
ABSTRACT 

W 
hen multiple weapons are fired at 
a single target, it may not be best 
to fire all weapons directly at the 

target on account of errors common to all 
shots. The probability of hitting the target 
can sometimes be increased by firing the 
weapons in a pattern around the target, 
rather than directly at it. This observation 
leads naturally to the problem of finding 
the optimal pattern. The optimization prob- 
lem is in general difficult because even cal- 
culating the hit probability for a given pat- 
tern usually requires numerical integrals. 
One exception is when errors are normally 
distributed and the damage function takes 
on a compatible “diffuse Gaussian” form. 
In that case, the hit probability can be 
expressed as an analytic function of the 
pattern’s aimpoints, and conventional 
methods used to optimize it. This paper 
describes the required mathematics for a 
general diffuse Gaussian form, thus gener- 
alizing previous work. 

INTRODUCTION 
A marksman who fires several shots at 

a target, without any feedback between 
rounds, is sometimes disappointed to find 
that his shots lie in a tight pattern that is not 
centered on the target, as in Figure 1. 

The tightness of the shot group in Fig- 
ure 1 indicates a small dispersion error, 
which is normally desirable, but the group 
as a whole may nonetheless be ineffective 
because it is in the wrong place. The 
group’s translation from the vicinity of the 
target is usually because there is a firing 
error common to all shots. The error may 
be due to an alignment problem within the 
weapon that fires all the shots, to an imper- 
fectly known target location, or to some 
unanticipated aspect of the environment 
(wind or current, for example) that changes 
slowly enough to be in effect constant (al- 
beit randomly so) for all shots in the group. 
It may even be the sum of several such 
errors. The effect is the same regardless of 
the explanation. The problem of firing mul- 
tiple shots in the presence of a common 
error occurs in the employment of land and 
sea-based artillery, in the design and em- 
ployment of weapons with submunitions, 
and in bombing. 

If the statistical distribution of the com- 
mon error can be determined beforehand, it 
may be wise for the marksman to aim his 

shots in a pattern, rather than all at the 
target, in the hope that the spread of the 
pattern might compensate for the common 
error. The problem of calculating the prob- 
ability of “killing” the target with such a 
pattern is the computational problem ad- 
dressed in this paper. We will maintain the 
point of view that each shot either kills the 
target or leaves it undamaged, with the kill 
probability being some “damage function” 
of the relative position between target and 
impact point. 

It might seem that the simplest damage 
function would be one where the target is 
killed if and only if the distance between 
target and shot is smaller than some fixed 
distance, the so-called cookie-cutter dam- 
age function. This is not true, especially in 
evaluating patterns where shots are not 
aimed directly at the target. If aiming errors 
are assumed to be normal, as they usually 
are, the analytically simplest assumption is 
that the damage function is a “Diffuse 
Gaussian” (DG) function that resembles the 
normal distribution in shape. 

Depending on the meaning of “kill” 
and the physical mechanism involved, the 
DG function can be attacked for being too 
sloppy or defended for being appropriately 
so. Regardless of its physical suitability as a 
model of damage, its analytical merits are 
undeniable. The mathematics of dealing 
with the DG damage function is so simple, 
compared to other alternatives, that a DG 
analysis is a reasonable first step even 
when the damage function is not DG. For 
example, one might find the optimal pat- 
tern for DG weapons as a first step in an 
iterative procedure for weapons of some 
other kind. The first analysis that took ad- 
vantage of this simplicity was by John von 
Neumann in 1941 (Taub (1962)), who em- 
ployed it to simplify a pattern bombing 
problem in one dimension. See Eckler and 
Burr (1972) for other applications. 

ANALYSIS 
We consider the problem of analyti- 

cally evaluating the probability that at least 
one of several DG shots kills a single, point 
target located in Euclidean m-space. Except 
for a common error, all shots will be as- 
sumed to be independent, with each shot’s 
impact point differing from its aim point by 
a normal (Gaussian) dispersion error. All 
integrals will be taken over the entirety of 
Euclidean m-space in this paper, so limits 
will not be shown explicitly. We begin by 
considering a single shot, and then gener- 
alize to patterns of n shots. 
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Figure 1. Illustrating a tight grouping of shots that might have been more effective if a pattern had been used. 

We first observe that, if 2 is a positive 
definite, symmetric m-by-m matrix, and if x and 
p are appropriately dimensioned column- 
vectors, then 

i ( exp -; (x - p)‘Z-Yx - +x 

= (2~Y’2plr (1) 

where ICI denotes the determinant of the matrix 
and x’ is the transpose of x. Equation (1) is true 
because the multivariate normal distribution 
integrates to unity (DeGroot (1970)). 

We will take the DG damage function to be 
D(x) = pexp(-0.5x’%), where p is a reliability 
and S is any symmetric, positive definite ma- 
trix. The matrix S determines the lethality of a 
reliable weapon. The contours of constant le- 
thality are all ellipsoids: for example, the ellip- 
soid X’SX = 1 (the “one-sigma ellipsoid”) deter- 
mines those points x that will be killed with 
probability exp(-0.5) = .607 by a reliable 
weapon. Various special cases of this lethality 
function have been considered by other au- 
thors. von Neumann (Taub (1962)) employs the 

function exp(-2/w*) in one dimension, a spe- 
cial case where S = l/w*. Grubbs (1968), 
Helgert (1971) and Bressel (1971) use the func- 
tion exp(-0.5(x2/d + g/o-$) in two dimen- 
sions. Fraser (1951) employed essentially the 
same function in his study of the effects of aim 
point wander. The generalized form used here 
allows for a multiplicative factor p and permits 
the lethality ellipse to be oriented in an arbi- 
trary direction in an arbitrary number of di- 
mensions. Although we will consistently refer 
to p as a reliability, it might also incorporate 
other factors useful in fitting the form to the 
damage function of a reliable weapon. The 
mathematics for handling this generalized form 
is the primary contribution of this paper. 

Let L be the inverse of S, and call it the 
“lethality matrix”. Since L has the properties of 
a covariance matrix, Equation (1) applies and 
the lethal volume of the weapon is 

i 
D(x)dx = p(27r)“‘qq. (2) 
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Thus, powerful weapons have large lethality 
matrices, in the sense that the size of a matrix is 
measured by its determinant. 

Now suppose that the weapon impacts at a 
random point X with respect to the target, 
where X is multivariate normal with mean p 
and covariance matrix 2. We interpret p as the 
aim point and I: as the covariance matrix of the 
dispersion error. Let the probability of killing 
the target be P(p, CL, 2, S). Then P(p, p, 2, S) = 
E@(X)), the expected value of the damage 
function. Letting the right-hand-side of (1) be C, 
this is 

Pb, P, 2, 3 = PC-~ exp(-Q(x)lW, (3) 

where Q(x) = (x - p)‘Z-l(x - p) + x’Sx. After 
completing the square, it can be shown that, 
Q(x) = (x - m)‘(Z-’ + S)( x - m) + K, where 
WZ’(C? + S) = .‘Z-i. It follows from the latter 
equation that m = (I + ZS)-ip, where I is the 
identity matrix. The constant K is 

K = p’C-‘p - m’(X-’ + S)m 

= ~‘Z-l(p - m) 

= p’(C-l - c-y1 + ZS)-‘)/.& 

= p’S(I + ZS)-‘p. 

According to (1) and the definition of C, 

C-l 

= l/JR. (4) 

Letting R s S(I + ZS)-i, we therefore have 

(5) 

a simple expression for the probability of kill- 
ing the target with one shot. When specialized 
to one dimension, (5) reduces to the formula 
that von Neumann first derived and employed 
in 1941. The important thing about (5) is that it 

has the same form as D(x), except that x has 
been replaced by p. 

Anticipating a salvo of several shots, we 
now introduce an aiming error Y that is com- 
mon to all of them. The kill probability of the 
typical shot is then P(p, Y + p, 2, S), since the 
common error has the effect of shifting the aim 
point. If there are actually n shots, then attach 
subscripts to p, p, 2, S, and R, retaining the 
unsubscripted symbols for n-vectors. All n 
shots are assumed to be independent, condi- 
tional on Y being given, so the probability that 
all n shots miss is 

Q(P) = E I?(1 - p(pir pi t Y, Xi, RJ) 
i i=l 

(6) 

where the expectation is with respect to the 
distribution of Y. The notation stresses depen- 
dence on p because p is controllable by the 
marksman; indeed, the purpose of the whole 
development is generally to choose the aim 
points p in order to minimize Q(p). 

Except for multiplicative constants, (5) has 
the same Gaussian form as the damage func- 
tion. If Y is itself Gaussian, the expectation in 
(6) can be therefore be accomplished analyti- 
cally. First, it is necessary to expand the prod- 
uct in (6). Let N be the set of all subsets of 

L * * * I n), a set of 2” subsets, and let U be an 
element of N. Then (6) can be written 

Q(P) = C E FI (-ph Pi + Y, Zr &I) 
UEN iEU 

E 
i i 
exp - i x&i + Y)‘R& + Y) 

iEU 1) 

= c WU, (7) 
LIEN 

where C, is the factor in braces in (7) and E, is 
the expectation. To evaluate E, first define the 
moments 
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ML E C Pi’Ri; MO, e C Ri. (8) 
iELl iEU 

Then 

EU = E exp - k {M’, + MLY + Y’ML’ 
i ( 

+ Y’Mo,Y} 
1) 

. (9) 

Equation (9) is the expectation of another expo- 
nentiated quadratic expression. Therefore, if we 
now assume that Y is multivariate normal with 
mean 0 and covariance matrix T, (9) can be 
evaluated by a process paralleling the deriva- 
tion of (5). The result is 

EU= exp -i{ML-M:‘T 
( 

* (I+ M’$‘-‘ML} / d/. (10) 

With this expression inserted into (7), we 
finally have an analytic expression for Q(p). 
The empty subset U = 4 need not be included 
in the sum if the actual object is to compute the 
kill probability 1 - Q(p); since C,E, = 1, the 
two unity terms cancel. 

Equation (10) is valid even if C or T is a 
singular covariance matrix, or if S is a singular 
precision matrix. Note that a weapon with in- 
finite lethal volume according to (2) need not 
have a unity kill probability, even if its reliabil- 
ity is 1. The same thing is true of cookie-cutter 
damage functions, when generalized to include 
ellibses. 

one-by-one. A list of subsets is initialized to 
include only the empty set, and then repeatedly 
doubled in length by both including and not 
including the next shot in each of the current 
subsets. When the next shot is included in a 
subset, the three moments of the child subsets 
are augmented by adding the appropriate term 
to the moments of the parent. At the end, the 
list will include all 2” subsets. 

Formula (7) is an alternating series in the 
sense that a given subset has a different sign 
than all of its children. Alternating series are 
notorious for poor convergence properties, so 
inaccuracy should be expected when 71 is 
“large.” Assuming that double precision arith- 
metic is used, all numbers being summed 
should be accurate to about lo-i3. If all 
2n roundoff errors are that &large and have the 
same sign, the resulting total error should be 
about 2”10-i3, which is low4 for y1 = 30. One 
might therefore expect computations based on 
(7) to be suspect for n > 30, approximately. 
Breaux and Moler (1968) expand the function 
(1 - z)” in Jacobi polynomials to avoid sum- 
ming an alternating series, successfully testing 
their procedure on problems where 50 I y1 5 
1000. Pattern problems where n is large are also 
subject to accurate confetti approximations 
(Washburn (1974)). 

Our own experience has been that the time 
required to compute Q(p) from (7) becomes 
excessive (several seconds for n = 20 on a 1.6 
GHZ Wintel machine) long before any problem 
with accuracy emerges. For smaller patterns, a 
fraction of a second suffices. For patterns of 10 
or fewer shots, (7) is fast enough to enable local 
optimization of the aimpoints. An Excel work- 
book DG.xls that optimizes the aimpoints using 
the embedded Solver routine can be down- 
loaded from http:/ /diana.gl.nps.navy.mil/ 
-Washburn/. 

‘The probability that the number of “kill- 
ing” shots is zero is given by (7). A similar 
method can be used to find the probability 
mass function of the number of killing shots EXAMPLES 
(Fraser (1951)). 

Except for generalizing to the case m > 1, 
the above derivation is essentially identical to 
von Neumann’s (Taub (1962)). 

Example 1: Suppose that there are three 
weapons all aimed at the origin, each with a 
reliability of p = l/2. Suppose further that S, T, 

1 0 
and C are all o 1 , the identity matrix I. I 1 

COMPUTATION Then WI= 2 ior all i, and %‘/I1 + MZTI 
= 1 + #(II)/ 2, where #(Ln is the number of 

The moments defined in (8) are all sums, elements ‘in .the set U. Since all weapons are 
efficiently calculated by considering the shots aimed at the origin, ML and ML are both 0 for 
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Table 1. Showing the C and E factors of equation 
(7) for each of the subsets in a firing problem with 
three weapons 

Subset LI CLI ELl 

(1) -l/4 2/3 
PI -l/4 2/3 
(31 -l/4 2/3 
WI l/16 l/2 
IL31 l/16 l/2 
{2,31 l/16 l/2 
WW -l/64 l/5 

all U. There are seven nonempty subsets of the 
three weapons, with the factors C, and E, as 
shown in Table 1. The sum of the CUE, prod- 
ucts is -33/80, so the kill probability is 1 - 
Q(0) = 33/80 = 0.4125. This figure cannot be 
improved; the optimal pattern is to fire all three 
shots at the origin. This is not unusual in prob- 
lems with unreliable weapons. 

Example 2: A damage function may be el- 
liptical because the weapon actually distributes 
a pattern of submunitions, with the pattern be- 
ing stretched out in the direction from which 
the weapon arrives. It is sometimes asserted 
that the marksman would be better off if weap- 
ons arrive from multiple directions, instead of 
all from the same direction. To test this, con- 
sider a case where there are no dispersion er- 
rors (C = 0), the target location covariance ma- 1 0 
trix is T = o q , [ 1 and where the weapon 

lethality matrix L = (Lij) for each of four weap- 
ons is as shown in Table 2. The lethality matri- 
ces are also pictured in the form of one-sigma 
ellipses in the left side of Figure 2. Two of the 
weapons arrive from a Southwest direction 
(positive L,,), while the other two arrive from a 
Southeast direction (negative L,,). All four 
weapons are assumed to be perfectly reliable. 

The optimal pattern is unknown, but the 
best locally-optimal pattern known to the au- 

Table 2. Columns x and y contain locally optimal aim points for four weapons. The lethality matrix L is 
shown in the next three columns. The last column is the reliability. 

Index Aim x Aim y  L 11 L 22 L or -L P 

1 -0.15 -2.82 4 4 -3.6 1 
2 0.37 -0.95 4 4 -3.6 1 
3 -0.15 2.82 4 4 3.6 1 
4 0.37 0.95 4 4 3.6 1 

Figure 2. Both sides show the target as a two-sigma ellipse, and all four weapons as one-sigma ellipses 
centered on the aim points shown in Table 2. The side of the square in the background has dimension 15. The 
pattern on the left, where all weapons come from the same direction, has a slightly higher kill probability. 
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thor is as given in the x and y columns of Table 
2 and illustrated in the right side of Figure 2. 
That pattern achieves a kill probability of .640. 
If I,,, is set to 3.6 for all four weapons, the best 
known pattern is as shown in the left side of 
Figure 2, with a slightly larger kill probability 
of .664. In this case, at least, it appears that the 
marksman is better off if the weapons all come 
from the same direction. 

The reader can confirm the above calcula- 
tions by employing the spreadsheet DG.xls 
mentioned above. 

SUMMARY 
An analytic method for computing the 

probability that at least one of several shots 
kills a point target is derived. The method relies 
on the assumption that all shots have a DG 
damage function, as well as Gaussian errors for 
both dispersion and the common error. It is a 
generalization of previous work in that lethality 
and error ellipses are permitted to have arbi- 
trary orientations; that is, the Euclidean compo- 
nents are not assumed to be independent. The 
method is most suitable when the number of 
shots n is small, since it employs a sum that has 
2” terms. 
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