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ABSTRACT 

This report examines two forms of decoy that may arise in warfare involving 
improvised explosive devices (IEDs).  The first is a fake IED, which costs less than a real 
IED and wastes the time of route-clearing patrols that investigate it.  The second is an 
understaffed surveillance tower, which may provide some deterrence to insurgent 
activities, as from the outside the tower appears to be fully operational.  For each form of 
decoy, we formulate mathematical models to study the optimal strategies for both the 
insurgents and the government forces.  We use numerical examples to demonstrate our 
models, and to point out the situations when these decoys may play a significant role in 
IED warfare. 
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1. INTRODUCTION 

Our subject is prolonged warfare involving Improvised Explosive Devices (IEDs).  
There are two sides, Blue and Red, with Blue (usually government forces) trying to 
maintain regional stability and Red (usually insurgents) using IEDs to disrupt and 
undermine Blue’s effort.  This report examines two forms of decoy that may arise in IED 
warfare.  The first is the use of fake IEDs by Red in order to delay Blue’s route clearance 
patrols, and the second is the use of understaffed surveillance towers by Blue to deter 
Red’s IED attacks. 

Although decoys are widely used and can, at times, be very effective, there is 
surprisingly little academic research to mathematically analyze their effectiveness in 
combat models.  Hershaft (1968) analyzed how imperfect decoys affect the survival 
probability, and Lu, Yang, and Yang (2008) conducted a cost benefit analysis.  Washburn 
(2005) has studied the effects of decoys in decreasing the effectiveness of antiballistic 
missiles.  In search theory, there are studies on imperfect classification of targets (false 
positive and false negative); for example, see Stone (2004) and Kress, Lin, and 
Szechtman (2008).  However, the false positive is technically not a result of decoys, 
because the neutral targets are random noise in the field, as opposed to fake targets 
deployed purposely to mislead the opponent.  All these earlier works focus on single-
person decision models by assuming one can predict the enemy’s behavior. 

In this report, we use mathematical models to analyze two forms of decoy that 
may arise in IED warfare.  In Section 2, we investigate Red’s potential use of objects that 
appear to be IEDs, but which are actually nonfunctional fakes.  Red’s idea is that Blue’s 
IED clearance forces will be delayed just as much by a fake IED as by a real one, and that 
fake IEDs are much easier to produce and deploy.  We consider questions of how Red’s 
fake and real IEDs and Blue’s clearance forces should be allocated to a network of roads, 
with Blue’s object being to minimize the total rate at which IEDs cause damage.  We find 
an algorithm for optimizing Blue’s allocations in the face of known Red tactics, and 
suggest how it might be employed in a long contest, where Blue is given a sequence of 
opportunities to adjust his allocations.  We also consider the cost/effectiveness question 
from Red’s standpoint.  Qualitatively speaking, we find that Red’s use of fakes should 
either be null or large, with intermediate usage being unattractive from his standpoint.  
Thus, while systematic use of fake IEDs has not been observed so far in either Iraq or 
Afghanistan, the United States and its allies should remain alert to the possibility of 
suddenly encountering them in numbers large enough to strongly affect the efficiency of 
route clearance efforts. 

In Section 3, we consider a situation where Blue sets up two surveillance towers 
in two different locations, but does not have enough manpower to staff both towers.  
Although an understaffed surveillance tower has poor detection capability, it may still be 
able to deter Red’s insurgent activities, as long as Red does not know that the tower is 
understaffed.  We assume that Red gets a reward for each undetected attack, but incurs a 
penalty for each detected one.  Blue’s goal is to maintain peace and ideally to eliminate 
Red’s attacks altogether, so a detected attack is bad, while an undetected attack is worse.  
We study whether Blue can lower the region’s insurgent activities by switching its 
manpower between the two towers in a random manner.  We formulate the problem as a 
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two-person, non-zero-sum game.  Qualitatively speaking, we find that a dynamic 
allocation strategy is useful to Blue, unless Red’s penalty for a detected attack is small 
and Blue’s penalty for an undetected attack is huge.  As the Ground-Based Operational 
Surveillance Systems are being deployed to Iraq and Afghanistan, our findings may 
provide some guidance on how to operate these systems when the number of trained 
operators is limited. 

2. FAKE IMPROVISED EXPLOSIVE DEVICES 

Antitank mines are expensive, dangerous, and heavy.  If one anticipates that the 
main effect of such a mine will be to cause a delay while the mine is found and cleared, it 
will be tempting to occasionally substitute fake mines, which are cheap, safe, and light.  
This was, in fact, the case in World War Two (United States Department of War, 1942)—
a large fraction of the antitank “mines” employed in that war were actually fakes. 

The same issue is present in IED warfare where IEDs are employed over a long 
time period to disrupt transport on a road network.  The main counter to such warfare is 
to find and remove the IEDs using Route Clearance Patrols (RCPs) that are usually in 
short supply.  If the associated time delays are significant, it will be tempting to disrupt 
RCP operations by including some fake IEDs in the mix. 

Fake IEDs have, in fact, been occasionally employed by insurgents (hereafter 
“Red”) in recent warfare, albeit not for the simple purpose of delaying RCPs.  Red’s 
purpose instead is usually to enable a supplementary attack during the delay that ensues 
after the fake IED is discovered (United States Army, 2010).  There are no publicly 
available records recounting the use of fake IEDs in the same manner as the fake antitank 
mines of World War Two.  Perhaps one reason for this is that Red typically places IEDs 
on a road network that Red does not control, so that the main perceived “cost” of an IED 
is the cost of the emplacement itself, which does not depend on whether the IED is real or 
fake.  This situation could change if the materials for real IEDs become harder to acquire, 
or for other reasons.  In any case, it is important to understand the potential influence of 
fake IEDs on the efficiency of RCP operations.  The model described below has the 
purpose of enabling that understanding. 

The reader may wish to have available the Microsoft Excel ™ workbook 
IEDFake.xls, which can be downloaded from http://faculty.nps.edu/awashburn/ . 

 2.1 ASSUMPTIONS 

We model IED warfare as a prolonged contest between Red and Blue.  Blue 
convoys of various kinds attempt to use a road network, while Red attempts to interdict 
that traffic using IEDs.  Except for the additional feature of fake IEDs and the delays that 
they cause, we make the same assumptions about IED warfare as do Washburn and 
Ewing (2010), the essential ones being the following four: 
 

 Indefiniteness.  The battle is assumed to proceed indefinitely, with no 
time limit.  Every mine placed on a road will eventually be involved in an 
incident with some kind of Blue convoy, possibly an RCP convoy.  An 
“incident” by definition removes the mine, one way or another. 

http://faculty.nps.edu/awashburn/
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 Logistic Ineffectiveness.  Red’s efforts are assumed to have a negligible 
effect on Blue’s logistic operations.  While the damage done to Blue 
logistic convoys may be a significant issue for Blue, the convoys perform 
their logistic function regardless of damage.  When attacked by a mine, a 
Blue convoy simply continues with its mission, and may even be attacked 
on multiple occasions.  The analytical effect of this assumption is that, in 
quantifying the probability that a particular mine damages a particular 
Blue convoy, we will pay no attention to the possibility that other mines 
might have already damaged the convoy. 

 Independence.  The various types of Blue traffic and the Red process of 
placing mines on roads are all assumed to be time-homogeneous Poisson 
processes, with all Red processes being independent of all Blue processes, 
and with all processes of any color being independent of each other on any 
given segment.  While Red knows from experience the general levels of 
Blue traffic, he does not know the schedule of movements, so he cannot, 
for example, rush out and put an IED right in front of a Blue logistic 
convoy before the RCPs can get to it. 

 Scalar Damage.  We assume that all types of damage due to mines 
(vehicles lost, vehicles damaged, cargo lost, men killed, men wounded, 
and so on) can be put on one scale called “damage”.  Blue’s goal is to 
minimize it, and Red’s the opposite. 

 
To these four we add the assumptions that fake mines interact only with RCPs, 

and that every mine cleared by an RCP results in a time delay during which the RCP is 
not searching for additional IEDs.  This time delay is what Red is trying to exploit in 
using fake IEDs. 

 2.2. A 22 MODEL 

Although our ultimate goal is to optimally assign RCP effort to a road network, 
we first examine a single road segment.  Given assumption 2, extension to a network 
composed of multiple segments will not be difficult.  We will refer to “mines”, rather 
than IEDs, to emphasize the essential features of the object involved:  a mine does not 
move once planted, instead relying on its victim’s need to move, and destroys itself along 
with its intended victim.  The thing that distinguishes IED warfare from ordinary mine 
warfare is not that the explosive devices are improvised, but rather the assumptions listed 
above in Section 2.1. 

For simplicity, we consider only two types of Red mine, fake and real, and only 
two kinds of Blue traffic, logistic and RCP.  The unit of Blue traffic will be called a 
“convoy” for both types.  Red plants mines on the road segment at given rates (in Poisson 
processes, to be exact), and Blue traffic passes over the segment at given rates.  Logistic 
convoys are never delayed by mines of either type, but RCP convoys are delayed by any 
mine that they discover.  When a real mine is discovered by either type of traffic, it 
disappears, possibly causing damage in the process.  The parameters required to describe 
this are: 



  

( )  rate at which fake (real) mines are planted on the segment

 rate at which logistic convoys actuate each real mine on the segment

 base rate at which RCP convoys pass over the segment

( )  

F R

F R

x x

k

y

 





 probability that a fake (real) mine is discovered in one RCP pass

( )  delay to an RCP convoy when it discovers a fake (real) mine

( )  damage to a logistics (RCP) convoy when a real mine is dis
F R

L RCPd d

  
 covered

 
The discovery probabilities should be understood to apply to each interaction 

between a convoy and a mine.  Thus, if the segment happens to have five real mines on it 
when an RCP convoy passes over it, and if R = 1, then all five mines will be discovered 
by the convoy.  All five might also cause damage to the convoy, since none of them (by 
assumption) would halt it. 

Parameter y should be understood to be the base rate at which RCPs assigned to 
the segment pass over it, where by “base” we mean the rate not counting any delays 
caused by discovery.  The base rate has nothing to do with the numbers of mines present, 
and will be subject to natural constraints when multiple segments are considered later.  
The actual rate at which RCPs pass over the segment may be smaller than y due to delays 
caused by mine discovery and clearance; indeed, causing this decrease is the only 
function of fake mines, since fake mines do not damage anything. 

Let z be Blue’s total rate of loss, counting damage to both kinds of convoy.  Our 
object is to determine z as a function of the tactical allocations xF, xR, and y, as well as 
other parameters.  The fact that the actual RCP pass rate (as opposed to the base rate y) 
depends on xF and xR, as well as y, is a significant complication that forces us to first 
dispose of some special cases.  Some of these special cases are tactical nonsense for one 
side or the other, but we nonetheless include them for the sake of completeness.  Let 
h = yR. 

Case 1 (k = 0 and h = 0):  In this case, neither logistic nor RCP convoys are 
capable of discovering real mines.  If xR > 0, real mines will accumulate indefinitely on 
the road segment.  Regardless of whether that happens, we take z = 0. 

Case 2 (k > 0 and h = 0):  In this case, RCP convoys are ineffective at discovering 
real mines, but logistics convoys are effective.  Real mines do not accumulate, but 
nonetheless all real mines are discovered by logistics convoys, so z = xRdL. 

Case 3 (k = 0 and h > 0):  In this case, logistic convoys do not interact with mines 
of either type, so RCPs are the only effective traffic.  Every real mine will eventually be 
discovered by an RCP, so z = xRdRCP. 

Case 4 (k > 0 and h > 0):  This is the general case, where both types of convoy are 
present and interact with real mines.  Real mines will not accumulate because the logistic 
convoys alone will prevent it, but it is possible that fake mines will accumulate in spite of 
the efforts of the RCPs.  If this happens, RCPs will become completely saturated with 
fake mines, and will therefore be ineffective at removing real mines, so we are back to 
Case 2.  Thus, our first task is to determine when saturation happens. 

We suppose that RCP convoys come from a base somewhere, that each sortie 
from the base spends a total time T working on the segment, and that each pass over the 
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segment requires a transit time of , not counting any delays caused by mines.  The length 
of each sortie may be longer than T because of travel time getting to and from the 
segment, but need not concern us for the moment.  Let  be the rate at which sorties leave 
the base with a mission to clear mines on the subject segment.  According to Little’s Law, 
the average number of RCP convoys that are active on the segment is T.  The rate of 
RCP passages over the segment without consideration of clearance time delays is 
therefore /y T  .  Now, the average number of active RCP convoys required merely 

to deal with fake mines placed on the segment by Red is xFF.  Fake mines will therefore 
accumulate, unless F FT x   , which is equivalent to F Fy x   .  If this inequality is 

not true, we are back to Case 2, so we assume in the sequel that it holds.  It is a 
distinguishing feature of this problem that there is no point in Blue’s making y anything 
smaller than /F Fx  , since the effect is the same as assigning no RCPs at all to  

the segment. 
As long as saturation is avoided, we expect an equilibrium where the number of 

mines of each type on the road segment fluctuates with time in a stationary manner.  Let 
mF and mR be the average numbers of fake and real mines that are present on the segment.  
The average time  for an RCP convoy to make one pass of the segment is the travel 
time τ plus the average time required to deal with any mines discovered: 

 
 F F F R R Rm m          (2.1) 

 
Let /F F    be the dimensionless delay time for fake mines, and similarly let 

/R R   .  Also, let  

 / 1 F F F R R Rc m m         . (2.2) 

 
The actual rate of making RCP convoy passes is y/c, which is smaller than the 

nominal rate y because c exceeds 1.  The total rate at which each real mine is removed 
from the segment is the sum of the removal rates by the two types of Blue convoys:  

/Rk y c .  The word “each” is underlined to emphasize that every individual real mine 

on the segment is subject to removal at this rate; that is, the number of real mines on the 
segment is an M/M/ queue, and the average number of real mines present is therefore 
simply the ratio of the planting rate to the removal rate: 

 
/

R
R

R

x
m

k y c



. (2.3) 

A similar argument leads to  

 
/

F
F

F

x
m

y c
 , (2.4) 

where in (2.4) there is no term involving logistic convoys because logistic convoys do not 
interact with fake mines. 
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Substituting (2.3) and (2.4) into (2.2), we obtain a single equation in c: 

 1
/

F F F R R R

F R

x x
c c

y k y c

  
 

  



. (2.5) 

Parameter F cancels in (2.5), and therefore cannot affect the calculation of c.  
This usually makes sense—if you halve F, you will also double mF (the equilibrium 
number of fakes on the road), and therefore not affect FmF (the average number of fakes 
discovered by an RCP pass).  If F = 0, however, there will be no equilibrium.  The 
number of fakes will increase indefinitely as long as xF > 0, but RCP operations will not 
be affected because none of the fakes will be discovered.  One reasonable analytic 
alternative is to simply require that F > 0, since otherwise the use of fakes by Red is 
silly.  Another alternative would be to set F to 0 when F = 0, as doing so will eliminate 
the delaying effects of fakes.  In the following, we assume βF > 0. 

Let F Fx F  , R R Rx  , and / Rj k  .  We note that F y   by assumption, 

and also that R cannot be 0 in the current case.  Equation (2.5) can be expressed as  

 1 1F c
c

y
R

jc y

 
 

 
 

   . (2.6) 

The left-hand side of (2.6) is negative when c = 1, and strictly increases linearly 
with c.  The right-hand side is positive when c = 1, and is a concave, increasing function 
of c that is bounded above.  There is, therefore, exactly one solution of the equation for c, 
and it must exceed 1.  This solution can be found by reducing (2.6) to a quadratic 
equation.  Specifically, let ( )Fa j y   and ( )F Rb y j     .  Then the unique 

solution of (2.6) is 

 
2

2

4

y
c

b b a


 
. (2.7) 

Once c is determined, and are determined by (2.3) and (2.4), and finally 

the total loss rate is  
Rm Fm

 /R L R R RCPz km d y m d c  . (2.8) 

Let  

 = , and also 1
/ RCP

R

k jc
g

k y c jc y


 
g g  . (2.9) 

Then (2.8) can be expressed as 
 ( )R L RCP RCPz x gd g d  . (2.10) 

The number g is the fraction of real mines that are removed by logistics convoys, 
with the rest being removed by RCP convoys.  Only real mines cause damage, and (2.10) 
simply conditions on the cause of each real mine’s removal.  Parameter xF is not 
explicitly present in (2.10), but still influences z because it influences c. 

 2.3. PARAMETER QUANTIFICATION 

The model described above requires several parameters to be measured before it 
can be used to predict how damage depends on the tactical variables.  One might design a 
separate experiment to measure each of them.  To estimate F, for example, one might 
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deliberately plant some fake mines at locations known to the experimenter but not the 
RCP forces, and then observe how many fake mines are detected in repeated passes by 
RCP convoys.  However, other experiments of this type, especially those involving 
damage, might prove difficult, unrealistic, or expensive.  We therefore consider a scheme 
where the required parameters can be estimated from current operations. 

Assume that operations have been continuing at a stationary level over some 
interval of significant length (weeks or months), and that the following records about 
results have been kept: 

 
T = length of the time interval 
NL = number of real mines removed by logistics convoys 
NRCP = number of real mines removed by RCP convoys 
F = number of fake mines removed by RCP convoys 
DL = damage to logistic convoys caused by real mines 
DRCP = damage to RCP convoys caused by real mines 
TF = total time spent clearing fake mines by RCP convoys 
TR = total time spent clearing real mines by RCP convoys 
TS = total time spent searching by RCP convoys  
Y = base rate of RCP passes over the segment 
 
Note that it is the base rate of RCP passes that is assumed to be measured, rather 

than the actual rate.  We prefer not to deal with the actual rate on account of our 
suspicion that many RCP passes will actually be incomplete or redundant, as the RCP 
moves one way or another over the road segment.  The base rate would not be measured 
by the RCPs themselves, but rather by the commander who assigns RCPs to road 
segments.  The base rate is proportional to the rate at which RCP sorties are assigned to 
the road segment, with the same proportionality factor in all time intervals.  That factor 
involves the distance of the segment from the RCP base, the segment length and other 
parameters, but need not concern us for the moment. 

Based on these measurements, we desire to estimate the parameters required to 
predict total damage over a similar interval of time where everything except for the base 
rate of RCP passes remains constant.  The easy estimates are simple ratios of totals  
to trials: 

 

/

/

/

/

L L L

RCP RCP RCP

F F RCP

R R RCP

d D N

d D N

T N

T N




 
 

. (2.11) 

We assume, of course, that neither denominator is zero.  Avoidance of this 
possibility is the reason for our insistence that T should be of “significant length”. 

Since the operation is assumed stationary, the rate of removing mines is the same 
as the rate of planting them, so we have 

 
/

( )
F

R L RCP

x F T

/x N N T


 

. (2.12) 
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SThe total time spent on the segment by RCP convoys is F RT T T  , of which 

only TS is spent searching for mines.  The fraction of the time that RCP convoys have 
spent searching for mines is therefore 

 1/ /( )S F R SC T T T T    (2.13) 

We use an uppercase C here to emphasize that the ratio c cannot be expected to 
remain constant if the base level changes from Y to some other value, so C is not one of 
the fundamental parameters to be used in future predictions.  It is nonetheless useful to 
employ C in making other computations. 

We can also determine , the time required for an RCP convoy to make one 
complete pass of the road segment if distractions due to clearing mines are ignored.  
Since RCP convoys move only when they are searching for mines, the total number of 
RCP passes is , during which a total time of TS is spent moving and  
searching.  Therefore  

/YT C

 S F RT C T T T

YT YT
 S 
  . (2.14) 

While the numerator and denominator of (2.14) both depend on Y, the ratio does 
not.  An alternative way to estimate  would be to divide the segment length by the 
average RCP searching speed.  Our method avoids needing to know the latter. 

With  known, we can also estimate 

 
/

/
F F F

R R R

x

x

 
 

 
 

. (2.15) 

We can estimate the ratio j by solving (1.6) for j: 

 
( )

R

F

Y Y
j

Y C Y C




 
 

. (2.16) 

As in the case of , j does not actually depend on Y in spite of the appearance of Y 
in (2.16).  With j known, we are now prepared to predict the total loss rate as a function 
of y.  We first employ (2.7) to determine c, then (2.9) to determine g and gRCP, and finally 
(2.10) to determine z. 

An example of the above data estimation technique is shown on page “DataEst” 
of the workbook IEDFake.xls. 

 2.4. MULTIPLE ROAD SEGMENTS 

Now assume that a single Blue commander is responsible for all RCP actions on 
some road network; that he can generate RCP convoys from some base at a fixed rate b; 
and that the commander’s goal is to minimize total damage over the whole network.  
Introduce a subscript k for road segment, and assume for the moment that every RCP 
convoy works on exactly one segment.  If k is the rate at which sorties bound for 
segment k are generated, then the commander’s constraint is k

k

b  . 

Segments far from the base will be hard to clear because much of the assigned 
convoy’s time will be spent in travel to the segment.  Let Tk be the total time that a sortie 
bound for k can actually spend working on segment k, whether searching for mines or 
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k

clearing them, and let k be the time required to make one pass (not counting clearance 
delays) of segment k.  For example, sorties might be a standard four hours long, but Tk 
might be only two hours because of time spent in transit, and k might be one hour 
because segment k is 15 miles long and RCPs travel at 15 mph when not dealing with 
mines.  The implied base passage rate for RCPs on segment k is /k k ky T  .  Letting 

/k k Tk  , we can eliminate further reference to k and say that the Blue commander’s 

constraint is  
 k ky b  . (2.17) 

In the example, k would (1 hr)/(2 hr) = 0.5.  From Blue’s standpoint, small 
values of k are preferable to large ones. 

Other parameters such as dL can also depend on k, so we write dL,k for the average 
damage to a logistics convoy when it actuates a real mine on segment k, etc.  After 
applying (2.7), (2.9), and (2.10) for each segment, we finally obtain the total damage over 
all segments  

 , (2.18) , , ,(R k k L k RCP k RCP k
k

z x g d g d  , )

to be minimized by the Blue commander.  The minimization is potentially difficult, 
especially if the RCP convoys are not immune to damage, but having an analytical 
expression for total damage as a function of RCP allocation is still useful.  Small 
problems can be solved by exhaustion.  Page “TwoSeg” of IEDFake.xls finds the optimal 
distribution of RCP effort between two identical segments by simply plotting total 
damage versus the allocation to the first segment.  Figure 2.1 displays the resulting graph. 
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Figure 2.1:  Losses on two road segments as a function of the RCP allocation. 

Figure 2.1 shows that the best allocation is an even split between the two 
segments.  It also shows that the worst allocation is to use just enough RCP patrols on a 
segment so that they are saturated by clearing fakes, which accomplishes nothing for the 
chosen segment, while starving the other segment of patrols. 



Other problems, including problems where the segments are not identical, can be 
similarly solved by adjusting the input parameters on page “TwoSeg”. 
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b

The road “network” modeled above is merely a set of road segments, with the 
topological connections between the segments being irrelevant.  This is partly because of 
the assumption of logistic ineffectiveness, which implies that mines on any given 
segment do not need to worry about being robbed of opportunities by mines on other 
segments.  Another reason is our assumption that every RCP convoy works on exactly 
one segment, which ignores the possibility that an RCP convoy might do some clearance 
on segments that it must travel over, even if they are not assigned.  An alternative would 
be to introduce “missions” for RCP convoys indexed by m, and an additional array of 
input data Tkm = “average amount of time that an RCP convoy on mission m spends on 
segment k”.  If um is the rate of generating missions of type m, then these become the 
decision variables for Blue, with the constraint now being m

m

u  .  The intermediate 

variables yk are computed from  
 /k m km

m

y u T k , (2.19) 

and z is computed as in (2.18).  This is still a potentially difficult nonlinear minimization 
problem, but no more so than the problem with direct assignments of sorties to segments.  
The essential feature of both is that Blue’s constraint set is a collection of  
linear inequalities. 

 2.5. GAMING ASPECTS 

Parameters xF and xR have so far been treated as known inputs that can be 
measured in one period and successfully extrapolated to the next.  One of our goals, 
however, is to describe circumstances where the introduction of fake IEDs can be 
expected, and to do that we need to introduce some flexibility into Red’s strategy.  
Therefore, we now suppose that Red has a budget b measured in units of what real IEDs 
cost, and that fake IEDs cost only f on that scale, where 0 < f < 1.  Red can divide his 
budget as he wishes between real and fake IEDs; that is, he can have any (xF, xR) pair he 
wishes as long as R Fx fx b  . 

Figure 2.2 shows losses on a segment in an example where f = 1/4.  This is the 
same example considered in Section 2.4, except that (xF, xR) is now controllable, and each 
point on the curve has been calculated for a specific budget division.  The figure shows 
that the best option for Red is to spend half of his budget on fakes.  This is the amount 
required to overwhelm the RCP forces, which end up doing nothing but fake clearance.  
The rest of Red’s budget is spent on real IEDs, all of which engage logistic traffic and 
damage some of it.  The presence of the RCP forces is in effect a tax that Red must pay in 
order to employ his real IEDs.  Note that the curve ultimately decreases, which should be 
expected because additional fakes accomplish nothing once RCP saturation occurs, and 
also note that the curve is convex before the RCP saturation point—the only competitor 
to saturation is to use no fakes at all.  Indeed, if f is increased to 1/3, Red ignores fakes 
and uses only real IEDs.  We should not conclude from this that there is anything special 
about fractions like 1/4 and 1/3, which depend on other parameters that have been 
arbitrarily assigned.  However, the convexity of the curve is perhaps significant.  If fake 



IEDs suddenly appear on the battlefield, it may be in quantities large enough to seriously 
hamper RCP forces.  The appearance of fakes could make a significant difference—the 
damage level when fakes are used optimally (0.10) is significantly higher than the 
damage without fakes (0.08).  Sheet “TwoSegGame” of IEDFake.xls performs all of 
these calculations, and the reader is, of course, free to change the green inputs to see the 
effect on tactics and outcome. 
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Figure 2.2:  Damage on a segment as a function of how Red splits his budget 
between fake and real IEDs. 

New issues arise when there are multiple segments.  The most favorable case for 
Red is when he can freely divide his budget over the segments in the knowledge of 
Blue’s RCP allocations, possibly using different fake/real divisions in different segments.  
In the same example considered above, but with two identical segments, Blue’s best 
option is to split his RCP forces evenly.  The damage level will then be 0.10 if Red splits 
his budget evenly, but Red would be ill-advised to do that.  The damage level can be 
made as high as 0.15 if Red spends the entirety of his budget on one of the two segments, 
ignoring the other.  On the one segment that he attacks, Red employs sufficient fakes to 
saturate the RCP forces, together with real IEDs that are in no danger of being cleared.  
These claims can be verified using IEDFake.xls. 

Of course, once Blue observes that Red’s fake IEDs have saturated his RCP 
forces, he can be expected to change the distribution of his RCP forces, or even, if the 
network permits, change the routing of logistic traffic.  A multistage game results where 
each side is continually adapting to the actions of the other.  The advantage can be 
expected to accrue to the side with the best information system.  A quantitative analysis 
of this situation will be the object of a future study. 

3. DECOY SURVEILLANCE TOWERS 

The Ground-Based Operational Surveillance System (G-BOSS) is being deployed 
to Iraq and Afghanistan to provide persistent surveillance for the U.S.-led coalition 
forces.  The G-BOSS consists of a tower that is about 100 feet tall, with two infrared 
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cameras on the top.  The cameras feed real-time videos to a control room, where the 
operators monitor the tower’s surroundings through computer screens.  Because the 
operators sit inside a control room, from the outside it is almost impossible to tell whether 
there is indeed an operator sitting inside.  A research question arises naturally:  When the 
coalition forces are short of manpower, does an understaffed surveillance tower provide 
any deterrence to insurgency? 

If a surveillance tower is not staffed for a prolonged period of time, then sooner or 
later the insurgents will realize it, perhaps by spying on the coalition forces’ operations, 
by talking to people who work for the coalition forces, or by probing the surveillance 
system in some way.  If, on the other hand, the surveillance tower is understaffed only 
intermittently, then it may be difficult for the insurgents to know the tower’s surveillance 
capability at any given time.  The purpose of this section is to study the possible 
deterrence effect provided by understaffed surveillance towers. 

 3.1. A MODEL WITH TWO SURVEILLANCE TOWERS 

Consider a situation where Blue has established military bases in two towns.  
Blue’s goal is to maintain peace and eliminate insurgent activities in these two towns.  
Insurgent activities include shooting, hostage taking, planting IEDs, etc.  From now on, 
we will refer insurgent activities as attacks for brevity.  Blue has one surveillance tower 
set up in each base, but Blue cannot detect all attacks in both towns at all times due to 
lack of resources (manpower, equipment, etc.).  Denote by s ( s  2 ) the total resource 
available to Blue, such that Blue can allocate detection probability ip  to tower i , as long 

as    and , for p
1
 p

2
 s 0 1ip  1,2i  .  The problem facing Blue is how to allocate s 

between the two surveillance towers. 
In each town, an insurgent group attempts to carry out attacks for its own gain.  

We refer to the insurgent group operating in town i as Red i, for i  1,2 .  Red 1 and  
Red 2 operate independently from each other.  For each Red team, the status quo is not to 
attack, in which case neither Red nor Blue receives a reward or a penalty.  If a Red team 
launches an attack, there are two possible outcomes:  (1) the attack is detected by the 
surveillance tower; or (2) the attack is not detected.  The Red team earns reward of +1 for 
each undetected attack, and incurs a penalty  (reward 0r  r ) for each detected attack.  
Because Blue’s goal is to maintain peace and ideally to eliminate attacks altogether, there 
is a penalty for each attack, regardless of whether or not the attack is detected.  However, 
detecting an attack is better than not detecting it, so Blue incurs a penalty 1 (reward 1 ) 
for an undetected attack and a smaller penalty (0,1)b  (reward b ) for a detected 
attack.  Table 3.1 summarizes the reward for Blue and each Red team, respectively. 

Table 3.1:  Reward table.  Parameter r is positive, while parameter b lies between  
0 and 1. 

 No Attack Attack Undetected Attack Detected 
Red 0 1  r  
Blue 0 1  b  
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We model the interaction between Blue and two Red teams as a non-zero-sum 
game, where Blue moves first, and then each Red team moves second, independently, 
after observing Blue’s strategy.  The objective of each player is to maximize his own 
long-run average reward. 

If the detection probability is  in a town, Blue’s expected reward for each  
attack is 

p

 ( 1)(1 ) ( ) 1 (1 )p b p b p        , (3.1) 
and Red’s expected reward for each attack is 

 ( 1)(1 ) ( ) 1 (1 )p r p r p       . (3.2) 
By setting Equation (3.2) to 0, we can solve 

 
1

ˆ
1

p
r




. (3.3) 

If ˆp p , Equation (3.2) is negative, so it is optimal for a Red team to shut down 
his operation altogether.  In the special case when ˆp p , Red’s expected reward for each 
attack is 0, so Red feels indifferent between attacking or not.  For mathematical 
completeness, however, we assume that Red will continue to attack if ˆp p , as it gives 
Blue a negative expected reward. 

Suppose each Red team can carry out attacks at a maximum rate x.  Consider 
three cases for s: 

1. .  If Blue allocates  ˆ2 ,2s p 1 2 / ˆ2p p s p   , then both Red teams will stop 

their operations.  The long-run reward rate is 0 for all three players. 
2.  ˆ0,s p .  No matter how Blue allocates s, both Red teams will continue to 

attack at the maximum rate x.  The total long-run reward rate for both Red teams is  
 1 2(1 (1 ) 1 (1 ) ) (2 (1 ) )x r p r p x r s        . (3.4) 

Blue’s long-run reward rate is 
 1 2( 1 (1 ) 1 (1 ) ) ( 2 (1 ) )x b p b p x b s          . (3.5) 

3.  ˆ ˆ,2s p p .  In this case, it is possible for Blue to allocate the detection 

probability such that it is optimal for one Red team to stop his operation. 
For the rest of this section, we will focus on the case when ˆ ˆ( , 2 ]s p p .  In 

particular, we will study two strategies for Blue:  stationary allocation and  
dynamic allocation. 

3.2. STATIONARY ALLOCATION 

With a stationary allocation, Blue assigns  to surveillance tower i, i = 1, 2, on a 

permanent basis.  It is reasonable to assume that each Red team will find out this 
allocation sooner or later, whether by intelligence or by computing his own success rate.  
Without loss of generality, assume .  First, it does not help to set 

p
i

p
1
 p

2 1 ˆp p , with 

which the optimal strategy for each Red team is to attack at the maximum rate x.  If Blue 
sets 1 ˆp p   , for some 0  , then it is optimal for Red 1 to cease the operation, and 

for Red 2 to attack at rate x.  Using Equation (2), Red 2’s long-run reward rate is 
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ˆ(1 (1 )( )) (2 (1 )( ))x r s p x r s         , 
which converges to 

 (2 (1 ) )x r s   (3.6) 

as . Using Equation 0  (3.1), Blue’s long-run reward rate is 

 
1

ˆ( 1 (1 )( )) 1 (1 )
1

x b s p x b s
r

                 
, 

which converges to 

 x 1 (1 b) s 
1

1 r













, (3.7) 

as . 0 

 3.3. DYNAMIC ALLOCATION 

With a dynamic allocation, Blue first assigns  to a tower and  to the other 
tower, and then swaps these allocations from time to time.  Without loss of generality, 
assume  

p s p

p  s  p .  The idea of dynamic allocation is to make ˆp p

p

 so that sometimes it 
is optimal for a Red team to pause the attacks, but each Red team needs to guess when to 
resume the attacks.  The tower with detection probability s   can be viewed as a 
decoy, which may provide deterrence effect if a Red team does not know the detection 
probability has dropped from p to s p . 

Blue has two decision variables,  and , such that Blue allocates detection 
probability  to one tower and 

p y
p s p  to the other, and swaps these allocations at a 

Poisson rate .  Because the two Red teams do not interact with each other, and because 
the parameters are identical in the two towns, from now on, the analysis will focus on the 
interaction between Blue and one Red team (henceforth, Red for brevity). 

y

One feasible strategy for Red is to attack at a Poisson rate x .  Alternatively, Red 
can set aside some effort to learn about the detection probability at a Poisson rate .  Red 
can do this by sending a spy, bribing Blue’s people, or probing the system in some way.  
We will impose a constraint that requires 

z

x   z  c , where 0   models the trade-off 
between the attack rate x and the learning rate z, and where c is the maximum attack rate 
if Red sets the learning rate to 0.  With a learning rate z > 0, Red would learn about the 
detection probability at time moments that constitute a Poisson process with rate .  In 
other words, the time between two consecutive learning points follows an exponential 
distribution with rate , independent of everything else. 

z

z
Recall that .  We say the surveillance tower (or Blue) is in state 1 if its 

detection probability is , and in state 0 if its detection probability is .  In other 
words, each tower remains in state 1 for a random time that is exponentially distributed 
with mean 1/y, and then switches to state 0 and stays in state 0 for another random time, 
also exponentially distributed with mean 1/y, and so on.  In the long run, each tower will 
be in each state 50% of the time.  We say Red is in state 1 if Red is carrying out attacks at 
a Poisson rate 

p s p 
p s p

x , and in state 0 if Red pauses the attacks.  Red decides when he wants to 
move from one state to the other. 
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Because ˆp p
( )t

, when Red learns the tower is in state 1, Red should pause the 
attacks.  Let  denote the probability that the tower will be in state  after t  time 

units if it is currently in state j,
jkP k

, 0,1j k  .  Using the result in Ross (1996), we  
can compute 

2
11 10

1 1
( ) 1 ( )

2 2
ytP t e P t   

. 
Red can compute the probability of detection after  time units once he learns that 

Blue is in state 1, if Red does not having a learning point in the next  time units, as 
t

t

2 2
11 10

1 1 1 1
( ) ( ) ( ) ( )

2 2 2 2
yt ytP t p P t s p e p e s p               

   
. 

Red should attack if this detection probability is less than p̂ .  After some algebra, 
we can show that Red should wait for another 

 

2
ln

ˆ2ˆ  
2

p s
p s

t
y

 
    (3.8) 

time units before resuming the attacks, if Red does not have another learning point in this 
time period.  Consequently, Red’s optimal strategy takes the following form:  Whenever 
Red learns that Blue’s tower is in state 1, Red pauses the attacks until the next learning 
point or until  time units have elapsed.  If Red learns Blue’s state is 0 within the next  
time units, Red should resume the attacks immediately; if Red does not have a learning 
point within the next  time units, then Red resumes the attacks after  time units.  With 
this strategy, we can define a renewal reward process, where a renewal is a time moment 
when Red learns that Blue’s tower is in state 1.  Figure 3.1 depicts this renewal  
reward process. 

t̂ t̂

t̂ t̂

 

 

Figure 3.1:  Renewal reward process.  This diagram depicts the renewal reward 
process if Blue dynamically allocates its resource.  For Blue, each circle represents a 
switch point, with solid lines indicating state 1 (detection probability p) and dashed 
lines indicating state 0 (detection probability s p ).  For Red, solid lines indicate 
state 1 (attacking) and dashed lines indicate state 0 (not attacking).  For the time 
line, each square represents a Red’s learning point, with a solid square being a 
renewal (Blue in state 1). 
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Let  T denote the cycle time (the random amount of time between two consecutive 
renewals) in this renewal reward process.  In addition, denote by  the time until the 

next renewal if Blue’s current state is k,
kT

0,1k  .  We denote the expected value of 

random variable X by E[X].  To compute , consider the next event.  If Blue’s 

current state is 1, then the next event can either be Blue’s switch to state 0, or Red’s 
learning Blue’s state.  Because the time to each event is exponentially distributed, the 
time to either event, whichever occurs first, is also exponentially distributed with rate 
equal to the sum of the two individual rates 

E[T
1
]

y z .  With probability , the next 
event will be Blue’s switch to state 0, in which case the additional time until a renewal is 
distributed as .  With probability 

y / ( y  z)

0T z / ( y  z) , the next event will be Red’s learning 

Blue’s state to be 1, which constitutes a renewal.  Therefore, we can write 

   1 0

1 y
E T E

y z y z
 

 
T . 

With a similar argument, we can write  

   0 1

1
E T E

y
  T . 

Solving the preceding yields  1 2 /E T  z ,  and  0 1 / 2 /E T y  z .  By 

definition, T  and  have the same distribution, so1T   2 /E T z . 

Let  denote the number of detected attacks in a cycle, and Y the number of 
undetected attacks in a cycle.  If Blue is in state k (k = 0, 1) and Red is in state 1 
(attacking), then let 

X

kX  denote the number of detected attacks until the next renewal, and 

 the number of undetected attacks until the next renewal. kY

To compute , consider whether Blue switches to state 0 first or Red learns 

Blue’s state first.  The time until either event occurs follows an exponential distribution 
with rate

1[E X ]

y z , so the expected number of detections during this time period is 

( )
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px y z .  Moreover, with probability ( )y y z , Blue will switch to state 0 first, in 

which case the additional number of detected attacks in the cycle is distributed as 0X .  

With probability ( )z y z , Red will learn that Blue is in state 1 first, which constitutes a 
renewal.  Therefore, we can write 

   1 0

x y
E X p E

y z y z
 

 
X . 

With a similar argument, we can write 

   0 1( )
x

E X s p E
y

   X . 

Solving from the preceding yields, 

 1

x
E X s

z
  and  0 ( )

x x
E X s p

y z
   s . 

In a similar way, we can set up two linear equations involving  and    as E[Y
1
] E[Y

0
]



   1 0(1 )
x y

E Y p
y z y z

  
 

E Y , 

   0 1(1 ( ))
x

E Y s p E
y

    Y . 

Solving from these two linear equations yields, 

 1 (2 )
x

E Y s
z

   and  0 (1 ( )) (2 )
x x

E Y s p
y z

s     . 

Now we proceed to compute  and .  Let [ ]E X [ ]E Y Z denote the time of the first 
learning point after the renewal, which follows an exponential distribution with rate .  
To compute , condition on the event 

z
[ ]E X Z t .  If ˆt t , then at time t, either (1) the 

cycle ends if Blue is in state 1, or (2) Red resumes the attacks (moves to state 1) if Blue is 
in state 0.  If , then Red resumes the attacks at time .  Therefore, ˆt t t̂

0 1 0

0 1

ˆ ˆ
10 11 100

ˆ ˆ ˆ ˆ ˆ2 2
0

2

0

ˆ ˆ( 2 )

ˆ ˆ[ ] ( ) [ ( ( ) [ ( ) [ )

1 1 1 1 1 1
[ [

2 2 2 2 2 2

1 1
         = (1 ) (2 )(1

2 2

] ]

] ]

2

]
t zt zt

t yt zt zt yt zt yt

zt z y t

E X P t E X ze dt e P t E X P t E X

e ze dt E X e e E X e e E X

x x
s e p s e

z z y

 

     

  

  

               
     

   






),

[ ]w 

here  is given in Equation t̂ (3.8).  Similarly, 
ˆ ˆ

10 11 100

ˆ ˆ(

1

)

0 0

2

ˆ ˆ[ ] ( ) [ ( ( ) [ ( ) [ )

1 1
(2 )(1 ) (2 )(1 ).

2 2 2

] ]
t zt zt

zt z y t

]E Y P t E Y ze dt e P t E Y P t E Y

x x
s e p s e

z z y

 

 

  

     





 

Red’s long-run reward rate is equal to (renewal reward theory) 

 

 
 

 
 

ˆ ˆ( 2 )

( , , , ) ( 1) ( )

(2 (1 ) )(1 ) (1 )(2 ) (1 ) .  
4 2

zt z y t

E Y E X
R p y x z r

E T E T

x z
r s e r p s e

z y
 

   

 
         



 (3.9) 

Red’s decision variables are x  and , subject to z x   z  c .  Blue’s long-run 
reward rate is 

 

 
 

 
 

ˆ ˆ( 2 )

( , , , ) ( 1) ( )

( 2 (1 ) )(1 ) (1 )(2 ) (1 ) ,  
4 2

zt z y t

E Y E X
B p y x z b

E T E T

x z
b s e b p s e

z y
 

   

 
          



(3.10) 

with decision variables p and . y

We assume that the two Red teams operate independently, without any 
coordination.  That is, when the Red team in one town learns the tower’s detection 
probability, he does not give this information to the Red team in the other town.  In the 
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case when the two Red teams maintain a real-time communication, the learning rate at 
each town is essentially doubled and the same analysis applies. 

3.4. COMPUTING THE OPTIMAL STRATEGIES IN DYNAMIC 
ALLOCATION 

When Blue dynamically allocates his resource between the two surveillance 
towers, each player has two decision variables, as shown in Equations (3.9) and (3.10).  
In our model, Blue moves first and Red moves seconds, with each player trying to 
maximize his own long-run average reward.  To compute this equilibrium, we first solve 
Red’s optimization problem for given p and y. 

Although Red has two decision variables, at the optimality the constraint 

 x   z  c  must be equality, because 
 
strictly increases in x when z is held 

constant.  Substituting 
R(p, y,x,z)

x c z   into Equation (3.9), Red’s objective function involves a
single variable z  s follows: 

 
a

        ˆ ˆ( 2 )( ) 2 1 1 1 2 1 .
4 2

zt z y tc z z
R z r s e r p s e

z y

   
         

  

 
Proposition 3.1.  The function R(z) is concave in z. 
Proof:  See Appendix. 
 
Red’s objective is to choose  0,z c   to maximize R(z).  Because ( )R z  is 

concave in z, to maximize ( )R z , first compute 

    ˆ22 (1 ) (1 )(2 )ˆ'(0) 2 1
4 4 2

ytr s r p s c
R ct

y
    

     e . (3.11) 

Consider two cases: 
1. :  In this case, it is optimal to set '(0) 0R  * 0z  . 

2. :  Red wants to maximize '(0) 0R  ( )R z  for  0,z c  .  Because ( )R z  is 

concave and '( ) 0R c   , to maximize ( )R z  it is equivalent to solving .  A 
simple bisection algorithm can compute the solution. 

'( )R z 0

 
Denote the optimal learning rate derived from the preceding algorithm by 

, and let   .  Define *( , )z p y x*( p, y)  c  z*( p, y)

 * *ˆ ( , ) ( , , ( , ), ( , ))B p y B p y x p y z p y , 
which Blue wishes to maximize by choosing p and y.  To compute Blue’s optimal 
strategy, we first plot ˆ ( , )B p y  and observe that the function is unimodal in each variable.  
We use the following algorithm to compute Blue’s optimal strategy. 

 
1. Let   , and .  Use the golden section search to 

compute . 

i  0

arg m

ˆmin(1, ( ) / 2)ip s p 
ˆ ( , )i ip yax

y
y B
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p y

p y

2. Use the golden section search to compute . 1
ˆarg max ( , )i i

p
p B 

3. Use the golden section search to compute . 1 1
ˆarg max ( , )i i

y
y B 

4. If 1 1
ˆ ˆ( , ) ( , )i i i iB p y B p y     , then let i  i 1 and go to step 2.  The parameter 

  is the error bound. 

5. Output    and y*  y
i1 1

*
ip p 

 
as Blue’s optimal strategy. 

 3.5. NUMERICAL EXPERIMENTS 

This section presents numerical experiments to demonstrate our model.  First, we 
set  without loss of generality, because using the other values is equivalent to 
rescaling the clock to a different unit.  Second, we set 

1c 
1  , which—although not as 

intuitive—is also without loss of generality.  To understand why it is the case, rewrite 
Equaiton (3.9) as )( , , , ,R p x y z   and Equation (3.10) as )( , , , ,B p x y z   to signify its 
dependence on  , and note that 

) ( , , , ,1

) ( , , ,

( , , , ,

( , , , ,, 1

R p y x z

B

)

)

R p y x z

B pp y x z y x z

  
  




. 

In other words, if we treat z  (instead of z) as Red’s decision variable and y  
(instead of y) as Blue’s decision variable, then we convert the original problem to an 
equivalent problem with 1  .  This transformation is possible mainly because there is 
no cost or constraint associated with Blue’s choice of y.  The optimal choice of y involves 
a delicate balance.  If y is too small (say once a year), then Red can easily take advantage 
of it by setting a moderate learning rate without much sacrifice to the attack rate.  If y is 
too large (say once an hour), then Red might as well give up learning altogether and 
attack at the maximum rate 1, which defeats the purpose of fake surveillance towers.  In 
other words, Blue’s choice of y needs to be large enough to keep Red honest, and small 
enough so Red has incentive to set aside some effort to spy on Blue’s operations. 

By setting  and 1c  1  , the remaining parameters that we need to consider are 
r, b, and s.  Table 3.2 summarizes the optimal strategies for 4r   and  ( ), 
and for different values of s between 

0.5b  ˆ 0.2p 
p̂  and ˆ2 p .  The first column gives the total 

resource available to Blue, and the next four columns give the optimal strategies for Blue 
and Red, respectively.  In this example, it is optimal for Blue to set p s .  In other 
words, when in state 0, the tower has no detection capability at all. 
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0.5
Table 3.2:  The optimal strategies when Blue uses dynamic allocation, with  
and b .  The corresponding numbers in stationary allocation are given in the 
parentheses. 

4r 

s p y x z 

Percentage 
of Time 
Red is 

Attacking 

Red’s 
Long-Run 

Attack Rate

Rate of 
Undetected 

Attacks 

Rate of 
Detected 
Attacks 

0.24 0.24 0.002 0.958 0.042 0.504 (0.5) 0.483 (0.5) 0.478 (0.48) 0.005 (0.02) 
0.28 0.28 0.011 0.900 0.100 0.510 (0.5) 0.459 (0.5) 0.446 (0.46) 0.013 (0.04) 
0.32 0.32 0.034 0.832 0.168 0.516 (0.5) 0.429 (0.5) 0.408 (0.44) 0.022 (0.06) 
0.36 0.36 0.090 0.748 0.252 0.523 (0.5) 0.391 (0.5) 0.360 (0.42) 0.031 (0.08) 

 
The 6th column in Table 3.2 gives the long-run proportion of time when Red is 

attacking.  From the definition of the renewal process in Figure 3.1, at the beginning of 
each cycle, Red will remain in state 0 either until the next learning point, or until  time 
units have elapsed, whichever occurs first.  In other words, the amount of time Red is in 
state 0 in each cycle is  where W follows an exponential distribution with rate 
z.  In each cycle, the expected time Red is not attacking (state 0) is 

t̂

ˆmin( , ),W t

ˆ ˆ

ˆ0

1ˆ ˆ[min( , )] (1 ).
t zw zw zt

t
E W t w ze dw t ze dw e

z

          

Consequently, the long-run proportion of time Red is not attacking (state 0) is 

 ˆˆ[min( , )] 1
(1 )

[ ] 2
ztE W t

e
E T

  . (3.12) 

The long-run proportion of time Red is attacking (state 1) is 

 ˆ1
(1 )

2
zte , (3.13) 

which is reported in the 6th column.  In addition,  and  are 
reported in the 8th and 9th columns, respectively, with their sum given in the 7th column. 

[ ] / [ ]E Y E T [ ] / [ ]E X E T

In the last four columns, the corresponding numbers with stationary allocation are 
given in the parentheses.  Recall that with stationary allocation, one Red team attacks at 
rate 1, while the other Red team shuts down the operation entirely, so the average attack 
rate between the two towns is 0.5.  With dynamic allocation, Red ends up spending more 
time attacking (state 1), as seen in the 6th column in Table 3.2.  The overall attack rate, 
however, is lower, as seen in the 7th column, because the instantaneous attack rate 
( 1x z  ) is smaller due to a positive learning rate.  With more intelligence, Red is able 
to attack with a higher success probability.  Overall, the rate of undetected attacks 
decreases, while the rate of detected attacks decreases more. 

Figure 3.2 shows the long-run reward rates for both players with  and 
.  Because , dynamic allocation only applies for s between  and 

.  The results for stationary allocation come from Equations 

4r 
p̂ 0.5b 

ˆ2 p 
ˆ 0.2p  0.2

0.4

shown in the figure, Blue’s dynamic allocation strategy increases the long-run reward 

(3.4) to (3.7), while 
those for dynamic allocation come from the algorithm presented in Section 3.4.  As 



rates for both players, for (0.2,0.4]s .  In other words, dynamic allocation provides a 
way for the two players to cooperate, so both can do better. 
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Figure 3.2:  The long-run rew r Blue and Red with stationary and 

When is dynamic allocation useful?  When r becomes larger, a detected attack 
results 

le that 

ard rate fo
dynamic allocations, with 4, 0.5r b  . 

in a more serious consequence for Red.  Therefore, dynamic allocation becomes 
more useful, as Red can benefit more from attacking at the right time.  When b becomes 
larger (closer to 1), Blue cares less about whether an attack is detected.  Instead, Blue 
should shift his focus to reducing Red’s overall attack rate.  Therefore, dynamic 
allocation is also more useful.  When both r and b are small, however, it is possib
dynamic allocation does not provide any benefit at all.  Figure 3.3 shows such an 
example with 1, 0.1r b  .  When 0.8s  , the optimal dynamic allocation strateg

for * 0y   and ch reduce tionary allocation. 

y calls 

 * 0z  , whi s to sta
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Figure 3.3:  The long-run reward rate for Blue and Red with stationary and 
dynamic allocations, with . 1, 0.1r b 

4. SUMMARY 

We have addressed two forms of decoy that may arise in IED warfare.  The first is 
the use of fake IEDs by Red in order to delay Blue’s RCPs, and the second is the use of 
understaffed surveillance towers by Blue to deter Red’s IED attacks.  In each case, we 
use a mathematical model to quantify the effect of the decoy.  On a tactical level, our 
models provide the optimal use of decoys, and countermeasures to them, in different 
scenarios.  On a strategic level, our findings provide insights into the circumstances when 
decoys are expected to play a significant role in IED warfare. 

There are many extensions to our models that warrant further research.  For fake 
IEDs, a possible extension is to incorporate more than one type of real IEDs, as real IEDs 
range from roadside bombs to explosively-formed projectiles.  Another extension is to 
generalize the model to deal with a network of roads, rather than just a collection of 
independent road segments.  RCPs invariably have a base of operations, and have to 
follow patrol routes that obey network constraints.  For decoy surveillance towers, one 
extension is to allow the two towns to have different parameters to accommodate 
different levels of insurgent activities.  It is also conceivable that detecting an attack in 
one town is more valuable than that in the other town.  Another extension is to study the 
dynamic allocation when there are more than two surveillance towers. 
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APPENDIX 

Proof of Proposition 3.1. 
To facilitate the proof, let 

 
  

1

2

2 1 ,

1 2

K r s

K r p

  

    ,s
 

and use Equations (3.3) and (3.8) to get 

  ˆ21

2

2
1 ˆ2

1
2 2

yt

s
rK p s

e
K p s p s




 

  
 


.
 

We can simplify ( )R z  to  

 

   

   

ˆ ˆ( 2 )
1 2

ˆ ˆ ˆ2
2

ˆ ˆ2 (
2

( ) 1 1
4 2

1 1
4 2

2

4 2 2

zt z y t

yt zt z y t

yt z y t

c z z
R z K e K e

z y

c z z
K e e e

z y

c z z y
K e e

z y z y







 

   

  

 
     

 
     

 
     

( 2 )

2 )



. (3.14) 

We will show  to complete the proof.  To facilitate the computation, let ''( ) 0R z 

ˆ ˆ2 (

( ) ,
4

2
( ) ,

2 2
2 )yt z

c z
g z

z y
h z e e

z y z y
y t


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


  
 

 

so 2''( ) ( ''( ) ( ) 2 '( ) '( ) ( ) ''( )).R z K g z h z g z h z g z h z    
First, compute '( ) / 4 0g z     and ''( ) 0g z  .  For , taking the first 

derivative yields 
( )h z

 

  

 

ˆ ˆ( 2 ) ( 2 )
2

ˆ( 2 )
2

ˆ ˆ( 2 ) ( 2 )
2

2 ˆ'( ) 1 ( 2 )
( 2 )

2 ˆ1 1 ( 2 )
( 2 )

2
1 0

( 2 )

z y t z y t

z y t

z y t z y t

y
h z e z y te

z y

y
e z y t

z y

y
e e

z y
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 

  

   


   


  
 ,

 

where the inequality follows by letting ˆ( 2 )z y t 0     in the inequality 1 .   
In addition, 

e  
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ˆ

0
 

where the inequality follows by letting ˆ( 2 )z y t     in the inequality 
2

1
2

e
    .  Consequently, ''( )R z 0 , so R(z) is concave in z. 
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