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ABSTRACT 
 
The characterizing feature of multistatic sensor systems is the inclusion of 

geographically independent receivers that might receive echoes from any source. We 
develop a simple analytic theory to predict detection probability, and use it to study 
pattern optimization, cost/effectiveness, reliability and the relative attractiveness of 
multistatic versus monostatic systems. 

 

INTRODUCTION 
A typical monostatic radar or sonar sensor includes one transmitter or source 

(Tx) and one receiver (Rx). Tx emits pulses that travel to a target and are reflected from 
it. Rx detects the reflected pulses, and the time difference between transmission and 
reception determines the distance to the target. Tx and Rx are co-located, and may even 
use the same antenna. The range ρ of the sensor is the largest distance at which 
detection is possible. At its simplest, barring complications due to topography or 
directional background noise, one can visualize the effect of each sensor as a covered 
circle with radius ρ. Much of our intuition about search is built on this idea of individual 
covered areas. For example  

1. A barrier can be constructed by using multiple sensors whose circles 
slightly overlap.  

2. The area covered by a system of sensors is easily illustrated on a map.  
3. If you move one sensor, there is no effect on the others.  

A multistatic system incorporates multiple sources and receivers that are not 
paired. Any Rx can receive reflected transmissions from any Tx, and they can be present 
in different numbers. Figure 1 illustrates the basic structure of a monostatic sensor and a 
multistatic system.  

Here are some arguments in favor of multistatic sonar systems: 
1. Receivers are less expensive than sources (Amanipour & Olfat, 2011), so 

it makes sense to employ more receivers than sources. For example, the 
U.S. Navy’s SSQ-125 active sonobuoy costs about five times as much as 
the SSQ-53 passive sonobuoy, one of the sonobuoy types that can listen 
for its signals (Signal Online, 2012; USN, 2014). 

2. A multistatic system can employ different platforms for sources and 
receivers. A ship might be Tx, while Rx is a sonobuoy. 

3. Sources reveal their locations when they transmit, and targets can use 
that information to avoid detection. However, the independent receivers 
in a multistatic system do not reveal their positions. 
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4. It is possible that the reflected signal will be received by multiple 
receivers. The resulting location estimate will be more precise, and the 
phenomenon can also help to eliminate some of the false alarms that 
monostatic active systems are prey to. We will not deal with these issues 
in this paper, but Coon (1997) and Ozols & Fewell (2011) discuss the 
fusion of detections from multiple receivers.  

 

 
Figure 1. Left: A monostatic sensor with a co-located source and receiver.  

Right: A multistatic system with one source and three independent receivers. 
 

In spite of the advantages of multistatic systems, there are still circumstances 
where monostatic systems will perform better. Our interest here is in developing a 
multistatic theory that is sufficiently simple to enable studies of cost/effectiveness and 
logistics, including comparisons with monostatic systems. Our motivation comes 
primarily from underwater detection systems where the targets are submarines, so we 
will often refer to sources as sonars and receivers as sonobuoys, even though the 
mathematics is equally applicable to radars or geolocation systems. 

Previous studies of multistatic systems focus on issues such as tracking and data 
fusion (Coraluppi, 2005; Bradaric, et al, 2006; Martina & Frank, 2010; Ozols, et al, 
2011; Daun, et al, 2012; Stinco, et al, 2013), localization (Paolini, et al, 2008; Simakov, 
2008), imaging (Devaney, 2005; Xie, et al, 2006; Wang, et al, 2012; Ammari, et al, 
2012), ping scheduling (Saksena & Wang, 2008; Krout, et al, 2009) and performance 
prediction & sensor placement (Krieger, et al, 2003; Chacko & DelBalzo, 2007; 
Tharmarasa, et al, 2009; Ozols & Fewell, 2011; Gong, et al, 2013). There are several 
currently existing software systems that deal with multistatic sonobuoy fields, including 
ASPECT, a U.S.Navy tactical decision aid that is capable of predicting detection 
probability. ASPECT considers geometric optimization questions, and employs a 
physical model that is more realistic than anything that will be employed here. However, 
ASPECT is a menu-driven Monte Carlo simulation that is not analytically suitable for 
considering resource allocation questions. ASPECT is based on the Multistatic Acoustic 
Simulation Model (MSASM, Bowen & Mitnick (1999)). Other multistatic models 
described by Bowen & Mitnick include the Multistatic Performance Prediction 
Methodology (MPPM), where sources are arranged on a rectangular grid, the Sonar 
Equation Modeling and Simulation Tool (SE-MAST), the Surveillance Operational 
Concepts Model (SOCM) and the Multistatic Tactical Planning Aid (MSTPA, see also 
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Wathelet, et al, 2008). All of these models are more realistic and less tractable than the 
ones considered here.  

Our model of detection ignores all of the phenomena that make transmission loss 
dependent on direction. We assume that the transmission loss at a distance R is 
proportional to R α−  for some positive value of α. Spherical spreading corresponds to 
α = 2, but other values of α will reasonably model most direct-path situations. If 1R  and 

2R  are the distances of a source and a receiver from the target, then the total 
transmission loss is 1 2 1 2( )( ) ( )t R R R Rα α α− − −= = , so detection will depend on whether the 
product 1 2R R is smaller than some threshold. The detection threshold depends on the 
source level, the target strength, the sensitivity of the receiver, and the background noise 
level, all of which can be combined into a single “detection range” ρ with dimensions of 
length such that detection happens if and only if 2

1 2R R ρ≤  (see Figure 2, Right). This 
single-parameter model of detection will be applied throughout.  

 
Figure 2. Left: Monostatic sensor with a circular detection region of radius ρ. 

Right: Multistatic system with a single source and receiver. 
 

Randomly placed fields are analyzed in the next section. Such fields have the 
simplest summary formulas for effectiveness. Subsequent sections study optimal 
multistatic sensor geometries, the effectivenesss of mobile sources, cost/effectiveness, 
reliability and the effects of direct blast.  
 

RANDOMLY PLACED MULTISTATIC FIELDS  
Detection Probability 

Detection turns out to be easiest to study when both sources and receivers are 
randomly placed within some large region or “field”. Our model of “randomly placed 
field” will throughout this section be a Poisson field, a generalization of a Poisson 
process (Feller, 1950). A Poisson field of points in two-dimensional Euclidean space is 
characterized by a single parameter λ representing the average number of points per unit 
area. Poisson fields have many desirable analytic properties, one of which is that the 
number of points inside any region with area V is a Poisson random variable with mean 
λV. In particular, the probability of finding zero points inside such a region is exp(−λV), 
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a fact that will be frequently employed below. We will also use two additional 
properties: 

1. The superposition of a Poisson field with density λ on an independent 
Poisson field with density µ is a Poisson field with density λ + µ. 

2. If a Poisson field with density λ is “thinned” by removing each of its points 
independently with probability p, then the remaining points constitute a 
Poisson field with density λ(1−p). 

Consider, then, two independent, two-dimensional Poisson fields, one (sources) 
with density g and the other (receivers) with density h. Each source emits an 
omnidirectional sound that is reflected by a target, and the reflected energy is eventually 
received by each receiver. If 1R  and 2R  are the distances of a source and a receiver from 
the target, then detection by that pair happens if and only if 2

1 2R R ρ≤ . Only the 
smallest such product need concern us, since detection by any source-receiver pair is 
sufficient for our purposes. We intend to quantify Q, the probability that the smallest 
range product is larger than ρ2. The nondetection probability is Q, and 1 − Q is the 
detection probability. 

The two crucial tail functions of interest are 2
1( ) exp( )P R r grp> = −  and 

2
2( ) exp( )P R r hrp> = − , for all r ≥ 0. In each case, the event that the nearest distance is 

larger than r is the same as the event that there are no points in a circle with radius r; 
that is, we are employing the formula for the probability that a Poisson random variable 
is zero. Let 

2
( )Rf r  be the probability density function of 2R . This density function is the 

negative derivative of 2( )P R r> . Since 1R  and 2R  are independent, we have  

 
2

2 4
2

1 2
0 0

( ) ( ) exp( )2 exp( )R
gQ P R f r dr hr hr dr

r r
ρ p ρ p p

∞ ∞

= > = − −∫ ∫ . (1) 

Let 2 2ands g t hp ρ p ρ= =  be dimensionless versions of the source and receiver 
densities, and let 2x hrp= . Substituting x, s, and t into (1), with 2y st= , we have  

 
2

1
0 0

exp( ( )) exp( ( )) ( )
4

st yQ x dx x dx yK y
x x

∞ ∞

= − + = − + =∫ ∫ , (2) 

where K1(y) is a modified Bessel function of order 1 (Abramovitz & Stegun,1964). The 
detection probability is then 

 1( ) 1 1 ( )P y Q yK y= − = − . (3) 
The detection probability depends only on the “effort density” parameter y, which 
incorporates all factors of tactical relevance. Figure 3 shows P(y) together with two 
approximations, one of which is accurate for small y and the other for large y. The two 
approximations are 

2 y 3( ) ln( ) for small , and ( ) 1 exp( )(1 ) for large 
2 2 2 8
y yP y y P y y y

y
p

≈ − ≈ − − +  (4) 

Both approximations are taken from Abramovitz & Stegun (1964). 
Now suppose that x1 sources and x2 receivers are randomly placed inside a 

region of area A′, with none outside of A′, and that A′ is immersed in a larger region A 
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wherein a target is placed at random. We wish to choose A′ to maximize the probability 
that the target is detected. For monostatic systems, the best choice of A′ is to make it as 
large as possible (nearly all of A), since doing so makes it unlikely that the regions 
covered by the individual sensors will wastefully overlap. This is not necessarily true 
with multistatic systems because P(y) is not a concave function when y is small, as is 
evident in Figure 3. 

We assume that the target will not be detected if its position lies outside of A′, 
and that a target inside of A′ essentially faces two Poisson fields with densities g = x1/A′ 
and h = x2/ A′. The word “essentially” is carefully chosen, since the numbers of buoys 
within A′ would be random in a Poisson field, rather than the fixed numbers x1 and x2, 
but there should be little difference in effectiveness when those numbers are much larger 
than 1. The first assumption is pessimistic, since targets outside of A′ can still be 
detected, and the second is optimistic, since targets inside of A′ do not face complete 
Poisson fields. Perhaps the two assumptions taken together are neutral, at least if A′ is 
large. The validity of these assumptions will be tested below. Our purpose here is 
simply to explore the consequences of making both assumptions. 

 
Figure 3. The detection probability P(y), together with two approximations. 

 
The probability that the target is located in A′ is A′/A, and within A′ the product 

of the two densities is 2
1 2 /( ')gh x x A= , so the effort parameter within A′ is 

2
1 22 x x

y
A

pρ
′ =

′
, which determines the conditional detection probability. The searcher 

can have a large y′ in a small area or a small y′ in a large area, and must decide which is 
best. The unconditional detection probability is  

 
2

1 22 ( ) ( )( )
x xA P y P yPD P y y

A A y y
pρ′ ′ ′

′= = ≡
′ ′

 (5) 

where the last equality defines y. The searcher’s problem is to maximize the ratio of 
P(y′) to y′, except that y′ must be at least y because A′ cannot exceed A. Figure 4 shows a 
graph of the ratio. The maximizing y′ is about 1.1 and the maximized ratio is almost 
exactly 0.4. If y is larger than 1.1, the planner can do no better than to set y′ to y 
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Accounting for this, the maximized PD can be obtained from (5). Letting the optimized 
detection probability be *( )PD y , we have  

 
0.4 ; 1.1

*( )
( ); 1.1

y y
PD y

P y y
≤

≡  ≥
 . (6) 

Example: Suppose that ρ = 1 km, and that the area to be searched is A = 200 
km2. Assume that x1 = 20 sources and x2 = 40 receivers, so that y = 0.89. Then the 
detection probability according to (6) is PD*(0.89) = 0.36, which is achieved by placing 
all buoys in a fractional (0.89/1.1) part of A. If the buoys were mistakenly spread over 
all of A, the detection probability would be only P(0.89) = 0.35, a slight decrease. If the 
number of receivers is increased to 160, then y doubles to 1.78, so the buoys should now 
be spread over all of A. The associated detection probability is PD*(1.78) = 0.67. 

 
Figure 4. A graph of P(y′)/ y′, the detection probability per unit of effort. 

Equivalent Covered Area 
A pattern of buoys establishes a probability of detection for a target at point 

(x,y), whether that point is inside or outside of the area within which the buoys are 
deployed. When integrated over the whole plane, that detection function becomes what 
might be called an “equivalent covered area” (C), with equivalency in the sense that, if a 
target is uniformly distributed over a region with area A that is much larger than C, then 
the detection probability is C/A. The question of maximizing C arises. For monostatic 
buoys, the question is not interesting because the best sonobuoy field (ignoring practical 
questions about the construction and monitoring of widespread fields) would spread out 
over all of A. With multistatic buoys, however, the question is legitimate. The same 
argument as above leads to the conclusion that the effort density in the covered part of 
an optimal field will be about 1.1, and that the resulting equivalent area covered will be  
 2

21(0.4)2C x xpρ=  (7) 
Formula (7) is a very simple way of summarizing the effectiveness of a 

multistatic sonobuoy field. It will later be the basis of a cost/effectiveness analysis. 

Neutrality verification 
Here we test the neutrality assumption lying behind (5) and (7) by Monte Carlo 

simulation. Figure 5 shows one replication of randomly placing 1 4x =  sources and 

2 10x =  receivers within A′, a region that is itself contained within a larger region A. The 
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covered area is all of the area within A that is included in one of the pictured regions, and 
can be estimated by randomly locating many targets within A (+ signs in the figure) and 
testing whether each of them is detected. The neutrality assumption is that targets 
detected outside of A′ will compensate for targets inside of A′ that are not detected. The 
assumption is clearly optimistic if A and A′ are equal, since in that case there are no 
targets outside of A′. It is just as clearly pessimistic if buoys are very dense within A′, 
since in that case all targets outside of A′ that are within ρ of A′ will be detected, in 
addition to all targets inside of A′. The truth of the neutrality assumption must evidently 
depend on the density of buoys and the relationship between A and A′.  

 
Figure 5. One replication of a simulation experiment to measure covered area. 
Receivers are marked with • , sources are marked with a star, and targets are 

marked with a + sign. All targets that lie within some oval are detected. 
 
When area A is large compared to A′, we can compare the theoretical equivalent 

covered area C from (7) with an experimental version Cexp. To estimate Cexp, without loss 
of generality we take ρ =1. We also take 1 22 /1.1A x xp′ = , since this is the area that 
theoretically maximizes the covered area. All buoys are placed within a square of side L 
with area A′, so L2=A′. Detection is impossible for targets more than 1 unit away from 
this square, so we generate 30 targets at random within a square of side L+2 (so 
A = (L+2)2), and count the number X that are detected. This experiment is repeated 3,000 
times; that is, all the buoys are randomly relocated in A′ and each such pattern is tested 
against 30 targets randomly located in A. Let X be the total number of targets detected in 
all 3,000 replications. Then the equivalent covered area is exp / 90,000C AX= . 

Table 1 shows the ratio Cexp/C for various values of x1 and x2. The neutrality 
assumption can be seen to be optimistic, but only by a small amount, with little 
dependence on 1x  or 2x . The average of all 100 ratios is 96.6%, so the theoretical area 
coverage is about 3% high. Some idea of the variability of results can be obtained by 
comparing symmetric entries (x1,x2) and (x2,x1), since both have the same theoretical 
mean. For additional tests of the neutrality assumption see Washburn (2010). 
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Number of Receivers (x2) 

 
  

5 10 15 20 25 30 35 40 45 50 AVG 
N

um
be

r 
of

 S
ou

rc
es

 (x
1) 

5 0.960 0.948 0.954 0.953 0.963 0.955 0.954 0.962 0.950 0.954 0.955 
10 0.966 0.971 0.964 0.964 0.957 0.968 0.956 0.961 0.962 0.956 0.963 
15 0.957 0.955 0.955 0.968 0.978 0.963 0.963 0.963 0.965 0.974 0.964 
20 0.954 0.969 0.967 0.965 0.971 0.964 0.956 0.972 0.961 0.965 0.964 
25 0.955 0.968 0.957 0.965 0.972 0.977 0.970 0.971 0.978 0.962 0.968 
30 0.948 0.968 0.962 0.969 0.969 0.972 0.984 0.969 0.969 0.971 0.968 
35 0.958 0.966 0.966 0.966 0.973 0.974 0.967 0.973 0.979 0.976 0.970 
40 0.965 0.974 0.962 0.970 0.972 0.973 0.971 0.985 0.967 0.971 0.971 
45 0.951 0.966 0.975 0.961 0.974 0.979 0.967 0.965 0.977 0.977 0.969 
50 0.960 0.958 0.973 0.970 0.971 0.972 0.982 0.974 0.975 0.972 0.971 

 
AVG 0.957 0.964 0.964 0.965 0.970 0.970 0.967 0.970 0.968 0.968 0.966 

Table 1. The table entries are the ratio Cexp/C, the ratio of experimental to 
theoretical equivalent covered area. 

 

OPTIMAL MULTISTATIC SENSOR GEOMETRIES 
The beauty of analysis in randomly placed fields is the simplicity of formulas 

such as (6) for detection probability and (7) for equivalent covered area. However, there 
is clearly no point in deliberately strewing sensors about at random; it is surely possible 
to achieve better coverage by deploying sources and receivers in carefully chosen 
patterns. In this section we investigate the effectiveness of such patterns, one of the 
goals being to enable comparisons with the random theory.  

Cassini Ovals  
The boundary of a region where 2

1 2R R ρ≤  is a Cassini oval (Cox, 1989). If the 
sensors are fixed at ( ,0)a± , yielding a separation distance of 2a, and if (x,y) is a point 
on the boundary of the oval, then we must have: 

 2 2 2 2 4( ) ( ) , , .x a y x a y aρ ρ   − + + + = ∈    y  (8) 
The boundary is symmetric with respect to both axes, and its shape depends on the 
dimensionless separation parameter, a/ρ. The form of the ovals can be characterized as 
follows: 

• For 2 2a ρ ≤  the curve is a single loop that looks like an ellipse and 

intersects the x-axis at 2 2x a ρ= ± + . 

• For 2 2 1a ρ< <  the oval attains a dent on top and bottom.  
• When 1a ρ =  the curve is a lemniscate. 
• For 1a ρ >  the curve splits into two ovals and there are two additional 

real x-intercepts at 2 2x a ρ= ± − . 

 8 



Figure 6 illustrates the ovals for different values of a/ρ where ρ is fixed at 1. The 
largest of those ovals in terms of area is the first; with ρ fixed, the area of a Cassini oval 
is maximized when 0a = . Given a single source and a single receiver, the two would 
therefore best be combined into a single monostatic sonobuoy. However, every source 
provides a signal for every receiver in a multistatic system, and receivers are usually 
cheaper than sources. We therefore first investigate the effectiveness of multistatic 
systems with a single source, but multiple receivers.  

 
Figure 6. A family of Cassini ovals (ρ=1) 

Single Source-Multiple Receivers 
We first consider the case where the source is surrounded by a circle of 2x  

receivers, experimentally seeking the circle radius a that maximizes the total area 
covered. Area coverage for each radius is measured by repeated Monte Carlo simulation 
runs. Figure 7 shows examples of optimal patterns for 2x =3, 6 and 12, stating the optimal 
radius as *a ρ , and giving the corresponding optimized area coverage C. 

-2 -1 0 1 2

0a ρ =

0 2 2a ρ≤ <

2 2 1a ρ≤ <

1a ρ =

1a ρ >
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Figure 7. Single source and multiple receivers (Receivers are marked with • , source 

is marked with a star) 
 

Figure 7 prompts the hypothesis that a/ρ* approaches 1 as 2x  increases. The 
hypothesis turns out to be correct, as shown in the following theorem:  

Theorem 1: As the number of receivers 2x  approaches infinity, the optimized 
area coverage approaches 218.31UBC ρ= , with an optimal normalized circular radius of 1. 

Proof: There are two cases, 1a ρ ≤  and 1a ρ > (Figure 8). For the first case, as 

2x  approaches ∞, the coverage diagram becomes a circle of radius 2 2a a ρ+ + . For 

1a ρ >  the diagram becomes a smaller circle of radius 2 2a a ρ− − , plus a ring with 
2 2a a ρ+ +  outer and 2 2a a ρ+ −  inner radii. By simple geometric analysis the 

limiting C is: 

 
( )
( ) ( ) ( )

2
2 2

2 2 2
2 2 2 2 2 2

, 1

, 1

     a a a
C

a a a a a a a

p ρ ρ

p ρ ρ ρ ρ

 + + ≤=    + + − + − + − − >   

 (9) 

It is a calculus exercise to show that the maximizing value for a ρ  is 1. Figure 9 
shows that the maximum is surprisingly sharp. The optimized coverage diagram consists 
of lots of lemniscates, each ending at a radius of (1 2)ρ + , and the limiting value for the 

covered area is ( )2
2 2(1 2) 5.82 18.31UBC p ρ pρ ρ= + = = . QED 

2 3x = 2 6x = 2 12x =
* 0.73a ρ = * 0.85a ρ = * 0.96a ρ =

26.54C ρ= 210.51C ρ= 215.75C ρ=
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Figure 8. Circular coverage with large number of receivers (• ) symmetrically 

placed around a single source. Left: 1a ρ ≤  Right: 1a ρ > . 
 

 
Figure 9. Coverage with many receivers placed in a circle around a single source. 

 
Putting all receivers at the same radius from a single source cannot be the optimal 

configuration when the number of receivers is large because the total area coverage is 
bounded above by UBC . Since any point in the plane can be covered by putting a receiver 
there, the covered area should increase without bound as the number of receivers 
increases. We next investigate placing the receivers in concentric, non-overlapping rings, 
as in Figure 10 (Left), rather than all in a single ring. We will show that this tactic results 
in the covered area being ultimately proportional to 2x . 
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Figure 10. Left: Packing receivers (• )in rings. Right: Coverage within a ring  

 
If R is the central radius of a large ring centered on the source, then a receiver 

within the ring covers a small circle with radius 2 Rρ . Therefore the width of the ring 
and the diameter of each receiver within the ring are both 22 /R Rρ∆ ≡ . The number of 
receivers that will fit in the ring without overlap is the central circumference of the ring 

divided by the diameter of a receiver, 2 2
2

2
2 /

RN R
R

p p ρ
ρ

∆ ≡ = . Let N(R) be the total 

number of receivers within the circle of radius R, including all rings within that circle. 
When R is large, R∆ becomes small and  

 
3

4( ) / /
2

RdN R dR N R p
ρ

≅ ∆ ∆ =  (10) 

Therefore, for R greater than some large radius 0R ,  

 
0

3 4

0 4 4
0

( )( ) ( )
2 8

R R

N N
R

dN R R RN R N R dR C dR C
dR

p p
ρ ρ

≅ + = + = +∫ ∫  (11) 

with the constant NC  accounting for the center of the covered circle where receivers are 
perhaps not arranged in rings, as illustrated in Figure 10 (Left). The approximation 
becomes exact when R is large. 

Let ( )A R be the covered area within a circle of radius R centered on the source. 
The fraction of the outer rings that is covered is 4p  because the receivers are arranged 
within each ring without overlap (see Figure 10 (Right)). Therefore, again for large R,  
 2 2 2( ) ( 4) 4A AA R C R C Rp p p≅ + = +  (12) 
Ignoring both CN and CA because we are only interested in large values of R,  
 3 2 2( ) / 2 ( ) 3.94 ( )A R N R N Rp ρ ρ= =  (13) 
As claimed above, the covered area grows with the square root of the number of 
receivers.  

The tactic of arranging receivers in rings suffices to demonstrate that coverage is 
unbounded as 2x grows large, but it is surely not optimal. For large R, better coverage 
could be achieved by using additional receivers to cover gaps in small rings, even at the 
cost of overlap. 

R∆

Coverage Ratio
4
p

=

 12 



General pattern optimization 
When there are equal numbers of sources and receivers, our exploration of the 

alternatives shows that equally spaced rectangular patterns achieve the highest area 
coverage values. Figure 11 depicts the best-known pattern, the optimal ratio *a ρ , and 
the corresponding area coverage (C) values for 2, 3, 6, and 10 pairs. In each case 
coverage was determined by Monte Carlo simulation. Each pattern has only a single 
parameter, the buoy spacing a, which was varied exhaustively to find the best coverage.  

 
Figure 11. Coverage of equal numbers of sources and receivers deployed in 

rectangular patterns (Receivers are marked with • , sources are marked with a star) 
 
Another analytic alternative for general pattern optimization is to use 

mathematical programming to determine the optimal locations of buoys within some fine 
grid that is superimposed on the region containing the target. Let the rectangular region A 
consist of m and n grid points in the x and y dimensions, respectively. The goal is to 
maximize the total number of covered grid points by optimally assigning buoys to 
locations in the grid.  

Source i located at ( ),x y
i is s  and receiver j located at ( ),x y

j jr r can detect (cover) 

target k at grid point ( ),x y
k kt t  if the product of source-target and target-receiver distances 

is less than or equal to ρ2; that is, if 2 2 2 2 2( ) ( ) ( ) ( )x x y y x x y y
i k i k j k j ks t s t r t r t ρ   − + − − + − ≤    . 

Let ijku  be a 0-1 (binary) variable whose value is 1 if the kth grid point is covered by the 
ith source and the jth receiver, or otherwise 0. A grid point is covered if it is inside the 
detection region of any source-receiver pair, so z, the total number of grid points covered, 
is given by 

1 2, 2x x =
1 2, 3x x =

1 2, 6x x =

1 2, 10x x =

27.24C ρ=

211.63C ρ=

225.42C ρ=
244.25C ρ=

* 0.80a ρ =
* 0.83a ρ =

* 0.84a ρ =

* 0.85a ρ =
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 ( )
1 2

1 1 1

1 1
x xmn

ijk
k i j

z u
= = =

 
= − − 

 
∑ ∏∏ . (14) 

We can now formulate an integer nonlinear programming model INLP for maximizing 
the total number of cells covered: 

( )
1 2

1 1 1

max 1 1
x xmn

ijk
k i j

z u
= = =

 
= − − 

 
∑ ∏∏  

Subject to 
4

2 2 2 2
 , , [1]

( ) ( ) ( ) ( )

0 ,  , [2]

0 ,  , [3]

0 1  , , [4]

ijk x x y y x x y y
i k i k j k j k

x x
i j

y y
i j

ijk

u i j k
s t s t r t r t

s r m i j

s r n i j
u i j k

ρ
≤ ∀
   − + − − + −   

≤ ≤ ∀

≤ ≤ ∀

≤ ≤ ∀

 

 
Constraints [1] in INLP are nonlinear because they involve products of decision 
variables, and all variables are restricted to be integers. INLP is a difficult type of 
optimization for which we have found locally optimal solutions using GAMS (2005) for 
various values of 1x  and 2x  (see Figure 12). It can be seen that these locally optimal 
patterns all have some kind of welcome polygonal symmetry. While mathematical 
programming would become problematic for large problem instances, it does give 
plausible results for small numbers of buoys, as well as insight into optimal arrangements 
of large patterns. 

How much is to be gained by using patterns that are carefully designed, rather 
than random? Figure 13 provides a partial answer using equation (7) to measure the 
effectiveness of a random field. The bars represent the actual optimal and random 
coverages for selected 1x  and 2x  values and the line above the bars expresses the 
coverage gain as a percentage. The minimum gain in area coverage is 38% for the 1x2 
case and maximum is 81% for the 1x12 case. It should be apparent that randomness is not 
a property to be sought tactically, but only a conservative assumption that enables simple 
analysis. This is similar to the development of the Random Search Formula (Koopman, 
1956). 
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Figure 12. Locally optimal GAMS solutions for various multistatic systems 

(Receivers are marked with • , sources are marked with a star) 

 
Figure 13. Gain achieved by optimal patterns vs random deployment 

MOBILE SOURCE AND STATIONARY RECEIVERS 
The coverage and tracking performance of a multistatic system can be improved 

by using a mobile source (Tharmarasa, et al, 2009). In this section we assume that our 
multistatic system consists of a source moving on a straight line through an infinite 
Poisson field of stationary receivers of density h. A practical scenario for such a system 
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would be a maritime surveillance or anti-submarine warfare situation where a 
continuously emitting surface ship (possibly the towed-array low-frequency active sonar 
(LFAS) proposed by Coraluppi & Grimmett, (2004)) uses a field of stationary receivers 
to search for objects such as mines, wrecks or hostile submarines.  

Figure 14 shows the region covered by such a moving sensor. Each receiver is 
surrounded by a covered circle that gets smaller for receivers that are located far from the 
track of the source. Roughly speaking, targets near the source’s track will be detected. 

 
Figure 14. Coverage of a moving source in a random field of stationary receivers 

(Receivers are marked with • , source moves along the dashed line) 
 

For analytical purposes, suppose that the source moves along the y-axis, as 
partially shown in Figure 14, and consider a target at (0, )x . The probability of detection 
when the source is at the origin is the probability that there is at least one receiver in a 
circle centered on the target with radius 2 xρ . In a Poisson field of receivers, that 
probability is  

 
4

2( ) 1 exp( )hP x
x

p ρ
= − −  (15) 

P(x) is also the probability of detection as the source moves over the whole y-axis 
because the closest distance from source to target is |x|; the target will never be detected if 
it is not detected at the closest point of approach. Therefore (15) is a lateral range curve 
(Koopman, 1956). For ρ =1, the lateral range curve for h=0.2, 0.4 and 0.6 is shown in 
Figure 15. 
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Figure 15. Lateral range curves for various receiver densities 

 
It happens that (15) has the same analytic form as the lateral range curve of an 

inverse cube law sensor (Koopman, 1956), so some of the analytic results that apply to 
such sensors are also valid here. In particular, since sweep width W is the area under the 
lateral range curve, 

 
4

2
2

0

( ) 2 1 exp( ) ... 2hW P x dx dx h
x

p ρ pρ
∞ ∞

−∞

 
= = − − = = 

 
∫ ∫ . (16) 

We see in (16) a strong motivation for sparse fields of high quality receivers. For 
example, if one can double ρ by utilizing only ¼ as many receivers, the sweep width will 
double.  

Another known property of inverse cube law sensors (Koopman, 1956) is the 
probability of detection ( )indQ S if parallel sweeps are spaced S apart in an infinite grid, 
with the target being located randomly with respect to the grid. This probability is 

 ( )
2ind

WQ S erf
S

p 
=   

 
, (17) 

where erf() is the error function. Lying behind (17) is an assumption that all parallel 
sweeps are independent, which is not true in the multistatic case because the Poisson field 
of receivers is the same for all sweeps. Let ( )Q S be the corresponding probability for the 
multistatic case. To evaluate ( )Q S , we need to consider only the sweep that is closest to 
the target, with the exact location of the target being uniformly distributed in the interval
[ / 2, / 2]S S− . Using (15) and (16) the average probability of detection is  

 
22

0

2( ) 1 exp
2

S WQ S dx
S xp

    = − −        
∫ . (18) 

Letting 2u x S≡  and /y W S≡ , (18) becomes 

 
1 2

2
0

( ) ( ) 1 exp yQ S F y du
up

  
= ≡ − −  

  
∫ . (19) 
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Change the variable of integration to 2 2( )v y up= , so that 
2

2

/
0.5 1.5 0.5 1.5

/

( ) (1 exp( ))(0.5 ) (1 exp( ))(0.5 )
y

y

Q S y v v dv y v v dv
p

p

p p
∞

− − − −

∞

= − − − = − −∫ ∫ .     (20) 

We now employ integration by parts. Equation (21) below is true because the integral is a 
perfect differential.  

 
2

0.5 0.5 2

/

/ {(1 exp( ))( )} (1 exp( / ))
y

y d dv v v dv y
p

p p
∞

− −− − − = − −∫ . (21) 

Performing the indicated derivative, we find that one of the two terms is Q(S), so  

 
2

2 0.5 0.5

/

( ) 1 exp( / ) exp( )
y

Q S y y v v dv
p

p p
∞

− −= − − + −∫ . (22) 

The Gamma distribution with parameter α set to 1 is 0.5 0.5

0

( ) exp( )
x

G x v v dvp − −≡ −∫ , a 

standard statistical distribution. Since ( ) 1G ∞ = , we can rewrite (22) as  
 2 2( ) 1 exp( / ) (1 ( / ))Q S y y G yp p= − − + − . (23) 
Equation (23) is our final expression for the probability of detection when a 

moving source repeatedly sweeps a Poisson field of stationary receivers with tracks 
spaced S apart. If the receiver locations were all independently sampled for each track, 
we would instead find the detection probability to be the same as in the inverse cube law 
case. Figure 16 compares the dependent (23) and independent (17) cases. It can be seen 
that the inverse cube law provides an optimistic assessment of detection probability for 
dependent multistatic sweeps.  

 
Figure 16. Detection probability versus y=W/S for dependent and independent 

(inverse cube law) parallel tracks 
 

COST/EFFECTIVENESS 
In addition to finding the best balance between sources and receivers, a study of 

cost/effectiveness should include evaluation of the co-location option. There are some 
good arguments, tactical convenience being one of them, for deploying buoys in “posts” 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1 1.2

Q(S)

y

Dependent

Independent

 18 



that consist of co-located sources and receivers. Cox (1989, p. 23), in response to a 
question about his seminal multistatic work, stated that “It makes sense to me to use 
multiple receivers with a single high powered source. One of these should be monostatic 
so that TL1 = TL2. The others are bistatic and provide increased coverage and 
countermeasure resistance”. Sonobuoy fields of this type will be called PR 
(Post/Receiver) fields. One of our objects is to compare the effectiveness of PR fields 
with that of the SR (Source/Receiver) fields that were considered earlier. PR fields have 
no independent sources, whereas SR fields have no posts. For analytic tractability in this 
section we again assume that all buoys are located at random in Poisson fields.  

If any post in a PR field is closer to the target than ρ, then the miss probability is 
zero. Otherwise the same logic that underlies (2) applies, so the formula for miss 
probability in a PR field is similar to (2). If s is the dimensionless density of posts and t is 
the dimensionless density of independent receivers, then the miss probability is Q(s,st), 
where  

 ( , ) exp( ( ))
s

vQ s v x dx
x

∞

= − +∫ . (24) 

The analytic effect of changing sources into posts is evidently to change the lower limit 
of the integral from 0 in (2) to s in (24), thus decreasing the miss probability. If there are 
no independent receivers (t = 0), the miss probability according to (24) is now exp(−s) 
instead of 1. Except for that special case, there seems to be no way to express (24)  in 
terms of commonly available functions. 

Formula (24) assumes that the buoys are spread out in a constant density over the 
whole plane. If x1 posts and x2 independent receivers are spread out randomly over a large 
area A, then we can estimate the detection probability within A by making the neutrality 
assumption and substituting 2 2

1 2/  and /s x A t x Apρ pρ= = , as in the earlier section on 
randomly placed fields. We can then consider the question of how a given budget should 
be divided between sources and receivers, as well as the question of whether PR fields 
are superior to SR fields. 

First, consider the SR case. If sources and receivers cost c1 and c2 each, the cost of 
a buoy field consisting of x1 sources and x2 receivers is 1 1 2 2c x c x+ . The detection 
probability is determined by the product

1 2x x , so it is a calculus exercise to conclude that 
sources and receivers should each consume half of the available budget. If the budget is 

B, the resulting product is
2

21
1 24

Bx x
c c

= . Substituting this into (7), we find that 

2

1 2

(0.4) BC
c c

pρ
= . If A is the area to be covered, we can also compute the dimensionless 

effort density
2

1 2

By
A c c
pρ

= . Given y, detection probability can be computed using (3), or 

possibly (6) if buoy concentration is considered. 
In the special case where 1 2c c= , the number of sources in an SR field should 

equal the number of receivers. If we were instead to deploy a PR field consisting purely 
of posts that cost 12c   each, then each post would cover an area of 2pρ and the total area 
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covered would be 
2

12
B

c
pρ

. This exceeds the SR area coverage by 20%, so we have at least 

one situation where a PR field is preferred to an SR field. A PR field might be even more 
effective if it included some independent receivers, a possibility that we consider next. 

Subsequent investigations in this section are based on the dimensionless buoy 
densities 2 2

1 2/  and /s x A t x Apρ pρ= = . We impose the cost constraint s ct b+ ≤ , where 

2 1/c c c≡  and 
2

1

Bb
c A

p ρ
≡ . There is no loss of generality in restricting the coefficient of s 

to be 1, since this is just a choice of monetary unit. We can summarize the optimal 
balance between sources and receivers in an SR field by 

   
2

, ,   , and 2
2 2 4
b b b bs t st y st

c c c
= = = = = .      (25) 

 In a PR field, if the cost of each post is the sum of the costs of one source and one 
receiver, then the proper cost constraint is (1 )c s ct b+ + ≤ . Let ( , )minQ b c  be the result of 
minimizing Q(s,st) subject to that constraint. For sufficiently small budgets, the result of 
this minimization will be that t = 0; that is, no independent receivers should be utilized. 
To prove this, let Q1(s,t) and Q2(s,t) be the derivatives of Q(s,st) with respect to s and t, 
respectively, and define the function 

 ( , ) exp( ( ))
s

st dxH s t s x
x x

∞

= − +∫ . (26) 

Then 2 ( , ) ( , )Q s t H s t= − and 1( , ) ( , ) exp( ( ))tQ s t H s t s t
s

= − − − + . For (s,0) to be 

minimizing, it is necessary that there exist a Lagrange multiplier λ such that (s,0) 
minimizes the expression ( , ) ( (1 ) )Q s st s c tcλ+ + + , while simultaneously /(1 )s b c= + . 
The first-order minimization conditions are that 1( ,0) (1 ) 0Q s cλ+ + =  and 

2 ( ,0) 0Q s cλ+ ≥ . Since 1( ,0) exp( )Q s s= − − , the first equation requires 
exp( ) /(1 )s cλ = − + . Substituting this into the inequality, we must have

exp( ) ( ,0) /(1 )s H s c c≤ + . Let H(s) be the left-hand side of this inequality. Then 

 
0

1 exp( )( ) exp( ) exp( ) exp( ) ln( )
s

s

dx uH s s s x s s du s
x u

γ
∞  − −

= − = − − 
 

∫ ∫ , (27) 

where γ is Euler’s constant (0.577 …). Figure 17 shows this function as evaluated by 
numerically integrating the right-hand-side of (27). 

If the budget is b, and if H(b/(1+c)) is smaller than the cost ratio c/(1+c), as it will 
be if b is sufficiently small, then the best PR field will spend the entire budget on posts. 
These posts should be spread over all of A because posts are effectively monostatic 
sonobuoys. The resulting miss probability will be ( ,0) exp( / (1 ))Q s b c= − + . However, it 
is still possible that an SR field might be better than even the best PR field. The 
maximum possible value of y is given by (25) and the corresponding SR detection 
probability by (6), so the overall minimal miss probability, considering both the PR and 
SR types, will be  
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  min ( , ) min exp( ),1 *( ) ,  for small 
1

b bQ b c PD b
c c

 = − − + 
     (28) 

For very small budgets, the PR miss probability is approximately 1 / (1 )b c− + and the SR 

miss probability is approximately 1 0.4 /b c− . Both expressions are linear in b, so it is 
easily shown that the PR field is preferred for such budgets if and only if 0.25 4c< < . 

Example: Consider the case (b,c) = (1,1). Since (0.5) 0.461H = , which is smaller 
than 0.5, the best PR field will have no independent receivers. However, the second term 
in (28) is minimizing when 1b = , so the overall best field is actually of type SR, 
achieving its detection probability of 0.4 by slightly concentrating the buoys in part of A. 
If b is reduced to 0.1 while c remains 1, the best PR field will still contain only posts, but 
now will be preferred to the SR field. The PR field will also be preferred for any budget 
smaller than 0.1.  

Example: Suppose 1/ 5c = , the approximate ratio of SSQ-53 to SSQ-125 
sonobuoys. Because c is not in the required interval, SR will be preferred to PR for very 
small budgets, with the buoys deployed in a small part of A. A numerical investigation 
reveals that SR is preferred to PR for all budgets when 1/ 5c = .  

Both of the above examples are consistent with the claim that the most 
cost/effective field will never include all three of independent sources, independent 
receivers, and posts. As long as receivers are cheaper than sources, this means that an 
optimal field will always be either a PR field with no independent sources or an SR field 
with no posts. If that claim is true, then (28) is correct for all values of ( , )b c , not just 
when b is small. After extensive but not exhaustive experimentation (see Washburn 
(2010)), we have found no exceptions to the claim. Using different measures of 
effectiveness, Ozols & Fewell (2011) also find no exceptions.  

It is worth noting that, if a constant K is added to both 1c and 2c  in the analyses 
above, the effect will be significant and favor PR fields over SR fields. If K represents a 
delivery cost that applies to all sonobuoys, one could even argue that the cost of a post 
should be only 1 2c c K+ + , rather than 1 2 2c c K+ + , which would further favor PR fields.  

 

 
 

Figure 17. The function H(s) is continuous, concave, and increasing, with H(0)=0. 
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RELIABILITY AND DIRECT BLAST 
The idea that detection is merely a matter of being close enough to the target 

underlies all of the above calculations, but is only approximately true in the real world. 
One reason for this is that some buoys may not function correctly, in which case their 
distances from the target are immaterial. This possibility is easily handled theoretically in 
SR fields. If rs and rr are the reliabilities of sources and receivers, it is simply a matter of 
replacing the dimensionless densities s and t by srs and trr, respectively. This is because 
Poisson fields “thinned” in this manner remain Poisson fields. A similar argument will 
not work for PR fields because a post might get effectively turned into an independent 
source should its receiver not function. 

Proximity might not be sufficient even when all buoys function as intended. In 
multistatic sonar systems, receivers hear the transmitted signal directly, in addition to the 
signal reflected from the target. This “direct blast” is actually necessary for locating the 
target because the difference in time between the direct and reflected signals establishes 
an ellipse upon which the target must lie. However, the direct blast is much stronger than 
the reflected signal, and may completely obscure it if the time difference in arrivals is 
small enough. The principal situation where this happens is when the target is more or 
less directly between the source and the receiver. A simple approximation of the effect is 
the “dead zone” shown in Figure 18, where receivers will not detect the target because of 
the direct blast arriving nearly simultaneously. The angle p θ−  measures the extent of 
the pie-shaped dead zone, with θ = p corresponding to no dead zone at all. 

It is not difficult to include the effect of dead zones in a Monte Carlo simulation 
that begins by simulating the locations of the target, the sources and the receivers. For 
each source/receiver pair that passes the proximity test for a specific target, one simply 
checks whether the receiver is in the dead zone of the source, declaring the detection 
attempt to be a failure if so. The resulting simulation is only slightly more complicated 
than one without dead zones. Unfortunately, however, this simplicity does not extend to 
analytic attempts to find a generalization of (3). We are not aware of any exact formulas 
for detection probability, but the following theorems at least offer lower bounds. 

 
Figure 18. Illustrating a dead zone where receivers are useless on account of  

direct blast. 
 

Theorem 2: In an SR field, let s and t be the dimensionless densities of sources 
and receivers, respectively, as in the section on randomly placed fields, but add the 
requirement that the receiver buoy in a successful pair must not be in the dead zone of its 
source. Let /p θ p≡ , and let 2y pst= . If y is substituted into (3) one has a lower 
bound on the detection probability. 

Proof: Let E be the event that the target is detected by the source that is closest to 

 
θ 

Source 

Target 

Dead Zone 

 22 



it. E will happen if and only if there is at least one eligible receiver that is sufficiently 
close to the target; a receiver being “eligible” if and only if it is not in the dead zone of 
the closest source. The probability that any independent receiver is eligible is p, so 
eligible receivers are a Poisson field with dimensionless density pt. To calculate P(E), we 
can now proceed as in the derivation of (3), except that pt needs to substituted for t. The 
effect of this is that y is modified as in the statement of the theorem, and

1( ) 1 ( )P E yK y= − . This is a lower bound on the detection probability because it is 
possible for the target to be detected even when the closest source fails. QED 

Theorem 3: In a PR field, let s and t be the dimensionless densities of posts and 
receivers, respectively, but add the requirement that the receiver buoy in a successful pair 
must not be in the dead zone of its source. Let /p θ p≡ . Then 1 ( , )Q s pst−  is a lower 
bound on detection probability, where Q( ) is the function defined in (24). 

Proof: If the post that is nearest to the target is closer than ρ, then detection is 
certain because a post’s own receiver cannot be in a dead zone. Let E be the event that 
the nearest post is farther away than ρ, but nonetheless detects the target through some 
other eligible independent receiver. E will happen if and only if there is at least one such 
receiver that is sufficiently close to the target. The probability that any independent 
receiver is eligible is p, so eligible receivers are a Poisson field with dimensionless 
density pt. To calculate P(E), we can now proceed as in the derivation of (24), except that 
pt needs to substituted for t. The result of this is as stated in the theorem. This is a lower 
bound on the detection probability because it is possible for the target to be detected even 
when the closest post fails. QED 

Simulation experiments confirm Theorem 3, with the pessimism of the lower 
bound increasing as θ becomes smaller. Presumably the increasing pessimism is because 
sources other than the closest become more important as the direct blast effect becomes 
stronger. When 3 / 4θ p= , the theoretical formula is about 5% pessimistic. See 
Washburn (2010) for further detail. 

SUMMARY 
We have developed several formulas for the effects of multistatic sensor fields, 

both for static fields (formulas (6) and (7)) and for mobile sources moving through a field 
of static receivers (formula (23)). Most formulas depend on the assumption that receivers 
are randomly located, but experiments show that carefully designed patterns offer a 
significant improvement. Cost-effectiveness analysis reveals that multistatic fields are 
best when sources and receivers have significantly different costs. When the costs are 
nearly equal, monostatic fields consisting entirely of posts should also be considered.  
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