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ABSTRACT 

As ownship moves through a sea of targets moving at constant velocity in random 
directions, it will occasionally meet some of them when the intervening distance becomes 
sufficiently small. The very fact of meeting is significant in estimating the properties of a 
met target. We derive joint distributions for the properties of met targets, and show how 
to sample those properties in Monte Carlo simulations. We also introduce “instant” target 
motion analysis in the form of various conditional distributions of target properties, given 
observations made at the time of meeting. 
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1. INTRODUCTION 

Equation Section 1We consider situations where a certain vehicle, called 
“ownship”, moves at constant velocity through an unbounded, two-dimensional medium 
full of other vehicles that are themselves moving at constant velocities in independent 
random directions. It sometimes happens that ownship meets one of these other vehicles 
(a “target”), by which we mean that the distance between them decreases to some critical 
value. The details of such meetings can be important to both parties—a collision may be 
imminent, or the target may be about to commit a hostile act that requires immediate 
action by ownship, with the action depending on the details. The detection mechanism 
strongly influences what can be said about those details. If detection is due to an active 
sensor like radar, then an accurate target location may be immediately available, but there 
are also passive sensors that can sometimes announce the fact of detection without 
providing much detail, especially detail about the distance to the target. 

This subject is particularly important for ships, and so, even though there is 
nothing particularly nautical about the rest of this paper, we will refer to the vehicles as 
ships from here on. We will also use nautical terms such as “range” (distance to the 
target), “course”, and “bearing”, but all angles are measured counterclockwise in radians 
from East, the conventional mathematical system. 

Even though all ships are assumed to be moving uniformly at random a priori, 
that statement is not true of targets that are met. It is often far from being true, but 
nonetheless it will be tempting for an analyst to suppose that the course or bearing of a 
met target is (say) uniformly distributed over some plausible range. In this paper, we will 
derive nonuniform distributions for such quantities that follow directly from the a priori 
assumptions and Bayes’ theorem. Monte Carlo simulations (e.g., Forman, 2005) 
sometimes have ownship meeting a succession of targets as it moves, with each met 
target being assigned properties such as range, bearing, speed, and course. The 
aforementioned distributions can be used to set these properties realistically. Section 6.3 
includes some sampling functions. 

The careful distinction between targets in general and targets that have been met 
goes back to at least World War Two. Let b be the (relative) bearing from ownship to a 
met target at the moment of meeting, by which we mean the angle from ownship’s 
velocity vector to the line-of-sight to the target (Figure 1). Meetings are more likely to 
occur with small bearings (bow sightings) than large ones (stern sightings); indeed, stern 
sightings are impossible if ownship has a higher speed than the target. It follows that 
moving sensors desiring to detect targets as early as possible should spend more of their 
time looking near the bow than in other directions. The density function of b, given 
detection of a target with known speed, was derived in World War Two (Koopman, 
1956) in the process of dealing quantitatively with the issue of where lookouts should 
concentrate their effort. This paper generalizes that work. 

Although we anticipate that the main application of our results will be in setting 
the parameters of newly met targets, there are also potential applications to Bayesian 
inference. The most notable of these is the determination of the target’s range from 
bearing measurements, sometimes known as target motion analysis (TMA). It is well 



known (Wagner, Mylander, & Sanders, 1999, Theorem 11.4) that range cannot be exactly 
inferred from bearing measurements, no matter how numerous and accurate, unless 
ownship maneuvers (that is, unless ownship departs from the constant course and speed 
assumptions that we make throughout this paper). However, that fact does not prevent the 
application of Bayes theorem—an activity that we dub “instant” TMA to distinguish it 
from single-leg TMA where ownship does not turn, but makes a sequence of 
measurements separated in time (e.g., Ganesh & Baylog, 2004). 

If ownship detects a target using passive sensors, it is likely that b and perhaps its 
time derivative  (the bearing rate) will be known. Those known quantities can 
then be used in instant TMA. We will not consider errors in measuring either of those 
quantities. Doing so would be essential if we would otherwise obtain exact estimates of 
operational quantities, but that is not the case when one is merely applying Bayes’ 
theorem to data measured or discovered at one point in time. Intuition is that the target 
must be nearby if the bearing rate is high. This turns out to be correct, but, as will be seen 
in Section 7, considerable uncertainty about the target’s range will remain even when b 
and z are known exactly. Instant TMA typically provides only a slight refinement in 
knowledge of operational quantities such as the target’s range. 

/z db dt

Problems where the speed and detection range of the met target are either known 
or irrelevant are taken up in Section 4. Such problems include Koopman’s derivation of 
the bearing distribution referred to above. For other questions, an application of Bayes’ 
theorem will require a joint a priori distribution for the target’s speed and detection 
range. A useful class of such distributions, based on the passive radar/sonar equation, is 
introduced in Section 5. 

The reader may wish to have available the Excel™ workbook Meetings.xls, which 
contains Visual Basic code for some of the aforementioned distribution functions, and 
also illustrates their application. That workbook can be found among the downloads at 
http://faculty.nps.edu/awashburn/. 
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2. BASIC DEFINITIONS AND RELATIONSHIPS 

Figure 1 shows two ships, each moving in a straight line with constant velocity. 
Without loss of generality, we assume ownship is proceeding to the right. The target is at 
bearing b and range r, proceeding at speed u. The target’s course is c, relative to 
ownship’s course, or , relative to the line-of-sight (LOS) from ownship to the target 
( = cb). 

Figure 2 shows the same situation in a coordinate system where ownship remains 
stationary. The velocity of the target relative to ownship is the vector difference between 
target velocity and ownship velocity, shown in both polar and Cartesian forms. The 
target’s relative speed is w and its relative course is , or alternatively, the target’s 
velocity can be resolved into two components: one (x) within the LOS and directed 
toward ownship, and the other (y) normal to the LOS and directed counterclockwise. The 
formulas relevant to our analysis are: 

 

 

2 2

cos( ) cos( )

sin( ) sin( )

2 cos( )

x v b u c b

y v b u c b

w u v uv c

  
  

  

 (1.1) 

 
 

u

ownship 

target 
r

v
b 

 

c 

Figure 1: Ownship and target moving at constant velocity in two dimensions. 
 
The range, bearing, speed, and course of the target are all assumed to be random 

variables, and uppercase versions of r, b, u, and c will be used to represent them. The 
general idea is that the two-dimensional medium is initially assumed to be 
homogeneously populated with targets located according to some constant Poisson 
density. Each of these targets is then assigned parameters (R, U, C), independently of the 
others. Specifically, R and U are assigned according to some density g(r,u) that will be 
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left indefinite for the moment, and C is independently assigned to be uniform over a full 
circle. Each target moves according to its assigned speed and course, and ownship moves 
to the right at speed v. Meetings occasionally happen when the distance between ownship 
and some target decreases to the detection range assigned to that target (we ignore any 
initial detections that happen when R is larger than the initial distance to the target). Each 
of these meetings is characterized by parameters (R, B, U, and C), and we wish to 
describe various distributions and conditional distributions involving those four random 
variables. The joint distribution of the four is the most fundamental, and the subject of the 
next section. 

ownship 

u

b 

w

v

target x 

 

y 

Figure 2: Illustrating target velocity relative to ownship, resolved into components x 
directly toward ownship and y across the LOS. Meetings can happen only when x  

is positive. 
 
The assumption that C is a priori uniform over a full circle is significant, and 

could be false if, for example, the targets were all merchant ships moving within a traffic 
lane. The uniformity assumption is probably more realistic for military ships than for 
merchant ships. 

For brevity, we will, in most cases, use the notation f(r,b,u,c) for the joint density, 
in place of the more precise notation fR,B,U,C(r,b,u,c), trusting the name of the dummy 
variable to cue the name of the random variable under discussion, and likewise for 
discovery rates such as (r,b,u,c). Similarly, f(x|y) is the density of random variable X 
whenever the random variable Y is given to be y. 
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3. THE JOINT DENSITY OF (R, B, U, C) UPON MEETING 

First consider some class of targets, all of which have speed u and detection range 
r, and assume that these targets are initially located in a two-dimensional Poisson field 
relative to ownship, with density h targets per unit area. All targets initially closer than r 
to the origin (ownship’s location) are eliminated from consideration, since they are 
detected immediately. Each of the remaining targets is independently assigned a constant 
course C that is a uniform random variable in the interval [, ]. Should one of these 
targets be subsequently met, it will also have a bearing B, as well as a range r from 
ownship. Following Koopman’s 1956 argument, the rate at which ownship meets such 
targets with specific course c and bearing b is 

 
 ( , , , ) 2 ( )( / 2 ); , [ , ]r b u c rhx db dc b c     , (1.2) 

 
where x is the approach velocity given by (1.1) and the + sign means “positive part”; that 
is, x+ is x if x ≥ 0 or 0 if x < 0. It should be intuitively clear that meetings are impossible if 
x < 0, since such targets are moving away from ownship, rather than toward it. The 
product of 2r with x+ is an area coverage rate. 

By integrating (1.2) over all values of b for which x is positive, we find that  
 

 2 2( , , ) 2 ( / 2 ) 2 2 cos( ) ( / 2 ); [ , ],r u c rhw dc rh u v uv c dc c          (1.3) 

 
where w is the relative speed from (1.1). If we now integrate over all values of c, we 
obtain the rate of finding targets of this class: 

 

 
2

2 2

0

1
( , ) 2 2 cos( ) 2 ( , )

2
r u rh u v uv c dc rhS u v






    . (1.4) 

The equivalent speed function S(u,v) is a complete elliptic integral of the second 
kind.  It represents the expected relative speed between two targets, with speeds u and v 
moving in uniformly random directions. The function (r,u) is the rate parameter for a 
Poisson process of target discovery. If u = 0, S(u,v) reduces to v, and (1.4) reduces to the 
familiar idea that the rate of discovering targets is the rate of examining area (2rv) 
multiplied by the density of targets per unit area (h). 

Now suppose that each target is initially assigned a detection range and speed 
(R,U) according to the density function g(r,u), in which case the discovery rate for targets 
with specific ( , , , ) is ( , , , ) ( , )( )( )dr db du dc r b u c g r u dr du . By integrating over b and c as 
before, the discovery rate for targets with specific range and speed (dr, du) is 

( , ) ( ,r u g r u)( )( )dr du . Let  

 
0

( ) ( , )gR u rg r u d


  r . (1.5) 
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Then the total rate of discovering targets is  
 

 
0 0 0

( , ) ( , )( )( ) 2 ( ) ( , )( ) 2gr u g r u dr du h R u S u v du h
  

     . (1.6) 

 
The quantity 2 has dimensions of area per unit time, and can be thought of as an overall 
rate of examining area for targets. 

The joint density function of (R,B,U,C) for a discovered target is now given by a 
ratio of rates: 

 

 
( , , , ) ( , ) ( , )( cos( ) cos( ))

( , , , )
2

r b u c g r u rg r u v b u c b
f r b u c

h

  
 

 
. (1.7) 

 
Note that h cancels when taking this ratio, so the spatial density of targets is immaterial. 
The joint density (1.7) can be used to derive various other quantities. In particular, the 
joint density of (R,U) for a met target is  

 
 ( , ) ( , ) ( , ) /(2 ) ( , ) ( , ) /f r u r u g r u h rg r u S u v    . (1.8) 

 
Note that f(r,u) is not g(r,u). Due to the factor r in (1.8), met targets tend to have 

longer detection ranges than do targets in general. Fast targets also tend to be over-
represented because S(u, v) increases with u. This is in contrast to the observed fact that 
fast fish are underrepresented in towed sampling nets, presumably because fish use their 
speed to avoid the net when they see it (Barkley, 1964), rather than continuing to move at 
constant velocity as we assume here. 

The density of U upon meeting can be obtaining by integrating (1.8) over all r: 
 

 
( ) ( , )

( ) gR u S u v
f u 


. (1.9) 

 
In fact, the joint density of any subset of (r,b,u,c) can be obtained by integrating the joint 
density f(r,b,u,c) over the variables not in the subset. Equation (1.7) is the joint density, 
and all others can be derived from it. 

If there are actually several classes of targets indexed by i, with class i having 
spatial density hi and initial density gi(r,u) for (R,U), then the rate of discovering targets 
of class i is 2hii, where  

 , (1.10) 
0 0

( , )( ( , ) )i iS u v rg r u du dr
 

   
and the total rate of discovering targets is 2 i i

i

D h  . If the discovery process for each 

class of targets is an independent Poisson process with rate 2hii, then the discovery of 
all targets is a Poisson process with overall rate D. Equivalently, one can imagine an 
overall Poisson discovery process with rate D where the target class is determined upon 

 6



 7

discovery to be i with probability 2hii/D, with the class determining the joint 
distribution of (R,B,U,C). Here we have used results about the classification and 
superposition (summing) of independent Poisson processes (Heyman & Sobel, 1990; 
Ross, 2000). We note these multiclass possibilities only in passing, and will consider only 
a single class from here on. Section 4 considers quantities that do not involve the as yet 
unspecified prior density g(r,u). Section 5 deals with inferences that require specific 
assumptions about g(r,u). 
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4. DISTRIBUTIONS INDEPENDENT OF g(r,u) 

4.1 JOINT DENSITY OF (B,C), GIVEN U:  f(b,c|u) 

In random meetings, the target’s bearing B and course C, relative to the  
line-of-sight, are neither independent nor uniform.  From (1.2) and (1.4), 

  

 
( cos( ) cos( ))

( , | , ) ( , , , ) / ( , )
4 ( , ) 4 ( , )

x v b u c b
f b c r u f r b u c f r u

S u v S u v 

  
   . (1.11) 

 
Since the right-hand side of (1.11) is independent of r, the conditional density is the same 
thing as f(b,c|u). Equivalently, since  = cb,  

 

 
( cos( ) cos( ))

( , | )
4 ( , ) 4 ( , )

x v b u
f b u

S u v S u v


 

 
  . (1.12) 

4.2 DENSITY OF B, GIVEN U:  f(b|u) 

To find f(b|u), we need to integrate the density (1.12) over all  for which x+ is 
positive. If vcos(b) < u, then x+ = 0 for all , and consequently f(b|u) = 0. If vcos(b) > u, 
then x+ = x for all , and, since the integral of cos() over a full circle is 0, 
f(b|u) = vcos(b)/(2S(u,v)). There remains the case where |vcos()|  u, in which case there 
is an angle 0 such that ucos(0) = vcos (b) and 0  0  . Since x+ > 0 if and only if 
0 <  < 2  0, by symmetry 

 

0 0 0

2 ( cos( ) cos( ))
( cos( )( ) sin( ))

( | )
4 ( , ) 2 ( , )

v b u d
v b u

f b u
S u v S u v





 
  

 


 

 


. 

 

Since   0 = ArcCos(vcos(b)/u), and since usin(0) =
2 2 2cos ( )u v b , the above can 

be summarized as 
 

2 2 2

0, if cos( )
1

( | ) cos( ),  if cos( )
2 ( , )

cos( ) ( cos( ) / ) cos ( ), if | ( ) | .

v b u

f b u v b v b u
S u v

v b ArcCos v b u u v b vcos b u




  
 


   

(1.13) 

 
This is the density first determined by Koopman (1956) in World War Two. Targets 
cannot appear outside the “limiting lines of approach” (the first condition), and are more 
likely to appear over the bow (near b = 0) than near any other bearing. Only the ratio of 
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the two speeds is relevant. Figure 3 shows the distribution when u/v = 0.5, 1,  
and 2. 

Since r is missing from the right-hand side of (1.11), formula (1.13) is also 
f(b|r,u); the additional knowledge of the detection range is of no value as long as the 
target’s speed is already known. 

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

-4 -3 -2 -1 0 1 2 3 4

bearing (radians)

u/v=0.5

u/v=1.0

u/v=2.0

 

Figure 3: Density of the bearing at meeting (B) for three speed ratios. 

4.3 DENSITY OF , GIVEN B AND U: f(|b,u) 

Given that a target has been detected on bearing b, this is the density of the 
target’s course relative to the line of sight, which is of interest in forecasting the target’s 
motion. This density is simply the ratio of (1.12) to (1.13). Note that S(u,v) cancels in 
taking the ratio, so this is the easiest to evaluate of any of the densities in this section. If 
the ratio is 0/0, the interpretation is that b is impossible. 

4.4 JOINT DENSITY OF B AND Y, GIVEN U:  f(b,y|u) 

Our interest in Y, the target’s speed across the LOS, stems from the random 
variable’s close relationship to Z, the bearing rate, specifically Y = RZ. Since Z is 
passively observable, we can potentially condition on it, as well as on B, when applying 
Bayes’ theorem. 

Since Y is a function of both B and  according to (1.1), this section is an exercise 
in calculating the density of a scalar function of two random variables, complicated by 
the fact that the function involved is not monotonic. In general, if the angles for which 
Y(b,) = y are 1, 2, …, then ( , | ) ( , | ) / | '( ) |ii

f b y u f b u Y i  , where Y(i) denotes 

 10



the derivative of Y with respect to  at the ith angle. In the present application, the sum 
may include 0, 1, or 2 terms. From (1.1), the required derivatives are all Y(i) = ucos(i). 

There are multiple cases. Refer to Figure 4. If vcos(b) < u, then f(b,y|u) is 0 for 
all y because b is impossible (x is negative regardless of the target’s course). Otherwise, 
let  = y  vsin(b), so that the equation Y(b,) = y is equivalent to the equation 
 = usin(). If || > u, then f(b,y|u) = 0 because there are no solutions to the equation. 
Otherwise there are two solutions, namely 1 = ArcSin(/u) and 2 =   1. For these 

two solutions we have ucos(1)=
2u 2  and ucos(2) = ucos(1), with each solution 

qualifying for inclusion in the sum if and only if the closure rate x at that solution is 
nonnegative. If vcos(b) > ucos(1), then both qualify, and the sum of the two joint 
densities is f(b,1|u) + f(b,2|u) = 2vcos(b)/(4S(u,v)). If ucos(2) ≤ vcos(b)  ucos(1), 

then only 2 qualifies, with joint density 2 2
2( , | ) ( cos( ) ) /(4 ( , ))f b u v b u S u v     . 

If vcos(b) < ucos(2), then neither solution qualifies. In all cases, the joint density must 

be divided by |Y(i)|, which is 2u 2 , before being summed. 
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Figure 4: Velocity across the line of sight (y) on the vertical axis, and closing velocity 
along the line of sight (x) on the horizontal axis. The angles 1 and 2 both qualify in 

this diagram, but there are other possibilities. 
 
In summary, f(b,y|u) is 0 if | yvsin(b)| ≥ u. Otherwise, let 

2 2( sin( ))s u y v b   . Then 

v 

2 

1 

vcos(b) – ucos(1) 

u 

vsin(b) 

y 

b 



 

2 cos( )
 if cos( )  

1 cos( )
( , | )  if cos( ) . 

4 ( , )
0 if cos( )

v b
v b s

s
s v b

f b y u s v b s
S u v s

v b s


 


  


 


  (1.14) 

The conditional density f(y|b,u) is just the ratio of (1.14) to (1.13). With the same 
exclusions and the same definition of s as in (1.14), it is 

 

2 2 2

2 2 2

1/( ) if cos( )

cos( )
 if  s< cos( )

( cos( ) ( cos( ) / ) cos ( ))
( | , )

.5( cos( ))
if  cos( ) .

( cos( ) ( cos( ) / ) cos ( ))

0 if  cos( )

u v b u

v b
v b u

s v b ArcCos v b u u v b
f y b u

s v b
s v b s

s v b ArcCos v b u u v b

v b s

 

 
         
   


 

(1.15) 

 
Note that the constant S(u,v) cancels in taking this ratio. Figure 5 shows the conditional 
density function ( | , )f y b u  for b = 0, u = 2, and v ≥ 2. Large values of Y are more likely 
than small ones when b = 0; indeed, the density ( | , )f y b u  is unbounded at the endpoints. 

A curiosity is that ( | , )f y b u  is a uniform distribution on the interval [vu, v+u] when 
/ 2b   . 

 

0

1

2

-3 -2 -1 0 1 2 3

 

Figure 5. Conditional density of speed across the LOS, given detection dead ahead, 
for a target with speed 2, as long as ownship speed is at least 2. 
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4.5 JOINT DENSITY OF B AND X, GIVEN U:  f(b,x|u) 

Random variable X is the target’s velocity towards ownship, or range rate, taken 
positive when the range is decreasing. Meetings can only happen when X is positive, and 
large values of X are potentially alarming to ownship because of the collision potential, 
depending on the bearing b. Range rate is potentially observable through a Doppler shift, 
even when the range itself cannot be directly sensed. The density that is derived in this 
section is the first step in conditioning on the observed value of X. 

The procedure for determining f(b,x|u) is similar to the procedure for determining 
f(b,y|u). Since X is a function of both B and  according to (1.1), we again have a 
problem in determining the density of a scalar function of two random variables. If the 
angles for which X(b,) = x are 1, 2, …, then ( , | ) ( , | ) / | '( ) |i ii

f b x u f b u X  , 

where X(i) denotes the derivative of X with respect to  at the ith angle. The required 
derivatives are all X(i) = u sin(i).  Let =v cos(b)   x, so that u cos(i) =  according 
to (1.1). If || > u, there are no solutions to this equation. If || < u, there are two solutions 

1 and 2, for each of which 2| '( ) |iX u 2   . Thus, using (1.12),  

 

 
2 2

0 if | |  or 0
1

( , | ) 2
if | |  and 0. 4 ( , )

u x

f b x u x
u xS u v

u






 
    

 (1.16) 

 
This joint density function is unbounded when || is nearly u, which corresponds 

to extreme situations where the target is moving directly toward or directly away from 
ownship. Figure 6 shows a typical transect. 
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Figure 6: A graph of f(b,x|u) versus x (range rate) for v = 5, u = 3, and b = 0. Targets 
discovered dead ahead (b = 0) have a strong tendency to have a range rate almost as 

large as v + u, with a somewhat smaller tendency for x to be just  
above v  u. 

 
Strongly peaked densities, such as those shown in Figure 6, can be problematic 

for techniques that evaluate densities only on a grid. In some cases, the cumulative form 
of the density may be more useful. It happens that (1.16) can be integrated analytically on 
x to obtain , a partially cumulative joint 

distribution. With t  vcos(b), this distribution is given by 

( , | ) ( , | ) /F b x u P X x B db U u db   

 

 
2 2

2 2 2 2

0 if 0 or ,

( | ) if ,  or otherwise, 

( cos(( ) / )) ( )
( , | )  if 

2 ( , )

( ) ( cos( / ) cos(( ) / ))
if .

2 ( , )

x x t u

f b u x t u

t Arc x t u u x t
F b x u t u

S u v

u t u x t t Arc t u Arc x t u
t u

S u v






  
  
      

         


(1.17) 

4.6 THE PROBABILITY OF LEADING THE TARGET 

When two ships meet, assuming that neither ship subsequently changes either 
course or speed, it is possible that the target will eventually pass in front of ownship, at 
which time the bearing will be 0. In that case ownship is said to be “leading” the target. If 
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the initial bearing B is positive (negative), this will happen if and only if Y is negative 
(positive); that is, B and Y must have different signs (all angles are restricted to the 
interval [,] in this paper).  Since the event E of crossing over one’s bow is an 
important one for mariners, it is of interest to find its probability. We have 
 

 
0, 0 0, 0

1
( ) 2 ( , | ) ( cos( ) cos( ))

2 ( , )B Y B Y

P E f b u dbd v b u dbd
S u v

  




   

     . (1.18) 

 
The initial factor of 2 in (1.18) is by symmetry—the possibility that B < 0 is not 
accounted for, but clearly the chances that the target will pass in front of ownship are the 
same regardless of the sign of B. 

There appear to be only three cases where the integral in (1.18) can be 
accomplished analytically. The first two are almost obvious. If u = 0 and v > 0, P(E) can 
easily be shown to be 0, or if v = 0 and u > 0, P(E) is 0.5. Both of these results should 
make intuitive sense; the first because a stationary target will never cross ownship’s bow, 
and the second because the direction of motion for a stationary ownship should be 
irrelevant. The third case is when the two speeds are equal. One-fourth of such meetings 
will be leading, as we next show. Without loss of generality, we assume both speeds  
are 1. 

When u = v = 1, P(E) is M/(2S(1,1)), where M is the right-hand integral  
in (1.18): 

 
0 ( )

(cos( ) cos( )) .
Q b

M db b d


     (1.19) 

Here Q(b) is the set of angles  for which both (1) cos(b) > cos() and (2) 
sin(b) + sin() < 0. The first requirement is satisfied when || > b, but the second cannot 
be satisfied if  > b because the sum of two positive terms cannot be negative, so we 
must have  < b. If b ≤ /2, the second is satisfied if and only if ( , )b b    , and 

Q(b) is therefore that interval. If b ≥ /2, the second is satisfied if and only if 
( , )b b   

s

, but being in that interval is inconsistent with the requirement that  < b, 

o Q(b) is empty. We therefore have 
/ 2

0

(cos( ) cos( ))
b

b

M db b




d  . It is n




  ow just a 

matter of evaluating standard integrals to conclude that M = 2.  Since S(1,1) is 4/, we 
conclude that P(E) = 0.25. 

Mariners sometimes refer to a “lag” situation where the target’s and ownship’s 
velocity vectors point to opposite sides of the LOS. Such situations never result in the 
target crossing ownship’s bow, so such events are not included in E. Even if the target’s 
velocity vector points to the same side of the LOS as ownship’s, it is still possible that the 
target will not cross ownship’s bow. Such situations are sometimes described as 
“overlead”. We mention this only to emphasize that our current usage does not include 
“overlead” in the event E, which remains the event that the target will (assuming that 
neither ship changes speed or course) cross ownship’s bow. In other words, the opposite 
of E is not “lag”, but rather “lag or overlead”. 
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We are unable to evaluate P(E) analytically, except in the three cases described 
above, but it is not difficult to evaluate numerically. As expected, P(E) decreases from 
0.5 to 0 as ownship becomes faster and faster relative to the target, with speed equality 
being about “half way to infinity”. 
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5. INFERENCES ABOUT R IN THE CASE OF PASSIVE SONAR 

Up to this point, we have not been specific about the a priori distribution of 
(R,U). Other than the idea that proximity implies detection, we have assumed nothing 
about the sensors involved. That must necessarily change in this section, which deals 
with estimating the range at detection (R). When detection is made passively, R is 
notoriously variable, in addition to being unobservable. Ownship generally becomes 
aware of a target’s presence when some sound emitted by the target is heard by ownship, 
at which time the bearing B is measured. However, the received signal at first detection is 
typically near the threshold of audibility, so the strength of the received signal is of little 
use in determining R. Our interest here is in making inferences about R based on 
quantities that can be observed at the time of detection, particularly B and its rate of 
change Z. We therefore must make a priori assumptions about R that are tailored to the 
sensor involved. 

The problem of making inferences about R is especially difficult when detection 
is made by passive sonar, since the acoustic transmission properties of the ocean are hard 
to predict. Seemingly one could reason that the signal excess, as predicted by the sonar 
equation (Urick, 1975), must be about 0 at the time of initial detection, and calculate the 
unique range for which that is true. The problem is that the sonar equation itself is only a 
rough approximation to reality—it can easily be off by 9 decibels in predicting the  
signal-to-noise ratio (Wagner et al., 1999, Section 509), which corresponds to a factor of 
about 8 in signal power. Adding to the difficulty is that R depends strongly on the signal 
level emitted by the target, which in turn depends strongly on the speed U of the target, 
which is also typically unknown. We cannot proceed under the assumption that either R 
or U is a known quantity, or that the two are independent of each other. We will develop 
a joint prior distribution for (R, U) by first assuming a distribution for U, then using the 
sonar equation to develop a distribution for R, given U, and finally multiplying the  
two together. 

5.1 A PRIOR DISTRIBUTION g(r,u) FOR PASSIVE SONAR 

We take the distribution of U to be lognormal with mode U0; that is, the natural 
logarithm of (U/U0) is assumed to be normal with mean 0 and standard deviation U. U0 
can be thought of as a guess at the target’s speed, with U quantifying the vagueness of 
the guess. The lognormal distribution is concentrated on the positive real line, the natural 
domain of speed, and has both scaling (U0) and shaping (U) parameters. 

We will use the sonar equation to develop the density of R, given U. The  
signal-to-noise ratio depends on ownship speed v, in addition to U, since ownship speed 
determines the level of noise with which the signal must compete. Let V0 be the speed at 
which self-noise is equal to background noise, and assume that self noise is proportional 
to the  power of ownship speed. Total noise N is then proportional to v + V0

. The 
signal S is assumed proportional to U for some parameter , and also proportional to the 
inverse square of R (spherical spreading). The signal-to-noise ratio is then 



 
2

0

0

( / )U R RS
K

N v V



 






, (1.20) 

 
where K is approximately 1 and R0 includes the aforementioned proportionality constants. 
To be precise, ln(K) is assumed to be normal with mean 0 and standard deviation 2R. If 
the sonar equation has a normal error with standard deviation 6 decibels, then R is 0.69. 
If  = , R0 can be thought of as the most likely detection range when U and v are both 
equal and large. We expect  =  = 3, since the power required to drive a ship typically 
increases with the third power of its speed. 

There is an important caveat to the assumption that K is approximately 1 at 
detection. Passive sonars are typically not omnidirectional, with the location of the sonar 
on ownship being such that directions forward (B = 0) are covered, but not directions aft 
(B = ). If the initial bearing is at or near the sonar’s cutoff, but drawing forward (B and Z 
have opposite signs, see Figure 3), then K might be substantially greater than 1, and the 
target might be closer than would otherwise be expected. For such sonars, the Bayesian 
mathematics developed here applies only when the initial discovery is strictly within (not 
on the edge of) the angular coverage region of the sonar. 

V 
ownship 

target 

U 

angular zone of coverage 

 

Figure 7: Illustrating a situation where the target is discovered when entering the 
zone of the sonar’s coverage. The bearing B is positive and decreasing. 
 
Since S/N = 1 at first detection, (1.20) implicitly defines the density of R, given 

U = u. Specifically, ln(R/R0) is normal with mean 0.5
0

ln( )
u

v V



 
 and standard deviation 

R. Parameters that need to be known for determining the joint distribution of R and U 
are thus U0, V0, R0, , , U, and R. Given those parameters, the joint density function is 

 

 

2 2
0 0 0

2 2

ln( / ) [ln( / ) 0.5ln( /( ))]
exp( 0.5{ })

( , )
2

U R

U R

u U r R u v V

g r u
ru

  

 
  

 
 

 . (1.21) 

 
This density function is illustrated on sheet “Prior” of Meetings.xls, with 

opportunities to explore the impact of different parameter choices. 
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There are other unimodal distributions with the appropriate scaling and shape 
parameters, but (1.21) uses standard functions and has some convenient analytic 
properties. One advantage of the lognormal assumption is that the function Rg(u) defined 
in Section 1.2 can be expressed analytically (see Johnson & Kotz, 1970), as can certain 
other moments. Some useful formulas are recorded below: 
 
  (1.22) 2

0( ) exp(.5 )UE U U 
 

 20
0

0

( ) exp(0.5 0.125( ) )R

U
E R R

v V



    


2
U  (1.23) 
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E R R

v V



    


2
U  (1.24) 
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0 0

0

( ) exp(0.5 0.5((1 0.5 ) ) )R

U
E RU R U

v V



    


2
U  (1.25) 
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R u rg r u dr

u v V


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  



  
 2U

 (1.26) 

 
It may be tempting to use the experience of subject matter experts (SMEs) to 

estimate some of the parameters required for this sonar model, but a word of caution is 
appropriate. It is likely that SMEs will have more knowledge of targets that are met than 
of targets in general, but the formulas in this section are for targets in general. It would be 
a mistake, for example, to use (1.22) with E(U) = 5 kt because of an SME’s statement 
that “targets I have met have an average speed of 5 kt”. Such SME knowledge applies to 
distributions upon meeting, the subject of the next section, rather than the a priori 
distributions that are the subject of this section. 

5.2 DISTRIBUTIONS UPON MEETING 

The joint density f(r,u) upon meeting is given by (1.8), with (1.21) substituted for 
g(r,u). We know of no analytic expression for the constant  from (1.8), so are forced to 
resort to numerical integration, but otherwise this density is an analytic function. Various 
moments of R and U can be derived by numerical integration, and possibly used for 
parameter estimation through SME judgments. 

The joint density f(r,u,b) is the product of (1.8) and (1.13). The equivalent speed 
S(u,v) cancels when making that product, so f(r,u,b) is again an analytic function except 
for . If the bearing is observed to be b upon meeting, then this joint density easily 
enables the computation of the conditional density f(r,u|b) and its marginals f(r|b) and 
f(u|b). In other words, everything that is to be known about the range and speed of the 
intercepted target, given only the bearing to the target, is at hand. 
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The joint density f(r,u,b,y) is the product of (1.8) and (1.14). Let the bearing rate 
be Z, so that Z=Y/R. The joint density f(r,u,b,z) is then rf(r,u,b,y = rz), where this 
awkward notation means that rz is to be substituted for y. We can now condition on (b,z) 
to discover the effects of observations of bearing and bearing rate on the distribution of 
(R,U). This is the “instant TMA” referred to in the introduction. 

The joint density f(r,u,b,x) is the product of (1.8) and (1.16), enabling the 
computation of f(r,u|b,x), the density of range and speed when both bearing and range 
rate are observed. 

The distributions described above are all implemented and exercised in the 
workbook Meetings.xls. See Section 7. 
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6. VISUAL BASIC FOR APPLICATIONS (VBA) 
IMPLEMENTATION OF VARIOUS DISTRIBUTION FUNCTIONS 

The VBA module included with RandMeet.xls contains code for all of the 
functions introduced above, plus some additional ones useful for simulation. In that 
module, densities defined upon meeting all start with the letter f, followed by the 
uppercase names of the random variables whose joint density is under consideration, 
possibly followed by the letter g (for “given”), followed by the uppercase names of the 
random variables whose values are given. Thus, fXgY(x,y) is the name of the function 
that would be called fX|Y(x|y), were subscripts available in VBA code. Some densities omit 
normalization by hard-to-compute constants such as , in which case the name of the 
function ends in the letter k as a warning. 

6.1 SECTION 2 FUNCTIONS 

S(u,v) (formula 1.4) is EquivSpd(u,v). 

6.2 SECTION 4 FUNCTIONS 

f(b|u) (formula 1.13) is fBgUk(b,u,v). This function needs to be divided by 
2S(u,v) to be a true density. The alternative function BearDen(b,u,v) is 
Koopman’s original specification, and is a true density. 
 
f(|b,u) (the ratio of formula 1.12 to 1.13) is fPgBU(u,v,b, p), a true density. 
 
f(y|b,u) (formula 1.15) is fYgBU(u,v,b,y), a true density. 
 
f(b,x|u) (formula 1.16) is fBXgUk(u,v,b,x). Divide by 2S(u,v) to get a  
true density. 
 
F(b,x|u) (formula 1.17) is fBXgUc(u,v,b,x). The terminal “c” means 
“cumulative”. Divide by 2S(u,v) to get the true distribution. 
 
g(r,u) (formula 1.21) is prior(r, R0, u, U0, v, V0, SigU, SigR, pow). Parameters  
and  are both assumed to be equal to input pow. The argument SigU is U , SigR 
is R, and other symbols are as used earlier. 
 
E(U) (formula 1.22) is EU(R0, U0, v, V0, sigU, SigR, pow), notation as in g(r,u). 
 
E(R) (formula 1.23) is ER(R0, U0, v, V0, sigU, SigR, pow), notation as in g(r,u). 
 
E(R2) (formula 1.24) is ER2(R0, U0, v, V0, sigU, SigR, pow), notation as in g(r,u). 
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E(RU) (formula 1.25) is ERU(R0, U0, v, V0, sigU, SigR, pow), notation as  
in g(r,u). 
 
Rg(u) (formula 1.26) is Rg(R0, u, U0, v, V0, sigU, SigR, pow), notation as  
in g(r,u). 
 
 (formula 1.6 , using Rg(u) and S(u,,v) from above) can be obtained using the 
function called integral(v, R0, SigR, U0, sigU, pow, V0), with notation as in 
g(r,u). This is a numerical integral, so comparatively expensive to evaluate. 
 
E(R|meeting) (not numbered) can be obtained from ERA(v, R0, SigR, U0, sigU, 
pow, V0), notation as in g(r,u). This numerical integral is the expected range of a 
met target when ownship moves at speed v, and might be of use in  
parameter estimation. 
 
f(r,u,b) (not numbered) is fRUBk(r, R0, u, U0, v, V0, sigU, SigR, pow, b). This 
needs to be multiplied by 4UR to be a true joint density. 
 
f(r,u,b,z) (not numbered) is fRUBZk(r, R0, u, U0, v, V0, sigU, SigR, pow, b,z). 

6.3 SAMPLING AND OTHER FUNCTIONS 

Various other functions are also provided in Meetings.xls, generally introduced by 
comments in the VBA code. Among these are some sampling functions that may be of 
use to those who have no ambition to do any Bayesian analysis, but would like to 
generate random meeting parameters in a Monte Carlo simulation. All use the rejection 
method (Ross, 2000). The functions are: 

 
For B given U, use Bsample(u,v) or possibly Bsample2(u,v). The latter should be 
somewhat faster, but the code is more complicated. 
 
For C given U and B, use Csample(u,v,b). If (u,v,b) is an impossible combination, 
this function will return a very large positive number. 
 
For Y given U and B, use Ysample(u,v,b). If (u,v,b) is impossible, this function 
will return a very large positive number. 
 
For both B and C given U, use subroutine BCSample(u,v,b,c). 
 
These functions are not exhaustive, but others can be based on densities derived 

above. For example, (1.7) could be used to give a joint sample of (R,B,U,C). 
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7. THE WORKBOOK MEETINGS.XLS 

This workbook includes several sheets named after density functions described in 
Section 6. Each of these sheets is a graphical or computational exploration of the function 
with its name. Sheet “leading” permits the approximate computation of P(E) as described 
in Section 4.6. These are all “Section 4” sheets; that is, no reference is made to a prior 
distribution for (R,U). 

The five “range” sheets whose names start with R are all controlled by the sheet 
named “RUBZ”, which includes a command button that updates all five. The range 
sheets empower the exploration of the extent to which inferences about R can be made, 
based on observations of B and possibly X or Z. Specifically,  

 
sheet RUprior shows the prior density of (R,U) before meeting; 
sheet RU shows the density for met targets; 
sheet RUB shows the density conditioned on knowing B; 
sheet RUBX shows the density conditioned on knowing B and X; and 
sheet RUBZ shows the density conditioned on knowing B and Z. 

 
The joint distribution of (R,U) is, in all cases, displayed digitally after multiplying 

by a large constant (100) to improve readability. Numbers larger than 0.1 are colored to 
get a graphical idea of the region in which density is “significant”. In all cases, the 
marginal distribution of R is computed by summing, then used to approximate E(R) under 
the specified condition, and then copied to the controlling sheet RUBZ to permit easy 
comparisons. In some cases, the exact value of E(R) is also known and used  
for comparison. 

The range pages have many inputs, so many experiments are possible. One 
experiment begins with the “Standard” scenario (Tools menu), exploring the 
consequences of modifying conditions on B and Z. The a priori mean detection range 
upon meeting in this scenario is 1.52 nm. Table 1 shows the mean detection range with 
various observations. 

 
 Bearing (B) in radians 

0 0.5 1 1.5 
Null 1.40 1.41 1.48 1.67 

0 2.03 1.72 2.75 3.35 
1 2.09 1.88 2.36 2.80 
2 1.50 1.74 2.13 2.34 
3 4.27 1.40 1.76 1.84 

Bearing rate (Z) in 
radians per hour 

4 0.77 1.12 1.45 1.49 

Table 1: The mean range in nm for several assumptions about bearing and bearing 
rate, “Null” meaning that no observation of Z is made. 

 



Table 1 displays an anomaly when Z = 3 and B = 0, where the expected range is 
clearly not related to the values in neighboring cells. The anomaly is easily explained, but 
nonetheless is something to beware of in computations such as these involving 
unbounded densities on a grid, which in this case includes values of R and U that are 
multiples of 0.1. When Z = 3 and B = 0, it happens that the point (R,U) = (4.3, 12.9) is 
nearly on a singularity of the joint density, to the extent that it ends up being the only 
possibility with any significant probability. This one point takes over the numerical 
computation of the mean value of R, forcing it to be about 4.3. An operational version of 
these computations would recognize and protect against such anomalies, but our simple 
grid-based computation does not. 

Except for the anomaly, Table 1 shows a decrease in expected range as the 
bearing rate increases. This should be intuitive because Z is inversely proportional to R. 
However, the decrease is not as fast as one might expect, and is certainly not inversely 
proportional to Z. The reason for this mushiness is that there are other explanations for a 
high bearing rate: the target might be going fast, or the target’s relative course  might be 
nearly /2. Since neither U nor  has been observed, it makes intuitive sense to lend 
some credence to both of those possibilities, in addition to the possibility that R might 
be small. 

Table 1 (the Null row) also shows that the expected range increases with the 
observed bearing. Intuitive or not, that is the truth of the matter. Although not shown in 
Table 1, each of the quantities displayed there is surrounded by a widespread distribution. 
Figure 1 displays three distributions associated with the Standard scenario, all of which 
exhibit significant variance. 

The results in this section are typical, and demonstrate the difficulty that ownship 
must inevitably have when meeting a new target, prior to making any maneuver. Instant 
TMA will not normally be definitive, so considerable risk will remain if decisions must 
be made quickly. To accurately predict the target’s future movement, it will be necessary 
to maneuver and accept the implied time delay. 
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Figure 8: Marginal densities of range under three variations of the Standard 
scenario. The “Detect” curve assumes only detection, and the “Bearing&x” curve is 

conditioned on knowing the bearing and range rate. All three exhibit  
significant variance. 
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