector (u;). If u, > 0 for i # i*, then increase u, by
u;(c;/c») and set u; to 0. The resulting change will leave
¢, unchanged while not increasing ¢,, so it suffices to con-
sider only the single weapon type i*. O

COROLLARY 2. Let r =min, ¢;/(1 — g;) and suppose d > 0.
If r > v, then the optimal action in state 1 is E. If r <,
then the optimal action in state 1 is to shoot.

ProoF. We first note by inspection of (5) that action L can-
not be optimal in state 1, regardless of r. Let p, =1 — g,.
More generally, let p, = Zj‘.:] i, for any shot sequence x,
and note that p,. 4 g, > 1 for all x, as can be easily proved
by induction on the length of x. By assumption, p;r < ¢
for all shot types i, and therefore, p,.r < ¢, for all shot
sequences x. It follows that (1 —¢,)r < c, for all x. Suppose
xE is an optimal stationary policy for some nonnull shot
sequence x. Then, v > vq, +c,, hence, v > ¢, /(1 —¢q,), and
hence, v > r. If actually v < r, the contradiction shows that
x can only be null and establishes that the optimal action
in state 1 is E. If v > r, then there is some shot type i for
which vg; + ¢; < v, and therefore E cannot be optimal. [

ExaMPLE. Suppose v=64,d=8,¢,=8,¢,=3,q,=0.5,
q, = 0.8. It can be shown by exhaustion that the optimal
policy when p =1 is 12L. The target is always killed,
and the average cost of doing so is V(1) = (8 +3+8)/
(1 —(0.5)(0.8)) = 31.67. The minimal cost with a pure
shot type is 32, achieved with any of policy 1L, 11L, 11E,
or 111E. This shows that it is not in general possible to
confine attention to “pure” shooting policies. The lower
bound is 30.912, obtained by shooting 1.421 times with
shot i* = 1, looking, and repeating the action until the tar-
get is killed. According to Corollary 2, the optimal action
in state 1 will be to shoot (either with shot 1 or shot 2) as
long as v > 15.

459
Figure 1. Penalties for six policies (E, 2E, L12L,
2L12L, 11E, 12L) in the example problem of
§2.1 are shown by six lines, listed in increas-

ing order of the intersection with the y-axis.
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Note. The function V(p) is the lower envelope (concave hull).

Figure 1 shows the penalties for each of six stationary
policies as linear functions of the state p. All other policies
are dominated by one of these six. The first character of
each policy shows the (first) optimal action in that state.
Note that there is only one policy that begins with £ and
one that begins with L, consistent with Theorem 2.

Solving the equation 64p = 8 + pV(1) for p, we find
that the £ and L actions are tied in (5) when p =0.247, at
which point both penalties are 15.84. However, the optimal
policy in that state is 2E, which produces a smaller penalty
of 34 0.8(0.247)64 = 15.65. In fact, action 2 is the opti-
mal action in the interval [0.234, 0.256], which separates
the interval where E is the optimal action from the interval
where L is the optimal action. Thus, we have a counterin-
tuitive situation where increasing the probability of being
alive can cause the optimal action to change from shooting
to looking. In other words, the set of states where shooting
is optimal is not convex. This phenomenon is also noted by
Ross (1971) in a different Markov decision process. States
in the interval [0.234, 0.256]—the interval where 2E is the
optimal policy—will never arise if the initial state is 1 and
the optimal policy 12L is followed.

2.2. Imperfect Information, Infinite Horizon

The looks and shots of §2.1 can each be regarded as special
cases of a generalized shot. Generalized shot i (hereafter,
simply shot i) has the effect of first killing the target with
probability (1 — g;), and then providing a report about the
new state of the target. The effect of such a shot is to
first change the state from p to pg;, and then to provide a
report about the transformed target state. Let b;(pg;, k) be
the posterior probability that the target is alive, given that
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the prior probability (before the shot) is p and that report
k is generated. We assume this function to be known, typ-
ically through an application of Bayes’ theorem. If shot i
is selected as the next action, the resulting report will be
a random variable K with a known distribution, and the
next state will be a random variable b;(pq;, K). Shots with
no information output can be modeled by providing only
one possibility for K (in which case b;(pg;, K) = pq,),
and shots that provide only information (“sensors”) can be
modeled by setting g; = 1.

Let V(p) be the marksman’s minimal total loss, includ-
ing all shooting costs and the cost of the target’s survival.
The generalized version of (5) is then

V(p) =min{vp: min(c, + E(V(b,(pq.. K))) | ®)

The expected value in (8) is with respect to the distribution
of K, the sensor report.

The same existence results apply to (8) as to (5). How-
ever, there is no counterpart to (7) in this case because of
the complicated structure associated with looks. Solution
of (8) must be by an approximation method such as policy
or value iteration (Thomas et al. 1983, Puterman 1994).

2.3. Finite Horizon

Stationary policies can no longer be expected when the
time horizon is finite. The best action will depend on time,
as well as on the probability that the target is still alive, with
the marksman sometimes resorting to increasingly expen-
sive shots when time is almost used up. Obtaining POMDP
solutions is more difficult and essentially numerical, but at
least the problem of firing at many targets still decouples;
there is no need to consider a joint firing problem as long
as shots have costs, rather than constraints. See Monahan
(1982) or Lovejoy (1991) for surveys of solution methods.

Models of this sort are particularly attractive if there are
many targets of the same type, since the policy found in
solving one POMDP applies to every target. Exactly such
a model lies at the heart of Yost (1998), who considers
problems where the number of target types is small, even
though the number of targets is large.

2.4. Connection to the Constrained Case

In the example of §2.1, the target is always eventually
killed after expending 1.667 looks, 1.667 shots of type 1,
and 1.667 shots of type 2, on the average. If there were
n =600 targets, the expenditures to kill all of them would
scale up to 1,000 for each resource. Now, consider the con-
strained problem of killing as many of 600 identical tar-
gets as possible, subject to constraints of 1,000 on each
of the three resources, a problem that is much too hard
to solve using the techniques of §1. We have seemingly
almost stumbled onto a solution, because the application
of the optimal policy to each of the targets indepen-
dently will consume exactly the right resources in total.

Everett (1963) shows that there can be no better solution to
the constrained problem, but there are still two obstacles to
application.

One obstacle is that the constraints have to be interpreted
as constraints holding only on the average, because the
consumption of the three resources in the joint POMDP
is 1,000 on the average. On the other hand, constraints in
the actual firing problem are more likely to be required to
hold with certainty. This problem is least objectionable as
the number n of targets grows large. The standard devia-
tion of the total allocation in each case is proportional to
the square root of n, while the mean is proportional to n,
so the ratio of the two (the coefficient of variation) will
approach zero as n approaches infinity. In this sense, the
unconstrained case can be thought of as a solution method
for constrained problems where 7 is large because resource
consumption fluctuations become of less and less concern
as n increases.

The other obstacle is that the constraints are unlikely
to be met exactly, even on the average, because the coin-
cidence that the shot and look costs happen to be cho-
sen so that the constraints are all exactly satisfied is too
much to hope for. There needs to be some mechanism for
adjusting the shot costs to make that happen. Yost and
Washburn (2000) propose to do this in an iterative scheme
where a linear program produces dual variables that play
the role of costs, while the POMDP uses the costs to pro-
duce new policies that end up being columns in the linear
program. This mechanism for deriving resource costs from
constraints makes it unnecessary to make a priori judg-
ments about the comparative values of targets and shots.

The Yost-Washburn method is a column-generation tech-
nique for finding the correct costs and associated optimal
policies. It is characteristic of such schemes that feasible
solutions show rapid improvements at first, but that conver-
gence in the tails is very slow. Because upper and lower
bounds are available at all times when using that method,
a practical implementation will incorporate a termination
rule that accepts nearly optimal solutions.

3. The Semi-Constrained Case
with Perfect Information

Assume that each shot i in some set S has a cost ¢; and
a kill probability p, =1 — g;, and the object is to kill the
single target as cheaply as possible. The target is presumed
to be so valuable that shooting will not stop until either
shots are exhausted or the target is killed. The probabil-
ity of killing the target is therefore 1 — [, ¢ g;—the usual
“powering up” formula that applies to independent shots.
Because shooting will stop if the target is killed, it makes
intuitive sense to first use shots with high kill probabili-
ties and low costs. The following theorem makes this idea
precise.

THEOREM 4. Rank the shots according to increasing values
of the cost/effectiveness ratio c;/p;. The minimal average
cost of firing is achieved by making the shots in that order.
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ProoF. Let Q; =[];_,; g;- If the shots are made in index
order, Q,; is the probability that all shots before the ith
shot fail to kill the target, and therefore also the prob-
ability that the ith shot will be required. The expected
cost of firing is therefore C =), yc;Q;. Let C, be the
expected cost of firing if the kth shot is interchanged with
the k + Ist in the firing order, and let d = C — C,.. All but
two terms from each sum cancel in the subtraction, so d =
Oy ((cx + e qi) — (cugr + k1)) = Qi Prst — gt Pi)-
The difference d will be positive if and only if ¢,/p, >
Cyi1/Drs1- Because k is arbitrary, this shows that the shots
should be ordered as stated. [

4. Applicability of Bandit Processes

A “bandit” process is one where the decision maker must at
each time choose one of a fixed number of Markovian ban-
dits, thus changing the state of the selected bandit, receiv-
ing a reward, and receiving some information about the
changed state of the selected bandit. Bandits other than the
one chosen are unaffected. Rewards are time-discounted by
the factor 0 < B < 1, and the decision maker’s object is to
maximize the expected value of the total discounted reward.
The original application was to slot machines (one-armed
bandits) with unknown payout statistics, hence the name. In
the present context, the decision maker is a marksman who
must at each time choose a bandit target to shoot at. The
attractive feature of bandit processes is that they are index-
able; that is, there exists a Gittins index, computable for
each bandit separately from the others, such that choosing
the bandit with the largest index at all times is an opti-
mal policy. The Gittins index depends on the state of the
bandit and is generally difficult to compute. Even so, the
separability of each bandit from the others is an attractive
feature.

An alternative interpretation is that rewards are not dis-
counted but the bandit process may be terminated at any
time, after which there are no further rewards. With this
interpretation, 3 is the probability that the bandit process
will not terminate after each decision, in which case the
number of decision opportunities is a gradually revealed
geometric random variable with mean 1/8. In the present
shooting context, 1/ is the average number of shots avail-
able to the marksman.

Bandit processes have occasionally been applied to
shooting problems. For example, Glazebrook et al. (2001)
consider a two-sided problem where each bandit is an
attacker of unknown type, and where the defending marks-
man’s problem is to decide which bandit to shoot at next,
given that the bandit will return fire if not killed. Barkdoll
et al. (2002) consider a related problem in suppression of
enemy air defenses (SEAD) where the decision maker is
the enemy air defense supposedly being suppressed. The
marksman must not only decide which bandit (i.e., attacker)
to shoot at next, but also how his engagement radar should
operate in support of the shot, whether in continuous or

intermittent mode. Here, the decisions concern not only the
choice of bandit, but also how the chosen bandit should be
dealt with. This additional feature formally takes the deci-
sion process out of the class for which index strategies are
known to be optimal. Even so, Barkdoll et al. (2002) pro-
pose an index-based heuristic for their shooting problem
that performs well in numerical experiments. See Glaze-
brook and Fay (1990) for a theoretical discussion of such
developments in bandit problems.

In the interest of formulating a problem where the Gittins
index can be derived explicitly, we consider next a simple,
one-sided problem similar to those considered in previous
sections.

The decision maker cannot have any choices other than
bandit selection, so our marksman cannot have his choice
of several shot types once he selects a target. Therefore, we
introduce the following modified version of Equations (6)
and (8), the modifications being to delete the shot subscript
i, and replace the option of retiring with 0 payoff by the
option of retiring with a payoff of M:

U(p, M) = max(M; —c+pv(l1 —q)
+BE(U(b(pg, K), M))). ©)

The Gittins index M(p) is the smallest value of M for
which the options of retiring and continuing are equivalent
(Whittle 1982). In general, M(p) must be computed by an
iterative numerical procedure, but the case where informa-
tion is perfect is an exception. In that case (9) reduces to

U(p, M) =max(M; —c+ pv(1 —q)
+B{pqU(1, M)+ (1 - pq)U(0, M)}). (10)

We will first find U (0, M), then U(1, M), and then deal
with the general case. Because U(0, M) = max(M, —c +
BU(0, M)), it follows that U(0,M) = max(M, —c/
(1 —PB)), and therefore that M (0) = —c/(1 — B).

For M > M(0), U(0, M) = M, and therefore,

U(l,M):max(M; —c+v(l1—gq)
+B{qU(1, M) + (1 - g)M}). (11)

Equating U(1, M) to the continuation expression in (10)
and solving for U(1, M), we see that (11) is equivalent to

— 1- 1—qgM

c+v(l—g)+B(1—q) ) (12)
1-Bq

For values of M between M (0) and M(1), U0, M) =M

and U(1, M) is the continuation expression in (12), so for
the general case 0 < p < 1 we have Equation (13)

U(l, M) =max(M;

U(p, M):max(M; —c+pv(l—gq)

—c+v(l—g)+B(l—gM
1—Bq

+(1 —pq)M}). (13)

+B{pq
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The smallest (in fact only) value of M for which the two
expressions in (13) are equal is the Gittins index,

pv(l—q) o c
(1-B)(1=Bg(1-p)) 1-B’

If there are actually several targets, then we have only to
add subscripts to p, ¢, v, and g to have a shooting index—a
number that determines the next shot in all circumstances.

The index policy is myopic when B = 0 because the
target with the largest immediate gain pv(l — g) — ¢ is
always chosen. However, in general M (p) is an increasing,
concave nonlinear function of p, and the best policy is not
necessarily myopic.

M(p)=

0<p<1.(14)

ExAMPLE. Suppose 8 =0.9, and that there are two targets
with ¢ =0.5 and ¢ =0 for each. If vy =1 and p, =1,
the index for target 1 is 5. If v, =4 and p, = 0.2, the
index for target 2 is 6.25. The myopic rule would prefer to
engage target 1 first, but the optimal rule prefers target 2.
Valuable targets with a low probability of being alive have
a surprisingly large index on account of the concavity of

M(p).

5. Summary

We have reviewed the shoot-look-shoot state of the art and
introduced several new results.

As often happens, the difficult constrained problems are
in the middle. The problems of §1 are tractable when the
numbers of shots and targets are small. When all numbers
are large, the methods of subsequent sections may produce
approximate solutions by decoupling the targets. Problems
with moderate numbers of targets and shots remain diffi-
cult, particularly if information is not perfect.

Appendix. Proof of Theorem 1

ProoF (refer to §1.3 for notation and exact statement of
Theorem 1). For y an observation and 7 a probability, we
first introduce the function

gmP(Y=y|X=1)

(recall that the conditional probabilities are assumed
known). If (y,...,y,) is a sequence of observations, we
generalize by defining

T(m, (s y)) =TT (T, (ys -0 em1)s Vi)

With this notation, Equation (4) is 7 = T(m; 1, ¥;)-
Equivalently, 7, = T(7, o, (¥1,...,)). We first observe
that T (7, y) is a nondecreasing function of 7 for any
observation or sequence of observations, as is easily proved
by induction.

Let 7} = max;{m;} be the largest probability of being
alive at time k. The theorem states that any myopic policy

is optimal, a myopic policy being any policy that always
chooses a target i for which 7, = 7} at all times k > 0.
Our proof is by induction on s, the number of shots. The
proof is trivial if s = 1. The problem is to show that there is
some optimal policy that makes the myopic choice at k =0
because it can be assumed by the induction principle that
the myopic choice is optimal for k£ > 0. Suppose that some
optimal policy P first chooses target 2, where m,, < 7. We
can assume that P proceeds myopically for k& > 0, because
myopic continuations are optimal by induction. We will
show that there is a different policy Q that first chooses
myopically and that is at least as good as P.

Because P is myopic for k& > 0, it will shoot at tar-
get 2 until 7, < 7} at some random stopping time K,
or until shots are exhausted, whichever comes first. Let a
sequence of observations o = (y,, ..., y,) be called “criti-
cal” if observation of that sequence of reports is included
in the event (K = k), let X(k) be the set of all criti-
cal sequences of length k, and let % = J;_, 2(k). P will
switch from target 2 to some other target immediately after
some critical sequence in 3 is observed, unless shots are
exhausted first.

Suppose that P switches from target 2 to target 1 after
time K, and note that target 1 is necessarily a myopic target
at time 0 as well as time K, because target 1’s proba-
bility of being alive is w; at both times. Suppose further
that P next switches from target 1 to some other target
(possibly target 2) after some observation sequence o =
(¥5 ..., ¥,) associated with target 1 is observed. Then it
must be true that T (my, o) < 7. Because m,, < 7, and
because T(7, o) is a nondecreasing function of 7, it is
also true that T(m,,, o) < m;; that is, either o or some
subsequence of o must be critical. In other words, for any
observation history for which P continues to shoot at tar-
get 2, P will also continue to shoot at target 1, given the
same reports about target 1. In fact, P can be described
as the policy that first shoots at target 2 according to 2,
then shoots at target 1 according to 2, and then proceeds
myopically (possibly by continuing to shoot at target 1)
as long as shots remain. We refer to the first two parts of
P as being 3-controlled. Let Q be the policy that simply
switches targets 1 and 2 in this description. We show that
Q is at least as good as P, thus proving the theorem.

In comparing P and Q, we need only compare the
chances of killing targets 1 and 2 under the X-controlled
phase. This is because the policies differ only in the order
in which targets 1 and 2 are engaged, so the distribution of
the system state at the end of -controlled shooting, includ-
ing the possibility that all shots are exhausted, is the same
in either case.

We now consider the four possibilities for whether tar-
gets 1 and 2 are actually alive at time 0. If both are
dead, clearly P and Q will be equally effective under
3-controlled shooting. The same is true if both are ini-
tially alive, because the same stopping rule is applied to
both targets, so consider the case where only one target is
alive. Let D(¢) be the probability of killing a target that is
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shot at until shooting is stopped by either 3 or the horizon
t, whichever comes first, given that the target is initially
live, and note that D(7) is a nondecreasing function of ¢.
If the live target is engaged first, then the probability of
killing it under 3-controlled fire is D(s). If it is engaged
second, then let X be the number of shots used (wasted)
by first shooting at the one that is dead. The probability
of killing the live target is then D* = E(D(s — X)), which
cannot exceed D(s) on account of the monotonic nature of
D(r). Considering only targets 1 and 2 under 3-controlled
fire, the average number of targets killed by policy P is,
therefore, 7,,(1 — 7,0) D(s) + 7o (1 — 7,) D*, with a sim-
ilar expression with targets 1 and 2 reversed for policy Q.
Because m,, <,y and D* < D(s), it is trivial to show that
policy O will kill at least as many targets as policy P.

Because Policy Q has been shown to be at least as good
as policy P, and because policy Q begins myopically, this
completes the inductive proof that all myopic policies are
optimal. O
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