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be known, then only a total of ten parameters need to be estimated as part
of the adaptation process. Of course, the necessity of averaging on-off
gas-jet action presents well-known problems of its own (e.g., [3]).

In addition, the lightness requirements in space components may also
present difficulties linked to the presence of low-frequency structural
modes (see, e.g., [12]). In particular, while the previous discussion can be
extended easily to control the rigid dynamics of manipulators mounted on
the spacecraft, by applying the results of Slotine and Li [18] and this paper
using the ‘‘virtual manipulator’’ formalism of Vafa and Dubowsky [22] or
the approach of Alexander and Cannon [1], practical implementation will
require flexibility issues to be explicitly addressed. In many space
robotics applications, however, distributed flexibility effects can be
adequately modeled using simple lumped approximations, which can in
turn be easily handled using, e.g., singularly perturbed versions [11] of
the original rigid-model adaptive control results.
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On Not Losing Track
ALAN WASHBURN

Abstract—This paper uses tracking time as an explicit objective in
designing tracking algorithms that function in clutter. Implications of
using “time to the first mistake” as a measure of tracking time are
explored. An optimal tracker is derived for a special circumstance where
there is clutter, but no measurement error, and is compared to a tracker
based on the Maximum Likelihood principle.

1. INTRODUCTION

A tracker is given the position of a target at time 0, and then asked
to track the target in the presence of false alarms (clutter) that occur
randomly in space and time. Sooner or later, some seductive sequence of
false alarms will lead the tracker astray, thus ending the tracking period.
The phenomenon of “losing the bubble™ is inevitable, but nonetheless
hard to quantify. There may be short periods of confusion before track
is lost irrevocably, and accuracy is involved. The proper definitions of
the four italicized words are not obvious, so it should come as no surprise
that there is no widely accepted scalar measure of effectiveness (MOE)
for tracking in the presence of false alarms.

The lack of an MOE has not inhibited the development of tracking
algorithms that function in the presence of false alarms and/or multiple
targets. Bar-Shalom [1] gives a good survey, or see the more recent
book by Bar-Shalom and Fortmann [2]. Most algorithms are founded
on the Maximum Likelihood principle. Considerable testing has been
done on real and simulated data, but no tracking algorithm has yet been
shown to actually be optimal in the sense of maximizing some specific
MOE when clutter is present. This state of affairs is not unreasonable,
given the usual robustness of statistical procedures based on the Maxi-
mum Likelihood principle. Still, it should be of interest to compare the
Maximum Likelihood procedure to one that is actually optimal in some
well-defined sense, even if the difficulty of deriving optimal procedures
forces the comparison to be done in a highly simplified setting. Making
such a comparison is our main object here. In Section II, the setting is
defined and an optimal tracker (MT) is derived. The MT is then com-
pared to the corresponding Maximum Likelihood tracker SR1 in Section
IIL

II. TRE MEMORYLEsS TRACKER

The memoryless tracker (MT) is presented with a sequence of mea-
surements, one at a time, each of which is either a two-dimensional target
contact or a clutter point. It can remember only the most recently ac-
cepted measurement, and must accept or reject each measurement as it
occurs. Tracking begins at time 0 with MT assuming correctly that the
target is at the origin, and ends at the time when MT makes its first
mistake. Fig. 1 shows an illustration of the process where tracking ends
at time 11, the time of the first target contact not included in the track.
Inclusion of the clutter point at time 18 would also be a mistake, but not
the first. The objective is to design a tracker that maximizes the average
tracking time. The motion of the target is assumed to be diffusion with-
out drift in two dimensions, with target contacts at times that constitute a
Poisson process. Clutter is assumed to be a space-time Poisson process,
the natural model for events happening with perfect randomness in space
and time [3]. The important parameters and their physical units are

A\ = Poisson rate of target contacts (time™')
n = Poisson clutter rate (length—2-time™")
x = diffusion constant (length? -time™").

Since there are three parameters and two physical dimensions, a single
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Fig. 1. Iilustration of data association.

dimensionless parameter will suffice. It is convenient to let that parameter
be

a = N/y/27nk = dimensionless contact rate.

Given that tracking time ends if clutter is ever accepted, MT might
as well make decisions conditioned on the assumption that all previously
accepted measurements are target contacts. Since diffusion is a Markov
process, with the current definition of tracking time MT actually has
no need for memory because all accepted contacts other than the last
are valueless for forecasting. Furthermore, the acceptance decision need
depend only on the time ¢ since the last acceptance and the distance of the
latest measurement from the last acceptance. Let the latest measurement
be accepted if and only if that distance is smaller than r(¢). The function
r(r) completely defines the tracker; it is this “window” function that
must be chosen optimally to maximize the expected tracking time.

Beginning at time O or just after any accepted target contact, define
the random variables

A = time to the next false alarm in the window

C =time to the next target contact

T = additional tracking time starting from the referenced time.
Then

A ifA<C

T={C if A > C and no acceptance at C H

C+T’

where T is independent of, but has the same distribution as, 7.

Let f(x) be the probability density function of A, let p(¢) be the
probability of accepting a target contact at £, and let 7 = E(T) = E(T")
where E( -) is the expected value operator. Taking expectations on both
sides of (1),

C oc
r=FE (/ xf(x)dx +(C +7p(C))/ f(x)dx) . 2)
0 c

Let q(t) = flx f(x)dx. Since [OC xf(x)dx +C fcoo fx)dx =
foC q(x)dx (integration by parts), (2) can be rearranged to obtain

C
E (/ q(x)dx)
o Jo

T 1-E(pO)q(C))

Since the rate at which false alarms occur in the window is 172 (t),
the average number of such occurrences up to time ¢ is

if A > C and acceptance at C

3

Y()\I)Eﬂ'n/ r’(u)du. 4)
0

Since the number of false alarms in the window is a Poisson process,

q(t) = exp (=Y (\1)). ®)]

Since the position of the target at time f relative to its position at time
0 is bivariate normal with mean zero and variance «7 in each direction,

27 rity 1
p) :/ /
0 o 2wkt

=1—exp (=r*(t)/(2«t)) (6)

where the second equality follows easily after substituting u = x* /2«¢.

exp (—x?/2kt)x dx db
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Using (5), (6), and the fact that C is an exponential random variable
with mean 1/\, (3) can be written

N =A/(1-B) (N
where
o0 {
A= )\/ N exp (—N\t)dt / exp (=Y (\v))dv
JO JOo
o<
:/ exp (—x — Y (x))dx (8)
0
and
B = / exp (—x =Y (x){l —exp (-Z(x))}dx 9
0
where
Z(x) =Y/ (x)/x. (10)

The second equality in (8) can be obtained through integration by parts,
and Z(A?) is the same thing as the argument of the exponential in (6).

For any specific function Y (- ), substitution into (8), (10), (9), and
then (7) will produce a normalized tracking time A7. Since choosing
Y () is the same thing as choosing the window function, the problem
now is to choose Y ( - ) to maximize A /(1— B) where A and B are each of
the form fooo F(Y(x),Y'(x), x)dx,and A >0 and 0 < B < 1 for all
Y (). Suppose that the maximum value of KA + B is 1 for some number
K. Then it follows that the maximum value of 4 /(1 — B) must be 1/K
since KA +B < 1 if and only if 4/(1 — B) < 1/K. Since maximization
of expressions like KA + B is a problem in optimal control theory,
one method for maximizing A4 /(1 — B) is to alternate the operations
“maximize KA+B” and “let K = (1-B)/A" until convergence occurs.
In practice, the maximization operation need be repeated only about
three times [6]. For o = 4, the MT curve in Fig. 2 shows the optimal
Y’/ (x) versus x or, equivalently, wnr2(¢) versus A (the SR1 curve will be
discussed later). A complete graph of Y/ (x) for MT when a = 4 would
show it rising to a maximum of 1.125 at x = 38 and then decreasing to
0 at x = 87. If MT for some reason accepted no measurement over a
time period of 87/, then it would never accept another measurement.
However, the probability of having no target contact over such a long
period is only exp (—87), so the chances of “loss of track by stalling”
are remote.

II. The MaxiMmum LikeLioop PRINCIPLE

Let A be the Poisson rate per unit time of target contacts and let 5 be
the Poisson rate per unit time per unit measurement space of false alarms.
Assume that the state of the target evolves according to a Gauss-Markov
process and each measurement is a linear function of the state corrupted
by noise, i.e., make the assumptions that permit Kalman filtering in
the absence of false alarms. Let 7 be a subset of the measurements, 7
the complement of 7, and let 6 and A be infinitesimal units of time and
measurement space, respectively, as in [4]. Then, using the fact that the
innovations »; at each measurement are normal and independent [5], the
infinitesimal probability of the measurements, given that T is the set of

target contacts, is
l —1
<~ 3 viS; 'y ,)

where S is the covariance of the innovation »; at measurement j un-
der the assumption that T is the target’s track, s; is the square root
of the determinant of 2xS;, and v; is the transpose of »;. Letting
M= H/efur (n8A), this can also be written

1 ~
(*E V;Sj 'vj>

(1n

| EES

J€T

A
Pr = H (NO) g exp
JET .

M/Pr =]y exp (12)

JET

where y; = 7s; /\.
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Finally, let Dy =In(M/Pr) and d; =Iny; + 3 »/S; ' v;. Then

Dr =% d,.

JET

(13)

The track with the smallest value of Dy is most likely in the sense that
it maximizes Pr. Note that Dy can be negative, and also that Dy =0
if T is empty.

Now consider the tracking situation of Section II, letting T consist of
measurements ---Z;, Z;,--- made at times ---, 4, ; -+, With £; > 4.
Also, let 7o be the initial target location, and let £, = 0. Then, for j # 0,

Vi =25~ T
S; =«(t; —t)I, (14)
and
_ 2wk(t; — ;) lzj —zi
dj=In ( x ) Yo% )

where I is a 2 x 2 identity matrix and | | denotes Euclidean distance. d;
depends on only two of the measurements: the jth and the one previous to
the jth in 7. Therefore, without reference to 7, every two measurements
have a possibly negative “‘distance” from the earlier to the later, with the
distance d;; from i to j being the formula for d; in (14). Furthermore,
the most likely track is the shortest route leaving the origin that preserves
the order of the measurement times. Imposing the constraint that each
measurement must be irrevocably accepted or rejected as it occurs, one
arrives at the SR1 tracker (SR1 for “‘shortest route with 1 remembered
measurement”). If a new measurement is separated from the most re-
cently accepted one by distance r and time #, then from (14), SR1 will
accept it if and only if d < O where

d =1In Qmqxt /N) + r* /(2«t). (15)

Let

r2(t) = 2xt In (N/2mxt)) = 2t In (& /(ND)). (16)
Then d < 0 if and only if r < r(¢), so SR1 functions very much like MT,
except that the window function r(?) is different. Fig. 2 compares the two
window functions. Both functions permit the possibility of ‘‘stalling,”
but SRI1 stalls more quickly than MT, and in general is more reluctant
to accept measurements. The normalized tracking time A7 for SRI is
shown in Fig. 3 as the lowest of four curves. The normalized tracking
time for MT is not shown because it is only slightly larger than the time
for SR1. When « = 4, for example, the normalized times for SR1 and
MT are 5.42 and 5.46, respectively. This may seem remarkable in view
of the great difference shown in Fig. 2, but the fact is that the window
function is very seldom employed for the large arguments where MT
and SR1 differ substantially. The SR1 tracker is nearly optimal in the
sense of having a small average time to the first mistake, in spite of not
having been designed with that specific objective in mind. Once again,
the Maximum Likelihood principle has proved robust.
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IV. THe Errects oF MEMORY

It is easy enough to generalize SR1 to take advantage of tracker mem-
ory. Specifically, the SRN tracker remembers N candidate tracks be-
tween measurements. After each measurement, SRN constructs additional
tracks by extension of each candidate to include the measurement, ranks
the 2N tracks in order of distance from the origin, preferring new (ex-
tended) tracks to the old ones in case of ties, and remembers only the N
shortest tracks. Actually, to make the required comparisons, SRN only
needs to remember the distance of each track from the origin, plus the
time and location of the terminus for each track. Thus, a total of four
numbers are associated with each track in two dimensions.

Since SR1 is nearly optimal in the sense of maximizing the average
time to the first mistake, it is tempting to study SRN with respect to the
same MOE. However, ‘‘time to the first mistake’’ can be defined in more
than one way when multiple tracks are remembered. Define the time to
the first mistake in the strict sense (SN) to be the first time when the
shortest track in storage is not the exact track of the target, or in the
wide sense (W N) to be the first time when the exact track of the target
is not stored. The strict definition might be thought natural if at some
time a decision had to be taken that would succeed if and only if the
tracker’s best guess of the target track were actually correct. The wide
definition would be more appropriate if the action (which might begin
with the employment of other sensors to resolve the ambiguity) could be
applied to all N stored tracks simultaneously. The choice of definition
turns out to be crucial since the wide times benefit from memory, while
the strict times are dominated by S1.

Theorem 1: In every instance, SN < S1.

Proof: Let D(i) be the shortest distance from the origin to mea-
surement i, with the distance between measurements being as defined
in Section III. Also, let i be the terminus of the last correct track of
SR1, and let j be the index of the measurement that causes SR1’s first
mistake. If SRN has not already made a mistake before ¢;, then SRN
must store the same track as SR1 just before the measurement at ¢;.
Suppose that SR1’s mistake is to include a false alarm. Then d;; < 0;
consequently, D(j) < D(i), and therefore the shortest track stored by
SRN after processing the jth measurement cannot be the correct one that
ends at i (recall that SRN prefers the new track in case of equality). If
SR1’s mistake is to not include a target contact, then d;; > 0; conse-
quently, D(j) > D(i), and therefore the correct path ending at j will not
be the shortest one stored by SRN after processing the jth measurement.
Therefore, regardless of the mistake made by SR1, SN < S1. 0

Since SN < S1 in every instance, it follows that E(SN) < E(S1). If
“mistake” is to be interpreted strictly, then the best of the SRN class is
SR1. If E(SN) is to be used as an MOE, then memory is useless.

Fig. 3 shows normalized wide-sense tracking time AE(WN) for
1 < N <4. The curves for N =2, 3, and 4 were obtained by simula-
tion, with each point being based on 10000 replications. The simulation
curve for N = 1 agrees with the results of numerically integrating (8)
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and (9). It should be apparent that there is a large payoff for being able to
remember a second track, with a reduced benefit for even more memory.
With the wide-sense definition of tracking time, memory is beneficial.

V. SumMMARrY

There are two implications here for tracker design. Use of the Max-
imum Likelihood principle has been reinforced through the observation
that SR1 is almost as good as MT in a problem where MT is optimal.
On the other hand, the benefits of tracker memory seem hard to quantify
without considering the ultimate application of the tracker.
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Optimal Flow Control of Multiclass Queneing Networks
with Partial Information

MAN-TUNG T. HSIAO anp AUREL A. LAZAR

Abstract— Structural results as well as explicit solutions for the opti-
mal flow control problem of multiclass queueing networks with decen-
tralized information are given. Two criteria are investigated: the network
(respectively, user) optimization criterion maximizes the average network
(user) throughput subject to an average network (user) time delay con-
straint. It is shown that these problems can be analyzed in terms of an
equivalent network by using the generalized Norton’s equivalent. The
structure of the network (user) optimization problem is exploited to
obtain further structural results, viz. a representation (separation) the-
orem. The optimal flow control under both criteria is solved using a
linear programming formulation. The structure of the optimal control
is shown to be of a window type in both cases. For load balanced net-
works, the optimal flow control is found explicitly in terms of the given
system parameters.

I. INTRODUCTION

Optimal flow control refers to the class of problems where a strategy
which maximizes some optimization criterion is to be chosen in order
to prevent degradation of services in computer communication networks.
The choice of the optimization criterion depends on the particular appli-
cation. In practice, the average throughput and the average time delay
are two quantities of interest in considering the performance of a com-
puter network and its underlying protocol. Relatively little work has been
done in the area of decentralized control within the framework of gen-
eral queueing networks and Markov processes [6], [7], [10], [17], [19].
While the delay shared information pattern models used in [10] and [19]
are appropriate for multiple-access broadcast networks, it is more natural
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to consider only local information with no sharing in data communication
and packet-switched networks [5], [6], [7], [15]. Beutler and Ross pro-
vided a general treatment of constrained semi-Markov decision processes
{31, [18].

In this note, we consider the problem of preventing throughput degra-
dation by controlling the input rate into the network. A multiclass queue-
ing network model is employed for describing the packet-switched net-
work. When a new user logs onto the network, a session is set up. The
packets of this new user are distinguished from those of other existing
source—destination pairs. The latter is modeled as an interfering traffic
flow entering and leaving the network at arbitrary nodes. An optimal flow
control strategy is to be derived for this new user based on the existing
load in the system. The information available to the controller is local,
i.e., the flow generated by interfering traffic is not directly observable.
The objective is to maximize the average throughput subject to a con-
straint on the average time delay. Two measures are investigated. One
is the average over all user packets in the network, and the other is the
average over the user packets under flow control.

II. Tve MopgL

Consider a datagram or a virtual-circuit packet switching network
(PSN). There are S switching nodes, each with negligible nodal process-
ing delays and no nodal blocking (i.e., there are ample buffers available).
The nodes are connected by M unidirectional links. The destination of a
packet, upon completion of service at a station, is determined by a fixed
probability distribution. It can be routed to another node within the net-
work or it can leave the network entirely with certain probabilities. Two
classes of packets are distinguished. One class belongs to a particular
source-destination pair, for which the optimal flow control mechanism is
to be found. It is assumed that there is a maximum of N, packets where
N is an arbitrarily large number.! The other class models the interfer-
ing traffic, and is composed of packets from all other source—destination
pairs sharing the network. It is assumed that there is a maximum of N,
interfering packets with i.i.d. exponential interarrival times. Packets are
acknowledged individually by an end-to-end protocol. Acknowledgments
may be piggybacked or standalone. It is assumed that negligible delay
is incurred in returning an acknowledgment, partly because it is much
shorter than data messages, and partly because it may have higher prior-
ity. (This assumption, however, can easily be relaxed and incorporated
into our model.) The source under flow control feeds into a controller
which determines the rate of allowing packets into the network based on
the number of unacknowledged messages.

A. Queueing Model

The PSN described above is modeled using a queueing network. Each
link is considered as a first-come first-served (FCFS) service station with
exponential service rate u', 1 <i < M. The interfering traffic is modeled
as a conditional Poissonian stream which enters the network at each of
the nodes. Their routing through the network is probabilistic and may,
in general, be different from the routing of the flow-controlled packets.
The service times of all packets are assumed to be chosen independently
at each stage (see, e.g., [11]). The queueing network model for our flow
control problem is shown in Fig. 1.

This model consists of a network of M FCFS exponential stations with
class independent service rates p/, 1 <i < M. Two classes of packets
enter the network. Class 1 (interfering traffic) arrives at a conditional
Poisson rate §. Class 2, modeling the source-destination traffic under
flow control, enters the network at rate M, depending on &, the number
of class 2 packets already in the network. The routing is probabilistic.
Class 1 packets enter the network through station i with probability 7' .
Upon completion of service at station i, they move to station j with
probability 7'"/. These packets leave the network from station i with
probability r'* = 1 — 3" /. Similarly, the routing probabilities for
class 2 packets are r*/. They enter station i from the bottom queue with
probability 7 and join the bottom queue after completion of service at
station i with probability /" = 1*21‘,’:1 %I The bottom queue models

! For sufficiently large N, the optimal control is independent of N;.
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