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ARTICLES

TWO-PERSON ZERO-SUM GAMES FOR NETWORK INTERDICTION

ALAN WASHBURN and KEVIN WOOD

Naval Postgraduate School, Monterey, California
(Received November 1993; revision received September 1994; accepted October 1994)

A single evader attempts to traverse a path between two nodes in a network while a single interdictor attempts to detect the
evader by setting up an inspection point along one of the network arcs. For each arc there is a known probability of detection if
the evader traverses the arc that the interdictor is inspecting. The evader must determine a probabilistic “‘path-selection” strategy
which minimizes the probability of detection while the interdictor must determine a probabilistic ‘‘arc-inspection”” strategy which
maximizes the probability of detection. The interdictor represents, in a simplified form, U.S. and allied forces attempting to
interdict drugs and precursor chemicals as they are moved through river, road, and air routes in Latin America and the
Caribbean. We show that the basic scenario is a two-person zero-sum game that might require the enumeration of an exponential
number of paths, but then show that optimal strategies can be found using network flow techniques of polynomial complexity. To
enhance realism, we also solve problems with unknown origins and destinations, multiple interdictors or evaders, and other

generalizations.

his paper investigates game-theoretic models for the

following scenario and a number of generalizations:
Each day, an ‘““‘evader” selects and attempts to traverse
a path through a network from node s to node ¢, without
being detected by an ““interdictor.”” Each day, the inter-
dictor selects an arc k in the network and sets up an
inspection site there. If the evader traverses arc k, he is
detected with probability p,; otherwise, he goes unde-
tected. Both the evader and the interdictor know the
detection probability for each arc in the network.
The problem for the interdictor is to find a probabilistic
‘‘arc-inspection strategy’” which maximizes the average
probability of detecting the evader called the interdic-
tion probability, while the problem for the evader is to
find a ““path-selection strategy’” which minimizes the in-
terdiction probability. This problem fits into the form of a
two-person zero-sum game.

The basic problem was investigated in a military con-
text by Wollmer (1964) who described, without proof,
the optimal strategy for the interdictor; he did not de-
scribe the optimal strategy for the evader. Interest in
network interdiction has been revived because of the
United States’ drug interdiction efforts in the 1980s and
1990s, primarily those aimed at cocaine coming from
Latin America. Law enforcement agencies, such as the
U.S. Customs Service and the Drug Enforcement
Agency, naturally took the lead in drug interdiction, but
the Department of Defense (DoD) became significantly
involved starting with the Defense Authorization Act of
1989 (U.S. Public Law 100-456, 1989). This act allows

the use of DoD assets in the detection and tracking of
drug smugglers although not directly in their arrest.

Much research on drug interdiction, as opposed to net-
work interdiction, has focused on estimating changes in
the probabilities of detecting drug smugglers when inter-
diction assets are manipulated in various ways, e.g.,
Mitchell and Bell (1980), and Godshaw, Pancoast and
Koppel (1987). More recently, Caulkins, Crawford
and Reuter (1993) used an adaptive simulation to investi-
gate the effect of changing interdiction efforts on drug
smuggling from South America into the United States.
The simulation is ‘‘adaptive’ in that drug smugglers
learn about and react to past interdictions. Also, the ob-
jective of the drug smugglers is to maximize profit, not
just to minimize probability of detection.

The adaptive nature of the simulation created by
Caulkins, Crawford and Reuter represents an important
aspect of drug interdiction, namely, that drug smugglers
must be considered to be intelligent adversaries who
know or can learn about an interdictor’s strategy. Our
game-theoretic models take this explicitly into account.
The evader actually represents drug smugglers who are
dispatched periodically on specific routes by an intelli-
gent employer or ‘“‘narco.’” The narco knows the optimal
strategy of the interdictor or at least learns about the
interdictor’s strategy by noting the fraction of his smug-
glers who are caught using a particular route. The inter-
dictor is an intelligent law-enforcement force that knows
it must move its inspection site in a randomized fashion
to avoid being predictable. In our multiple interdictor
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models, the interdictors can represent assets such as air-
craft which are dispatched by a single intelligent ““coor-
dinator” such as JTF-4 (Joint Task Force Four) which
schedules U.S. drug surveillance aircraft in the
Caribbean and Central America (Dettbarn 1993).

The models mentioned above considered certain
geographic aspects of drug smuggling but only in terms
of generic routes between supply and demand points.
Steinrauf (1991) identifies the need for detailed modeling
of the movement of drugs along a network of roads
and rivers in parts of South America. Steinrauf
(1991) and Wood (1993) describe a number of determin-
istic network interdiction models (integer programming
models) which, given limited assets, minimize the maxi-
mum flow of a commodity through a network by selec-
tively destroying arcs—these models might be useful
within a simulation for some of the scenarios we are
considering, but are probably more relevant to short-
term, war-fighting situations. The game-theoretic models
we develop here are appropriate for modeling drugs be-
ing transported through networks and could be applied to
models using generic ‘‘routes.”

A number of generalizations to the basic model are
developed which address practical aspects of drug inter-
diction, such as multiple interdictors and unknown origin
and destination nodes. This paper, however, is largely
theoretical in nature; it describes only the general struc-
ture of real-world optimal strategies. We seek to gain
insight into what optimal or near-optimal strategies
should look like, hoping that this will lead to better de-
ployment of interdiction assets whether or not a formal
model is used.

In the next section, we define network concepts and
notation which will be used throughout the paper. In
Section 2, we describe the basic network interdiction
problem as an unwieldy, two-person zero-sum matrix
game and then show how it can be solved efficiently
using wieldy network flow techniques. The basic struc-
tures of the evader’s and interdictor’s optimal strategies
are then derived. Section 3 makes simple extensions of
the basic model, for instance, to cases where the origin
and destination nodes are not known with certainty.
Section 4 develops more complicated extensions of the
basic model to include multiple interdictors. Section 5
summarizes our results and points out areas for future
research.

1. DEFINITIONS AND NOTATION

Let G = (N, A) denote a directed network with node set
N and arc set A. We will usually refer to an arc by its
number k although it can be represented by the ordered
pair (i(k), j(k)) or simply (i, j), where i is the tail of the
arc and j is the head of the arc. The set of arcs directed
out of a node i is the forward star of i, denoted FS(i),
while the set of arcs directed into node i is the reverse
star of i, denoted RS(i).

A path in network G, starting at node i, and ending at
node i,,, is a sequence of nodes and arcs of the form i,
(o 1) B1s (F15 82)s v s bm—1s (1> bm)s im- When the
start and end nodes of the path are of particular impor-
tance, the path can be referred to as an s-¢ path, where
s =igand ¢ = i, # i,. The path is a simple path if all
nodes are unique. A path is a ¢ycle if iy = i,, and it is a
simple cycle if all nodes are unique except that i, = i,,,.
The set L will denote the set of all simple s-¢ paths, and
in some cases, a path / € L will be denoted by its arc set
A(l). We define D to be the arc-path incidence matrix
with respect to L by

du = {1 if path / € L includes arc &k
¥ =10 otherwise.

The /th column of D, denoted d(!), is the arc-path inci-
dence vector for path /.

It will also be useful to view G as a “‘flow network™
with a single commodity flowing through its arcs. Asso-
ciated with each node i is a value b; which represents
an exogenous source of the commodity if b, > 0, or an
exogenous demand if b; < 0. Letting y, be the flow of
the commodity on arc k, the standard flow balance equa-
tions for G are

> Yk— 2 yi=b; foralliEN
kEFS(i) kERS()
yr 20 forallkeAd
which we represent more succinctly as
Fy=b
y=0.

Associated with each arc k is a probability of detection
Px> which is the probability that an evader traversing arc
k will be detected if the interdictor inspects that arc. We
assume that p; > 0 for all arcs k to avoid tedious details
when p, = 0 is allowed. If p is the n-vector of detection
probabilities, then P = diag(p).

Given two distinct nodes in G, s and ¢, an s-¢ cut C is
a partition of V into two subsets N, and N, such that s €
N; and ¢t € N,. With respect to that cut, an arc is a
forward arc if it is directed from a node in N, to a node
in N, and it is a backward arc if it is directed from
a node in N, to a node in N,. When each arc k has a
capacity u, > 0, which is an upper bound on arc-flow
Y&> the capacity of a cut C is ¥, uy, where A is the
set of forward arcs of C.

2. THE BASIC MODEL

Our interest is in solving a two-person zero-sum game Q
where the evader’s (P2’s) pure strategies select simple
s-t paths [/ to traverse, and the interdictor’s (P1’s) pure
strategies select single arcs to inspect. Define the vector
z such that z; = 1 if P1 inspects arc k and z, = 0
otherwise. Then, the payoff function for Q is

WV, )= Y pizx
kEA(l)



which is the probability that P2 is detected by P1. The
expected value of V(z, I), denoted ¢, is the interdiction
probability. For P1, the objective of the game is to max-
imize ¢ by determining a randomized, i.e., a mixed strat-
egy for inspecting an arc. For P2, the objective is to
minimize ¢ by developing a mixed strategy for selecting
a path /. Let x, be the probability that P1 inspects arc k
and let ¥, be the probability that P2 selects path / so that
the vectors x and y represent P1’s and P2’s mixed strat-
egies, respectively. Since interdiction occurs only if P1’s
arc k is on P2’s path /, and even then only with probabil-
ity p,, we have

¢ =EWV(z,1))= 2 2 xXiprduy; = xPDy.
k€A IEL

This problem fits into the form of a matrix game Q with
matrix PD and can be stated as the ““maxmin’’ problem.

Maxmin0
Max min x PDy
x 3

subject to x1 =1
x=0

1y=1

y=0.

Being a finite matrix game, Q could be solved by solv-
ing the following linear program. (For example, see
Owen 1982, pp. 34-41, or simply fix § in Maxmin0 and
take the dual with respect to x.)

Problem LP1
v* = min v
VAY
subject to PDy —1v <0
1y=1
y=0,

where 1v denotes a column vector of 1s, all of whose
elements are multiplied by v. The kth constraint
(PDy), — v < 0 states that the interdiction probability
must not exceed v no matter which arc is chosen by P1.
The optimal dual variables for those constraints yield
P1’s optimal strategy.

It will be useful to rewrite LP1 in terms of the arc-
traversal probabilities y = DY as follows:

Problem LP1a

v* = min v
y,v
subjectto Py —1v <0

YyEY!,
where Y! = {yly = Dy, 1§ = 1, § = 0}. The problem
with solving LP1, or LPla, is that the number of
variables in ¥, i.e., the number of simple s-¢ paths in the
network G, may grow exponentially in |A|. We over-
come this difficulty by replacing Y in LP1a with an eas-
ily stated relaxation Y2, and show that the resulting LP
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can be used to solve LP1 efficiently. We say that a can-
didate vector of arc-traversal probabilities y, derived by
any means, is playable if Dy = § for some probability
distribution y over the set of simple s-# paths L.

Lemma 1. Necessary conditions fory to be playable are
Fy=bandy 2 0, whereb, = 1, b, = =1 and b, = 0
foralli e N — s — t.

Proof. Since every path in L leaves node s once, enters
node ¢ once, and leaves every other node as often as it
enters, the probability of leaving s must be 1, the proba-
bility of entering # must be 1, and the probability of en-
tering any other node must be the same as the probability
of leaving that node. It must, therefore, be true of any
arc-traversal probabilities y that Fy = band y = 0.

Lemma 1 implies that Y* C Y?, where Y? = {y|Fy =
b, y = 0}. The relationship can be strict because y € Y?
may contain some flow around a cycle that is infeasible
in Y?, i.e., the conditions of Lemma 1 are not sufficient
for playability. So, a relaxed version of LP1 is as follows.

Problem LP2

v¥* = min v
y,v
subjectto Py—1v <0
y E Y2

To use LP2 to solve LP1, we must first solve LP2.
Divide the kth constraint of Py — 1v < 0 by p,, and
define u; = p; . Then, LP2 becomes:

Problem LP2a

v** = min v
y,v
subjectto Fy=b
ysuw
y=z0,

where uv is the column vector u, each of whose elements
is multiplied by v. This problem has a simple interpreta-
tion: Each arc k has a capacity of u,v and the problem is
to reduce these capacities by decreasing v to the optimal
value v**, where the problem of getting one unit of flow
from s to ¢ is just feasible. From the max-flow min-cut
theorem (Ford and Fulkerson 1962) the problem is feasi-
ble as long as the capacity of the minimum capacity cut is
at least 1. Since v is just a linear scale factor, the mini-
mum capacity cut is minimum for any v > 0, for exam-
ple, v = 1. Therefore, the problem can be solved as
follows: Create the max flow problem from s to ¢ using
arc capacities u. Solve this problem to find the maximum
flow value f and obtain the maximum flow vector y*~*
and the forward arcs A, of some minimum capacity cut
C. All of this is easy to do using standard maximum flow
techniques, e.g., see Ahuja, Magnanti and Orlin 1993,
pp. 177-185 and pp. 213-218. Then, scale y** to obtain
the optimal solution to LP2, y** = y**f~! = y**(1/
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Srea, Up) and v** = 71 = 1/3, 4 u,. It is now easy
to prove the following theorem.

Theorem 1. The optimal solution values of LP1 and LP2
are equal.

Proof. There always exists a maximum flow vector y*
which solves LP2a and can be expressed in terms of only
simple paths, i.e., there always exists §* = 0 such that
1yt = f and y* = D§* is a maximum flow of value f
(Lawler 1976, pp. 119-120). Thus, we can replace y* * in
the discussion above with y*, let y* = y*f~!, and let
$* = §7f 1. Then, §* is a feasible solution for LP1 with
solution value v*, and y* solves LP2 with optimal solu-
tion value v*. Since LP2 is a relaxation of LP1 the opti-
mal solutions of LP1 and LP2 must be equal.

So, the solution value of LP2 yields the value of Q al-
though optimal strategies for P1 and P2 are not yet
apparent.

We next describe how to efficiently construct a com-
pact representation of an optimal solution to LPla, and
thus an optimal strategy for P2, starting with an optimal
solution to LP2, y**. Ford and Fulkerson show that any
feasible flow such as y** can be decomposed into a set of
(simple) path flows and (simple) cycle flows of cardinality
at most |A|. This can be accomplished using a simple
search algorithm on G with respect to y**. For instance,
a depth-first search can be started at s and continued
along arcs with positive flow until a simple path from s to
t is identified or a cycle is identified. If an s-¢ path [ with
path-arc incidence vector d(/) is found, the path is noted
and given a path flow value y; equal to the minimum flow
over all arcs in that path. Then, the arc flows on that path
are all reduced by y7. If a cycle is found, the cycle could
be identified, but flow around a cycle does not contribute
to a (scaled) maximum flow and it suffices for our pur-
poses to reduce the flow on all arcs on the cycle by the
minimum flow over all arcs in the cycle. (In fact, we can
arrange the sequential search so that cycles are ignored
entirely. Even using the search described, not all cycle
flows may be found which is fine because cycle flows are
irrelevant.) After identifying a path or cycle, the flow on
at least one arc will go to 0 and thus, |L'| + |W’| < |A],
where L' is the set of paths enumerated and W’ is the set
of cycles enumerated before the total flow on all s-¢
paths is reduced to 0. The arc flows y* represented by
the path flows, i.e., y* = X,  d(/)p; must move one
unit of flow from s to ¢ and X<, 7 = 1. Additionally,
yi = yi'for all k € A, because there can be no flow
around a cycle that includes an arc in a minimum capac-
ity cut. Thus, it follows that y* solves LP1a and the p}
are path-selection probabilities for the ‘‘small” (polyno-
mial in | A|) set of paths L' and the corresponding path-
selection strategy is optimal for P2. For the rest of this
section the vector y* will denote a playable solution of
LP2 for P2, i.e., a solution to LP1a. Note that y* and the

A

optimal path-selection strategy §* can be obtained

efficiently, that is, in polynomial time. This is true be-
cause a maximum flow can be obtained in polynomial
time and the path-extraction process will require at most
O(] A|*) work because at most | 4| paths plus cycles will
be found using a depth-first search, and each search re-
quires O(] A|) work.

We have found one optimal strategy for P2 which is
sufficient for solving Game 1, but there can be many
others. The Markovian strategy is one such; it might be
of benefit to P2 in practice because the path need not
be decided upon before starting out on a smuggling run
and would be less subject to compromise by an infor-
mant. We define the Markovian strategy for P2 with re-
spect to optimal arc-traversal probabilities y* as follows:
P1 starts at node i = s and randomly chooses the next
arc to traverse k' € FS(i) using probabilities y,. = y5%./
2keFs() y%. He repeats this process at each node until
he reaches ¢, which must occur with probability 1. The
Markovian strategy can be shown to be optimal if it is
based on a vector y* that does not have positive flow on
all arcs around a cycle. An optimal ““acyclic’’ vector y*
can always be found by sequentially reducing flows
around cycles in a procedure similar to path extraction,
or by solving the following pure network LP:

min 1y
y
subjectto Fy=b
y < uv*
y=0.

We will next consider P1’s optimal arc-inspection
probabilities.

Theorem 2. An optimal strategy for x* for P1 in Q is
xi=uf l=piflfork € Acand x} = 0 fork €
A — A, where A is any minimum capacity cut.

Proof. Here x* is a feasible strategy because x* = 0 and
x*1 = 1. We must show that the expected return for P1
using x* is at least v* no matter which path is selected by
P2, ie.,

> pixi=zv* foralllEL.
KEA()

Every path / must include at least one arc k € A be-
cause C is a cut. Let k; be the first such arc. Then,

> pixk 2 pixi, =pi,(pif ) =f1=v
kEA(l)

Any standard ‘“flow-augmenting path’ algorithm for
the maximum flow problem (e.g., Edmonds and Karp
1972), identifies both a maximum flow and a minimum
capacity cut in polynomial time. Thus, optimal strategies
for both P1 and P2 can be obtained in polynomial time.



3. SIMPLE EXTENSIONS

In this section, we wish to consider the single-evader/
single-interdictor problem where some of the assump-
tions about the form of the problem and/or network are
generalized for more realism. For instance, the evader
may start and end at any of a number of nodes, or the
network may be undirected.

3.1. Multiple Sources and Sinks

In practice, the actual source node and/or terminal node
for the evader may be unknown. For instance, a source
node may be a drug laboratory at any one of a number of
possible sites, or sink nodes may be any of a number
of border crossing points. Here we consider two variants
on this theme.

Assume that the evader may begin, according to his
own desires, at any node in a set of nodes N° and finish
at any node in a disjoint set of nodes N*. This problem
can be solved as follows: First create G' from G by the
usual technique of creating a super source s’ and direct-
ing artificial arcs from s’ to each node in s” € N° and
creating a super sink #' and directing artificial arcs from
each node " € N’ to ¢'. Then, derive a playable y*
from a solution to LP2a defined on G', where u; = « for
artificial arcs (the max-flow problem on G’ must still
have a finite solution), and then extract paths and path-
selection probabilities from y*, as before, to obtain §*.
Flow on an artificial arc (s’, s") corresponds to the prob-
ability that the evader will leave from node s”, and flow
on (¢", t') corresponds to the probability of ending at
node ¢".

If, on the other hand, we know that a fraction f7 of all
illicit shipments begins at node i € N* and that a fraction
S must end at node i € N* for logistical reasons, then
P2’s optimal strategy may be found by first solving LP2
with b defined by

i ifieNs
bi={-ft fieN' (1)
0  otherwise

to yield solution y**. Then, that y** is sent into a modi-
fied path-decomposition procedure that extracts paths
from each node in N® to any node in N*. At most |A| +
max{|N°|, |N*|} paths for P2 will be found in this way.
P1’s optimal strategy can be determined from the optimal
duals of the modified LP2. One might speculate that P1’s
optimal strategy for this problem involves finding a min
capacity cut (where the arc capacities are defined as be-
fore) with all the source nodes on one side of the cut and
all sink nodes on the other side. However, this is not true
and it may be advantageous for P1 to leave certain paths
uninspected if only ‘‘low capacity’’ sources and/or sinks
are involved.
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3.2. Undirected Networks and Node Interdiction

In most cases, the network being traversed by the evader
is, at least partially, undirected. For instance, a drug
smuggler can traverse a section of road in either direc-
tion if need be, although drug traffic on certain sections
of river may only move downstream. If an arc k = (i, j)
in the network is undirected with probability of detection
D, make the standard transformation by replacing it with
two directed arcs k' = (i, j) and k" = (j, i) with p;, =
Px = Pi. Then, solve LP2 for the resulting directed
network and derive an optimal acyclic y*. If y%. > 0,
then y}. = 0, or vice versa, because y* is acyclic. Con-
sequently, P2 need only traverse an undirected arc k in
one direction. On the other hand, by the proof of the
max-flow min-cut theorem, if y} > 0 and k' is a forward
arc on the minimum capacity cut, then y}. = 0 because
k" is a backward arc on that cut. It then follows by
duality that x%. > 0 and x}.» = 0, and thus, P1 need only
look in one direction for P2’s approach along such an
arc. If the probabilities of detection on an arc are depen-
dent on the direction of travel, upstream or downstream,
for instance, make the same substitution as above, but
let p;. and p,~ be the appropriate, nonequal probabilities.
The solution then proceeds as outlined.

In addition to inspecting arcs, P1 may set up inspec-
tion points at nodes in the network, for instance, at road
intersections. Assume that we begin with a directed net-
work because otherwise we can apply the conversion
described above, and assume that the probability of de-
tection at node i is p;. Using another standard transfor-
mation, first replace node i with two nodes i’ and i” and
direct all arcs that were entering i into i’ and direct all
arcs that were leaving i out of i". Then, add an arc k" =
(&', i") with detection probability p,» = p;, solve the
resulting problem as before, and translate the solution
back into terms of the original network.

3.3. Muiltiple Evaders

Suppose that the narco is going to send out 7 > 1 smug-
glers on a single day and assume that multiple smugglers
traversing the same arc, even at the same time, are each
subject to the arc’s probability of detection. If the narco
is only concerned with the average number of smugglers
detected, he can choose the smugglers’ routes indepen-
dently, just as if they were being sent out on separate
days. Thus, the single-evader/single-interdictor model
can be used without modification.

However, the narco may have a concave ““utility func-
tion”” which causes him, for instance, to prefer having at
least one shipment, of two attempted, successfully deliv-
ered with probability 1, rather than having two shipments
successfully delivered with probability /2 . Assuming that
all cuts have a cardinality of at least 2, in this case the
shipments should be routed in a dependent fashion, using
paths that may have no arcs in common. Although some
analysis of this situation is possible without enumerating
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r-tuples of arc-independent paths, this complication ap-
pears to be significant, and we leave the topic for future
research.

4. MULTIPLE INTERDICTORS AND A SINGLE
EVADER

In this section, we discuss interdiction/evasion games
where P1 is not an interdictor, but has m > 1 interdic-
tors with which to inspect arcs. As before, we think of P2
as a single evader. These problems can be solved by
enumerating paths / for P2, and enumerating ‘“arc-group-
inspection’” strategies for P1 which consist of the differ-
ent ways of assigning z, = 0 indistinguishable
interdictors to each arc k € A4, so that 3, z;, = m. We
will show that difficulties of enumeration can be avoided
or much simplified, as in the one interdictor case, under
certain conditions.

A variety of payoff functions may be of interest when
m > 1. For instance, we may be interested in evaluating
the average number of detections, or we may be inter-
ested in the probability of at least one detection assuming
that the m interdictors detect independently of each
other, or under some sort of dependence. Additionally,
the acceptable strategies for P1 may be varied. In partic-
ular, we are interested in the case where the number of
interdictors per arc is limited to one. Justifications for
considering some of these variations and notational con-
ventions are given next.

We consider the following payoff functions:

AD(z, 1) = E DkZk
keA(l)

IND(z, 1)=1- ] (1-p)*
keA(l)
MAX(z, 1) = [max prl(zi),

where I(z;) is an indicator function which is 1 ifz, = 1
and is 0 otherwise. AD(z, /) is the average number of
detections. The other two payoff functions are best inter-
preted as the probability of at least one detection, but
under different assumptions about statistical indepen-
dence. The assumption that all interdiction attempts
are independent leads to IND(z, !). Payoff function
MAX(z, 1) corresponds to a particular kind of depen-
dence such that p, = P(S = s;), S being the random
‘“size”” of the evader, and s, being the smallest “‘size”
detectable on arc k. In this case, the chances of detection
are determined entirely by the interdicted arc in A(/) for
which s, is smallest, or, equivalently, for which p, is
largest. It is easy to show that MAX(z, /) < IND(z, l)
< AD(z, 1) with all three functions being equal to V{(z,
1) of Section 2 whenm = 1.

There may be good reasons for restricting the number
of interdictors per arc to at most one. Sensors might
interfere with each other, or in the military analog of this
problem, fratricide could be an issue. In fact, JTF-4
schedules at most one aircraft for drug surveillance on a

section of air corridor at any time because detection
probabilities would not increase much with additional
aircraft (Dettbarn 1993).

The above considerations force consideration of a va-
riety of games. Let Q,, por denote the game with m
interdictors and payoff function POF, and let Q,ln,POF
denote the same game with the additional restriction that
2z, < 1 on all arcs k. The game Q in Section 3 is either
Q. or Q] , in this generalized notation. Note that
Q,n.max and Q) a4y are essentially the same game be-
cause the interdictor gains nothing in Q,, »s.4x by setting
zp > 1.

In the previous section, we essentially argued that the
game @, can be solved by solving the following
maxmin problem.

Problem Maxmini(m)
Max min xPy

X y

subject to x1 =m

x=0

YEY?,
where m = 1, via LP2. Now, if we interpret x, as the
average number of interdictors placed on arc k, the solu-
tion to Maxminl(m) solves Q,, ,p and can by imple-
mented by sending each evader to arc k£ independently
with probability x}/m and using procedure 1 to extract a
set of paths and path-selection probabilities for P2. This
solution can be obtained by solving LP2(m) which is LP2
with the objective function v replaced by mv. LP2(m)
obviously has the same playable primal solution y* as
LP2, but x* is m times the value obtained in LP2. There-
fore, Q,, 4p can be solved by simply using the max-flow
technique described in the previous section.

On the other hand, Q,, »r4x and Q,, ;np are potentially
much more complicated for m > 1 than for m = 1. The
difficulty in these two cases is that E(POF) = x Py only
if the probability of more than one interdictor on an arc is
0 for all arcs, a restriction that may not be desirable from
P1’s standpoint. Pure strategies for P1 that do not use
multiple interdictors per arc are equivalent to subsets of
A of size m. If there is some way for P1 to randomly
inspect one of those subsets in such a way that the prob-
ability of arc k being included is x, for all k, then x will
be said to be 1-playable. A vector x satisfying the con-
straints from Maxminl(m), i.e., X1 = m and x 2 0, is
called an m-distribution, and will be 1-playable if and
only if one additional condition is met.

Lemma 2. If x is an m-distribution on A, then X is
1-playable if and only if x < 1.

Proof. The only-if part is obvious, so assume that x < 1.
Let R be the set of all subsets of A of size m, and let D’
be the | 4| x (') matrix such that

dh = {1 element k is in subset s
% =10 otherwise.



Then, we must show that there exists a probability distri-
bution % on R such that D'x = x. It suffices to show that
there always exists a solution to

D't =x
1x=1
0<x<l1.

Summing the constraints of D'% = x and dividing by m
gives 1% = 1, so the latter constraint is redundant. Given
that 18 = 1 and & = 0, the constraints & < 1 are also
redundant. Thus, we need only show that there is a solu-
tion to

D'x=x
%=0.

By Farkas’ lemma (e.g., Bazaraa, Jarvis and Sherali 1990,
pp- 219-220) that system has a solution if and only if

wD' <0
wx > 0

has no solution, or given any w satisfying wD' < 0, then
wx < 0. Let w satisfy wD’ < 0 and assume, without loss
of generality, that w;, = w, = ...2 w,. Then,
> we 2 wx because 0 < x < 1 and 1x = m. But one of
the constraints of wD' < 0 is 27— ; w, < 0, sowx < 0.

Given that x* is 1-playable, solving for ¥* can be much
simpler than implied by Lemma 2. The system of equa-
tions to be solved can be simplified by deleting any row &k
such that x5 = 0 and deleting any column such that
djs = 1. Thus, D'®* = x* could effectively be reduced
to a system involving | 4| rows and (“¢)) variables if, for
instance, x; > 0 only for arcs in some cut C. Furthermore,
the solution could be obtained by a column generation
scheme using an | A4 X |A(| basis matrix, and as few as
| Ac| pure strategies might have to be generated.

Henceforth, y* will denote a playable set of arc-traversal
probabilities for the LP or maxmin problem at hand. The
next theorem states that a solution (x*, y*, v*) to
Maxminl(m) corresponds directly to a solution of a variety
of generalized, multiple-interdictor games.

Theorem 3. If, in a dual and primal solution (x*, y*, v*)
to LP2(m), x* < land x} > 0 only for arcs k € A for
some cut C, then §* and X* are optimal for any game

Q,n.por as long as

MAX(z, I) < POF(z, [) < AD(z, [).

Proof. Since y* is optimal to O (remember that y* solves
Maxmin(m) and LP2(m) for any positive m), which has

optimal value m~'v*, it follows that p,y% < m~!v* for
all k € A. Also,

EAD(z, 1)) = 3 xipwys sm~Ww* 3 xik
k€A k€A

=m W*m =v*,

so P1 cannot obtain more than v* if P2 uses y* in the
game Q,, 4p. Since POF(z, I) < AD(z, l), it follows

WASHBURN AND WoOD / 249

that use of y* by P2 will also guarantee a payoff of at
most v* in Q,, por. Since it is also true that MAX(z,
l) < AD(z, ), the theorem will be proved if it can be
shown that (a) x* is 1-playable, and (b) by playing x*, P1
guarantees a payoff of at least v* in Q; »s4x. Part a fol-
lows from Lemma 2. To prove part b, first observe that
for all k € A, there is a path in L that includes arc k&
and no other arcs in 4. Since m ~!x* guarantees m ~lv*
for P1 in the game Q; 5.4y, it follows that pym ~'x} >
m~W*, ie., pixi = v*, for all k € A.. Every path
I € L must include at least one arc of A, so let k, be the
first such arc. Then, MAX(z, I) = p,, 1(z), and since
E(I(zy)) = X%, E(MAX(z, 1)) 2 pyxy, = v*.

Unfortunately, Theorem 3 does not always apply.
Consider the game Q, ;np on the network of Figure 1la,
where p; = p, = p; = € for some small, positive e,
P4 = ps = 0.5 and pg = p. The optimal dual solution to
LP2(2) for p = e is given in the first column of Table I.
For 0.25 < p < 1, x* is a 1-playable m-distribution, and
the corresponding solution is optimal. For € < p < 0.25,
x* is not an m-distribution, it cannot be 1-played, and
does not correspond to a solution. However, if x* is
interpreted as the average number of interdictors per arc,
this leads to an approximate solution which can be imple-
mented simply: Place one interdictor on arc 6 with prob-
ability 1, and place the other interdictor on arcs 4, 5, and
6 with probabilities x%, x% and x§ — 1, respectively.
The second column of the table shows an exact solution
for the interdictor for p < 0.25 and p — p? > ¢, where
x% — 1 can be interpreted as the probability that both
interdictors are assigned to arc 6. The exact solution can
be implemented as suggested for the approximate solu-
tion. The deviation between the optimal and approximate
values for x} is modest for this example. For instance,
for p = 0.1, the approximate solution has x} = x% =
0.2857 and x% = 1.4286, while the exact solution has
x% = x% = 0.2794 and x% = 1.44412. We mention
below the simple method that was used to obtain the
exact solution. However, we first consider O, por
which is of interest because practical considerations may
limit the number of interdictors per arc to at most one.

Q}. 4p is easy to solve. Assuming that m < | A|, just
solve Maxmin2(m), which we define as Maxminl(m)

Figure 1. Illustrations for example.
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Table I
Solutions to Example of Figure 1a With p; = p, =
€&, ps=ps=05andps=p > €

Dual Solution From
LP2(2) Exact:

0.25<sp <1 Exact Solution for
Approximate: p < 25 and
Probabilities e<p<0.25 p-DP*=e€
x%, x5, x4 0 0
x%, X% ki —————-———4p—2p2
1+4p 1+4(p_p2)
2 2 —4p?
» e She 1
1+4(p-p7)
1-4p 1-4p
xg -1 1+4p 1+4(p-p?

with the added constraints x/ < 1. Maxmin2(m) can be
solved via the related LP (derive this by fixing y in
Maxmin2(m) and by then taking the dual of this LP with
respect to x):

Problem LP3(m)
min mv + 1q
¥:v.q
subjectto Fy=b
lv+Iq—-Py=0
y=0
q=0.

LP3(m) will not typically solve more difficult games like
Oy inp> however. Consider the solution of LP3(2) on the
example of Figure 1la with p; = p, = p; = 0.01, p, = ps =
0.5, and ps = 0.1, which has x} = x% = 0.2115, x; = 1, and
x3 = 0.5769. This solution modestly overestimates the true
interdiction probability under independence because the
probability of detecting an evader traversing the path s, (s,
i3), i3, (i3, ), t with independent detections is ps + x3(pe +
D3 — DesD3), not the value implied by solving Q3 4, via
LP3(2) which is pg + x3(ps + p3)- LP3(m) could be used to
obtain approximate solutions to Q}, ;np and other games
although the accuracy of such approximations would need
to be investigated.

LP3(m) is actually more likely to be useful for solving
Q,...np rather than Q, ;np. For instance, we obtained
the exact solution listed in column 2 of Table I for the
example of Q,;yp using the following method:
1) Replace each arc k with two arcs k' and k" in series
and define p,. = py and pp = p; — pi (pi is the
improvement in detection probability if a second inter-
dictor is assigned to arc k) to create the problem of
Figure 1b; 2) solve LP3(2) on the modified network to
obtain optimal primal and dual solutions; 3) define x} =
X% + x}»; 4) if the arcs k such that x5 > 0 form a cut,
the value of the game is optimal; 5) the optimal solution

is created by implementing x} as the average number of
interdictors assigned to arc k, and by extracting path-
selection probabilities using the obvious correspondence
between the modified and original problems. This
method can be proven to be correct and can be general-
ized to m interdictors and certain other payoff functions.

We note that while the solution techniques described
here for multiple interdictor games are not always appli-
cable, the techniques are failsafe and are much more
efficient that brute-force enumeration.

5. CONCLUSIONS AND RECOMMENDATIONS

In the simplest model described, an evader moves
through a network every day from nodes s to ¢ to avoid
an interdictor who inspects traffic along one arc of the
network each day. Both the evader and the interdictor
know the probability of detection p, on any arc k. The
problem for the interdictor is to devise a probabilistic
arc-inspection strategy which maximizes the expected
probability of detecting the evader, i.e., the interdic-
tion probability, while the evader must develop a proba-
bilistic path-selection strategy which minimizes the inter-
diction probability. This results in a two-person zero-sum
game which could be solved as a large matrix game, but we
have shown that optimal strategies can be obtained by
solving a simple maximum flow problem on the network
where the capacity on any arc k is p;'. The minimum
capacity cut C is the key. The interdictor should find C and
then inspect arcs in A, at frequencies that are inversely
proportional to the detection probabilities py, i.e., among
this best set of arcs to inspect, the lower the detection
probability on an arc, the more often that arc should be
inspected. Similarly, the evader should select simple paths
so that the probability he traverses any arc k € A in the
worst (for him) cut C is inversely proportional to p,, i.e.,
the less likely he is to be detected on arc k, the more often
he should traverse that arc—even though the interdictor
will be spending more time inspecting that arc.

More realistic models that allow the evader to choose
origin and destination nodes, or where the network is
undirected, are simple modifications of the basic model.
More complicated generalizations, which allow multiple
interdictors, are sometimes solvable by the same net-
work flow techniques; this will be more likely if the num-
ber of interdictors is small compared to the size of the
minimum capacity cut and the p, values do not vary
drastically. In particular, suppose that x* is the optimal
arc-inspection strategy in the single-interdictor game and
we are concerned with the solution to an m-interdictor
game. Then, if mx* < 1, mx* are still optimal arc-
inspection probabilities in the m-interdictor game and
can be implemented by determining optimal ‘‘arc-subset-
inspection” probabilities for subsets containing m arcs
from the forward arcs A, of the minimum capacity cut C.
When an arc subset is chosen, exactly one interdictor will
be assigned to each arc in the subset so that the overall



probability that arc & is inspected is inversely proportional
to p,, as in the single interdictor case; however, the fre-
quency of inspection will be m times higher than in the
single interdictor case. The optimal strategy for the evader
is identical to the strategy in the single interdictor case.

Some multiple interdictor games remain only partially
solved, in the sense of ““efficiently solved.”” If x* solves
the single-evader/single interdictor problem but there are
m interdictors and mx} > 1 for some arc k, we have not
provided a guaranteed, efficient solution method. Solving
games that allow at most one interdictor per arc can also
be hard. (One can always resort to the enumerated ma-
trix games in an attempt to solve these problems.) Also,
we have not considered any problems where P1 has mul-
tiple types of interdiction assets, such as aircraft and
ground inspection teams. We leave such problems as
open research topics.
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