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ABSTRACT:  This paper was originally motivated by a military problem where one side plants 
mines on a network of roads while the other side clears them in an extended conflict. The two-person 
zero-sum game considered here is a possible model. The essential features of the game are that the 
payoff on each segment of the selected path depends only on the ratio of the two sides’ allocations of 
effort, and that the total payoff is a sum over the arcs of that path. We solve the game, presenting 
mathematical programs for the two sides. One side uses a mixed strategy, while the other does not.  
 
APPLICATION AREAS: Land and expeditionary warfare 
OR METHODOLOGIES: Decision theory, Stochastic processes 
 
INTRODUCTION 
 IEDs (Improvised Explosive Devices) have been responsible for many of the 
casualties in recent Middle Eastern wars (USA Today, 2013; Atkinson, 2004). An 
essential feature of what we call IED warfare is that it is extended in time, rather 
than the conventional short battle where one side plants mines while the other either 
quickly suffers from them or quickly clears them. There are three types of decision 
in IED warfare: 

• the miner must decide when, where and with what intensity to plant mines 
on a network of roads,  

• the clearance forces must similarly decide how to allocate clearance effort to 
the network, and 

• logistic traffic must decide what path to take through the network.  
DeGregory (1997) and Washburn and Ewing (2014) describe models of IED 
warfare where the first and third decisions are taken as given when the clearance 
forces make the second decision. This is a one-sided decision problem for the 
clearance forces. All three decisions will be modeled in this paper, so we have a 
two-person zero-sum game. The clearance forces and the logistic traffic are 
assumed to be on the same side and to have no communication problem, so one of 
the players will make both of those decisions. As will be seen, much depends on the 
order in which the three decisions are made.  

Bold symbols represent vectors, with the same symbol italicized representing its 
components. Thus the n-vector x represents 1( ,..., )nx x . The symbol ≡  means “by 
definition”. If limits are not given for a summation index, “for all” should be 
understood.  
 
THE MODEL 
 Our ratio game is a special case of the game described in Theorem 2 below. Since 
the allocations of the two sides are continuous variables, we must first establish the 
existence of a solution (Theorem 1) before investigating its characteristics (Theorem 
2).  
 Theorem 1: Let B and C be closed, bounded, nonempty convex subsets of finite-
dimensional Euclidean space, and let ( , )kA x y  be a continuous function on B C×  
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for 1,...,k K= . The two-person zero-sum game where the maximizer chooses x and 
the minimizer chooses (k,y) has a value, and both sides have optimal, potentially 
mixed strategies.  
 
 The proof of Theorem 1 is a modification of Burger’s proof (Burger, 1963) for the 
case where 1K = . The proof would be conventional if B and C were finite, so the 
essential task is to show that various limits exist as continuous space is more and 
more finely subdivided. We omit the details. 
 

Theorem 2: In addition to the assumptions of Theorem 1, assume that ( , )kA x y is 
concave-convex for all k; that is, assume that ( , )kA x y is a concave function of x for 
all (k,y) and a convex function of y for all (k,x).  Then player 1 has an optimal pure 
strategy, and player 2’s optimal strategy consists of K “atoms” ( , )k kp y , where 

1( ,..., )Kp p≡p  is a probability distribution and k C∈y . Player 2 first selects an 
index k according to p, and then chooses k=y y .  If 0kp = , ky can be any point in 
C. 
 
Proof: Theorem 2 is known to be true for the case 1K =  (Washburn, 2014), and the 
general proof for Player 1 can follow the same line here because the minimum of a 
finite number of continuous, concave functions is still a continuous, concave 
function. The proof for player 2 amounts to showing that his choice of y, given that 
his index choice is k, need not be random. Toward that end let random variable kY  
be his optimal choice, and let ( )k kE=y Y  be its mean. The mean k C∈y exists 
because the distribution of kY  is supported by C. Since ( , )kA x y is a convex 
function of y for all x, by Jensen’s inequality, 
 ( , ) ( ( , ))k k k kA E A≤x y x Y .  
If p is optimal, we therefore have  
 ( , ) ( ( , ))k k k k k k

k k
p A p E A v≤ ≤∑ ∑x y x Y  , 

where v is the game value. The right-hand inequality is true because p and Y have 
been assumed optimal and player 2’s optimal strategy must guarantee at most v 
regardless of x. The left-hand inequality then shows that the optimal kY can always 
be replaced by its mean without harm to player 2, as was to be shown.     QED 
 
   One could also imagine a different game where the maximizer chooses x, the 
minimizer chooses y, and the payoff is ( , ) min ( , )k kA A≡x y x y . This game would in 
general be more favorable to player 2 because the choice of index can depend on x, 
as well as y. However, in the concave-convex case the two players can still use the 
same strategies to enforce the same value as in the game we have in mind. The two 
games are therefore tactically identical in the concave-convex case, and we will 
make no further reference to this possible modification. 
 The only application of theorems 1 and 2 in this paper will be to a game played on 
a network of J arcs where player 2’s index choice corresponds to a feasible path 
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connecting source s to destination t. Every arc is assumed to be part of some feasible 
path — other arcs can be eliminated because neither player will allocate anything to 
them. The set of feasible paths is known to both sides.  A nonnegative vector c is 
given, and, if kr  is the set of arcs in the kth path, the payoff when player 2 chooses 
that path is  
 2( , ) /

k

k j j j
j r

A x c y
∈

≡ ∑x y   (1) 

Here x and y are both nonnegative vectors with 1j j
j j

x y= =∑ ∑ . Our reason for 

referring to the square of jc at this point will emerge later. The payoff depends only 
on the ratio of allocations to arcs, increasing with jx and decreasing with jy .  The 
game could also be described as one where player 1 chooses a single arc, with x 
being a mixed strategy, but we will persist in identifying x as the strategy because of 
the motivating problem. 
 Equation (1) does not meet the requirements of Theorem 1 because the payoff is 
discontinuous (potentially infinite) when 0jy = . We could restore continuity by 
requiring all of player 2’s allocations to exceed some small positive quantity, but 
will forego doing so because player 2 is not motivated to make payoffs large. The 
ratio 0/0 will be interpreted as 0 in evaluating (1).  

In the motivating problem, the components of x represent the rates at which IEDs 
are planted on the arcs of the network, with the emplantment rates being constrained 
by j

j
x X=∑ , the given total rate of emplantment. The components of y are 

assumed to be the rates at which clearance teams visit the arcs, similarly constrained 
by j

j
y Y=∑ . In both cases “rate” means the rate of a time-homogeneous Poisson 

process; that is, there is no predictable schedule of either mine plants or clearance 
visits that either side can exploit. It will be shown that player 1’s choice of x does 
not depend on Y and player 2’s choice of y does not depend on X, so it is not 
restrictive to assume (as we do) that both players know both X and Y.    

One way of obtaining equation (1) is to assume that a visit by a clearance team to 
arc j will clear each mine on arc j with probability jq , independently of all other 
mines, where jq depends on jointly known parameters such as the physical location 
of the arc. Let jN  be the number of IEDs on arc j, a stochastic process that goes up 
by 1 with every mine planted and down by 1 with every mine cleared. This is an 
M/M/∞ queue where the IEDs have arrival rate jx  and are “serviced” by the 
clearance teams with service rate j jq y per mine, so the mean number of IEDs on the 

arc is ( ) / ( )j j j jE N x q y= (Ross, 2000). If we define 2 1/j jc q≡  and sum on the arcs 
in path k, the average number of IEDs on path k is ( , )kA x y . It is equivalent to solve 
a standard game with 1X Y= =  and then simply multiply the standard value by 

/X Y  to get the average number of IEDs actually encountered. When 1X Y= = , the 
components of x and y in (1) can be interpreted as fractions of the total rate 
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committed to the various arcs. 
 There may be other assumptions that would lead to a game based on (1), but let 
the derivation above suffice. For ease of interpretation we will continue to describe 
x and y as above, and to the components of c as “vulnerability parameters”. 

We now turn to the analysis of the standard game. Hereafter player 1 is referred to 
as P1 (the game’s maximizer) and player 2 as P2 (the minimizer). 
 
PURE OPTIMAL STRATEGY FOR PLAYER 1  
 Since P1’s strategy is pure according to theorem 2 and can safely be announced 
(like all optimal strategies) to P2, we can formulate a mathematical program to 
determine P1’s optimal strategy and the game value v.  

Whatever path k P2 chooses, he will want to minimize (1) using y. When x is 
known, this is an elementary minimization problem that can be solved using 
Lagrange multipliers. Doing this we find that the (negative) of the derivative of each 
term of (1) with respect to jy , which is 2 2/j j jx c y , should be a constant when y is 

chosen optimally, the constant being chosen to make 1
k

j
j r

y
∈

=∑ (note that the sum is 

over kr , with no clearance effort devoted to arcs not in the chosen path). Thus P2’s 
optimal choice for y is to select k and then    

 ( ) ;

k

j j
j k

i i
i r

c x
y j r

c x
∈

≡ ∈
∑

x , (2) 

with other components of y being 0. Inserting this into (1) and summing, we find   
 2( , ( )) ( )

k

k j j
j r

A c x
∈

= ∑x y x , (3) 

which P1 must maximize, or equivalently P1 must maximize the positive square 
root 

k

j j
j r

c x
∈
∑  . Since P1 does not know k, P1 must consider every possible path. 

This consideration leads to a nonlinear optimization problem that we will call NLP1. 
Letting 2

j ju x≡ , NLP1 is 

 2

max
subject to 1,  and

 for all 
k

j
j

j j
j r

Z
u

c u Z k
∈

=

≥

∑

∑

 (4) 

NLP1 has one nonlinear (quadratic) constraint and one linear constraint for each 
possible path. After solving it, P1 can guarantee that 2( , )kA Z≥x y , regardless of 
what P2 does with y and k, by setting 2

j jx u=  for all j. The value of the game is 

therefore 2v Z= . The form of NLP1 may explain our initial reference to 2
jc  in (1), 

rather than jc . 
 As long as every path includes at least one arc with a positive vulnerability 
parameter (the alternative is that the value of the game is 0), a slightly simpler 
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version of NLP1 is NLP2 with variables z and 1( ,..., )Jh h=h : 

 

2min

subject to 1 for all 
k

j
j

j j
j r

z h

c h k
∈

≡

≥

∑

∑
  (5) 

NLP2 is quadratic program with one variable for every arc (h) and one linear 
constraint for every path. If the solution of NLP2 is (z,h), then one can set 

1 /Z z=  and Z=u h  to obtain a solution of NLP1.  
NLP2 is our simplest mathematical program for determination of the game value 

and P1’s optimal strategy. P2’s optimal strategy will be considered in a later section.  
 
DEFINITIONS, SPECIAL CASES AND GAME VARIATIONS 
 If a path k exists for which 0jc =  for all kj r∈ , then P2 will always use it and the 
value of the game is 0. This is the “null” case. In all other cases the value is positive, 
since P1 can guarantee that by making a positive allocation to every arc. 
 It is convenient to define 
 2( ) ( , )

j

k

k
j r

A k c A
∈

≡ =∑ 1 1 , (6) 

and also to define k* as the path index that minimizes A(k).  
 In the special case where there is a unique path k* from s to t, ( *)A k  is the value 
of the game. The solution of NLP1 is 2 2 / ( *)j j jx u c A k= =  and 2 ( *)Z A k= . P2 can 

guarantee the same value by setting 2 / ( *)j jy c A k= , thus presenting P1 with the 

problem of maximizing 
*

( *)
k

j
j r

x A k
∈
∑ . The value of this sum is A(k*) when all of P1’s 

effort is devoted to k*, and in no case can exceed that. Thus both sides employ the 
same pure strategy, and the common strategy emphasizes those arcs in k* with high 
vulnerability.  
 We can also consider some variations on the rules of the game, all of which 
benefit P1. If P1 knows the path selection k before choosing x, then it is easily 
established that the best path selection for P2 is k*. If on the other hand P1 knows y, 
but not k, then P1 can simply imitate P2 by setting =x y , which will make the 
payoff ( )A k . The best choice of k for P2 will again be k*.  Since P2 can guarantee 
that the payoff will not exceed ( *)A k  in either case, or even in the case where P1 
knows both k and y before choosing x, this is the value of the game in all three 
variations.  
 This leaves the main, non-null case where P1 knows neither k nor y when he 
chooses x. P1’s optimal strategy in that case is pure, as established earlier. We next 
consider the optimal strategy for P2, which in general is mixed. 
 
THE GENERAL CASE FOR PLAYER 2 

According to Theorem 2, P2’s optimal strategy consists of K atoms ( , )k kp y , with 
p a probability distribution over the possible paths from s to t. If P2 uses such a 
mixed strategy, then the expected payoff when P1 employs x is 
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 2 /
k

k j j jk
k j r

p c x y
∈

∑ ∑  . 

This is a linear function of x, so P2 must choose his strategy so that the coefficient 
of jx in that expression does not exceed the game value v on any arc. This 
observation leads to nonlinear program NLP3, where all variables are nonnegative 
and js  is by definition the set of path indexes k for which kr  includes arc j:  

 

2

minimize 
subject to /  for all 

1,

1 for all .

j

k

j k jk
k s

k
k

jk
j r

v
c p y v j

p

y k

∈

∈

≤

=

=

∑

∑

∑

  (7) 

 
It should be understood that 0jky =  unless jk s∈  (or equivalently kj r∈ ). Variable 
v can be 0 in the null case because P2 can make 1kp = on the null path, which 
makes either the sum or 2

jc  be 0 in the inequality constraints. Otherwise v must be 
positive.   
 If the game is not null, variable v and one constraint can be eliminated by defining 

/k kt p v≡  . Since 1 /k
k

t v=∑  , NLP 3 is equivalent to maximizing that sum. We 

thus have the equivalent NLP4 with one fewer variable and one fewer constraint 
than NLP3: 

 2

maximize 

subject to / 1 for all 

1 for all .
j

k

k
k

j k jk
k s

jk
j

t

c t y j

y k
∈

∈

≤

=

∑

∑

∑
r

  (8) 

The objective function of NLP4 is unbounded in the null case, but not otherwise. Let 
2
jµ  and 2

kλ  be nonnegative Lagrange multipliers for the first and second sets of 
constraints. Both jµ and kλ are assumed to be positive if kj r∈ . The Lagrangian 
function to be maximized is 
 2 2 2( , ) ( ) /

k j

k k jk j j k jk
k j r j k s

L t y c t yλ µ
∈ ∈

≡ − +∑ ∑ ∑ ∑t y   

According to Everett’s Theorem (Everett, 1963), if we can solve the unconstrained 
problem of maximizing ( , )L t y , and if the results of that maximization satisfy the 
constraints of (8), then those results are also optimal for (8). Equating the derivative 
with respect to jky  to 0, we must have 2 2 2 2/j j k jk kc t yµ λ=  as long as kj r∈ . Since 

0kλ > , we can solve this to obtain /jk k j j ky y cµ λ= . Substituting this expression 
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for jky  into (8), P2’s problem is to   

 

maximize 

subject to  for all 

  for all .
j

k

k
k

j k k j
k s

k j j k
j

t

c t j

t c k

λ µ

µ λ

∈

∈

≤

=

∑

∑

∑
r

  (9) 

The variables of (9) are all nonnegative and include  and μ λ . The solution of (9) 
will not be unique because μ  and λ  can both be multiplied by a common positive 
factor without changing the validity of any of the constraints. Furthermore, except in 
the null case, the unbounded solution where μ  and λ  are both 0 will not meet the 
requirements of Everett’s theorem. If the case is not null, both difficulties can be 
avoided by adding an additional constraint (e.g. 1 1µ = ) .  
 The equalities in (9) determine kλ . Substituting this expression into the 
inequalities of (9) and letting j j jw cµ≡ , we finally obtain NLP5, our simplest 
mathematical program for P2: 

 2

maximize 

subject to  for all 
j k

k
k

j k i j
k s i r

t

c t w w j
∈ ∈

≤

∑

∑ ∑
  (10) 

NLP5 is a bilinear program with one variable for every arc (w) , one variable for 
every path (t), and one constraint for every arc. As in (9), an additional constraint, 
perhaps 1 1w = , can be inserted to eliminate the possibility that the optimal  solution 
includes 0=w . Given the solution of NLP5, the game value is 1 / k

k
v t= ∑  and the 

NLP3 variables as originally expressed in (7) are k kp vt=  and /
k

jk j i
i r

y w w
∈

= ∑  for

jk s∈ . Note that, given a specific arc j and the set of paths js that include that arc, 
P2’s optimal allocation does not depend on k as long as jk s∈ . That property is 
exemplified in the columns of Table 1 below.   
   
TWO EXAMPLES 

Example 1: The case where there is a unique path has been considered earlier, and 
might be called the “series” case. Here we consider the “parallel” case where every 
arc is by itself a path between s and t. In the parallel case the solution of NLP1 is 

2 2 1( )j
j

Z c− −= ∑  and /j ju Z c=  on each arc. Thus P1 can guarantee 2Z  by making 

jx  inversely proportional to 2
jc  on each arc. Note that P1 puts most of his effort on 

the least vulnerable arcs, exactly contrary to his behavior in the series case. The 
solution of NLP5 (all of the w-variables cancel) has 2

j jt c−=  and of course the same 
game value. P2 selects an arc with a probability inversely proportional to 2

jc  and 



 8 

then puts all of his clearance capacity on that arc. P2’s preference for arcs with low 
vulnerability makes intuitive sense, and partially explains P1’s similar preference— 
it makes sense that P1 should emphasize the arcs that P2 is most likely to use.  
 
Example 2: Figure 1 shows a bridge network with five numbered arcs where there 
are four paths from s to t, those being in order (12,135,45,432) . If the data for the 
arcs is (2,5,1,3,4)=c , then * 2k =   and ( *) 4 1 16 21A k = + + = . P1 can solve NLP2 
to discover that the best x is (0.143,0.312,0.006,0.077,0.462) , which guarantees 

12.608v = . If P1 uses x, P2 will find that all paths are equally attractive except for 
the last, which should be avoided. P2 can guarantee that the payoff will not exceed 
A(k*) by choosing (4,0,1,0,16) / 21=y , but can do better with the mixed strategy 
found by NLP5. This strategy has (0.47,0.20,0.33,0)=p  and conditional 
allocations y as shown in Table 1.  The last row of that table is labelled “N/A” 
because P2 never uses that row. The reader desirous of seeing further detail or 
exploring the impact of changes in c can experiment with the Excel ™ (Microsoft, 
2008) workbook NetRatioGame.xlsx, which uses Solver to solve NLP2 and NLP5. 
That workbook can be downloaded from http://faculty.nps.edu/awashburn/ . 
 

 
Figure 1: Five numbered arcs form a bridge network 

 
 

  Table 1: P2's optimal allocations in example 2 as a function of path (row) and arc (column) 

 1 2 3 4 5 
12 0.2129 0.7871       
135 0.2129   0.0218   0.7653 
45       0.2347 0.7653 
432 N/A N/A N/A N/A N/A 

 
 
 
APPLICABILITY TO IED WARFARE 

The essential features of (1) are that it is a sum over the arcs of a network path, 
and that each term of the sum is proportional to the ratio of the two sides’ 
allocations. While there may be applications that do not involve IEDs, the 
motivating application is IED warfare. In this section we discuss various objections 
that might be made to the idea of applying a game based on (1) to that application. 

In the queuing derivation made earlier, the meaning of (1) is “average number of 

http://faculty.nps.edu/awashburn/
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mines encountered on the selected path”. It might be objected that the fate of logistic 
traffic will more realistically depend on whether the number of mines encountered is 
0 (survival) or not (casualty). One response to this objection is that the model is best 
applied in situations where each mine encountered is only effective with some 
unknown but small probability Q. In that case the number of effective mines 
encountered is approximately a Poisson random variable and the probability of 
encountering at least one of them is therefore approximately ( , )kQA x y , the same 
small number as the mean number encountered. Since Q is tactically irrelevant, this 
leads to the game as studied above. The same conclusion can be reached if the ratio 

/X Y  is small, or if the vulnerability vector c is small.  
Another objection is that the logistic traffic itself will remove some of the mines. 

Here the reply is that the clearance effect of logistic traffic must be small compared 
to that of deliberate mine clearance.  

A third objection is that the source s and destination t may not be known to P1, 
and possibly not even to P2 — logistic traffic must sometimes travel between an 
unpredictable variety of sources and destinations. If this is the case then a 
generalized model is needed, perhaps one where a matrix of probabilities that 
determines s and t is given. The current model is a special case.  

The most serious objection has to do with the information systems employed by 
the two sides. IED warfare is extended in time, and both sides can usually observe 
the actions of the other throughout that time, more or less. It does P2 little good to 
observe P1’s choice of x, since P1 has no motivation to keep it secret. However, P2 
will have difficulty keeping his own choice of y secret over any significant period, 
and P1 can capitalize on knowing it. If P2 must inevitably reveal y through his 
observable clearance actions, then (as pointed out earlier) P1 can guarantee A(k*) by 
simply copying P2’s allocation. If A(k*) is significantly greater than v, as it is in the 
above examples and typically will be when there are many paths from s to t, P2 will 
be tempted to clear mines “at the last minute” in order to accomplish his clearance 
before P1 is able to react. This type of clearance is not well modelled as a time-
homogeneous Poisson process. In such circumstances the game value derived here 
should be thought of as a lower bound on what P2 might accomplish through 
secrecy, with A(k*) being what P2 should expect if secrecy is not achievable.   
 
SUMMARY 

We have defined a ratio game played on a network where both sides make 
continuous allocations to the arcs. The game has a solution, and either side can find 
its value and his own optimal strategy by solving a nonlinear program. The 
maximizer P1 finds his pure strategy by solving NLP2, and the minimizer P2 finds 
his mixed strategy by solving NLP5. Depending on circumstances, the game may or 
may not be applicable to IED warfare.  
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