
ABSTRACT 

F inding the correct balance between in- 
vestment in weapons and information 
assets has proven to be a substantial 

challenge. Information alone cannot defeat 
the enemy on the battlefield, but modern 
long-range weaponry is useless without the 
information necessary to employ it. We 
present a new optimization methodology 
that combines attack assets and bomb-dam- 
age assessment sensors in a single alloca- 
tion model. The resulting model allows 
analysis of the tradeoffs between informa- 
tion (sensor) and transformation (attack) 
assets. We discuss the computational diffi- 
culties of the problem and cover the moti- 
vating ideas behind the methodology. 
Then, we outline the mathematical tech- 
niques used, and present results for a no- 
tional data set. 

THE INFORMATION CHALLENGE 
General Howell Estes, shortly before he 

retired as the commander of USSPACE- 
COM, made the following comments in an 
interview: 

. . . combat systems, without timely rele- 
vant information, are useless. On the other 
hand, you can‘t take out an enemy tank 
with just information. We need to strike a 
balance between “shooters” and “infor- 
mation systems” if we‘re going to be suc- 
cessful in the future. (Scott 1998) 

This quote succinctly sums up one of the 
biggest challenges in structuring modern 
combat forces. New long-range, precision 
weaponry requires accurate information to 
be of any use; furthermore, these new 
weapons tend to be scarce and expensive. 
The expense of these weapons is justified 
largely based on their effectiveness. The 
newest systems offer accuracy, lethality, 
and long range, increasing the risk to the 
enemy while decreasing risk to ourselves. 
Yet, most of our analyses of these weapons 
assume the availability of accurate informa- 
tion, which is a key prerequisite. 

Information systems, on the other 
hand, have long been plagued with unsat- 
isfactory metrics. We tend to use measures 
such as bandwidth and throughput when 
talking about information systems, but we 
have difficulty relating changes in these 
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measures to changes in combat outcomes. 
Information theory, as formulated by Shan- 
non (1949) offers a set of measures, but 
Shannon’s work has nothing to say about 
the accuracy of information. Nonetheless, 
some valuable work has been done in this 
area; Sherrill and Barr (1995) offer one such 
attempt. 

This brings us to the present situation, 
as summarized elegantly by General Estes. 
We must have both the weaponry and the 
information to be successful; one is ineffec- 
tive without the other. Unfortunately, we 
have few methods available to assess the 
relationships between the two, much less 
divide scarce investment resources among 
the two classes of systems. 

ERRONEOUS INFORMATION IN 
AIR-TO-GROUND WARFARE 

We limit our discussion to conven- 
tional weapons delivered from fixed-wing 
aircraft, and sensors that perform bomb- 
damage assessment (BDA). While these are 
just subsets of the classes of weapons and 
sensors, the philosophy in this article has 
wide applicability. 

In air-to-ground operations, the quality 
of information applies in two basic areas: 
target acquisition and target assessment. In 
target acquisition, we include not only the 
task of finding the target, but also identify- 
ing the best set of targets to attack to ac- 
complish a campaign objective. In target 
assessment, we are concerned with deter- 
mining the “state” of the target, that is, 
whether it is functional, destroyed, dam- 
aged, or in repair. 

We cannot count on error-free informa- 
tion in either area. Consequently, we must 
use probability. We cannot say with cer- 
tainty that we have located the correct tar- 
gets, nor can we say with certainty what the 
affect of our attacks were. In most cases, 
our information is subject to error. 

Air planners have two general ap- 
proaches to erroneous BDA, neither of 
which is particularly appealing. The first is 
informally known as the “pummel factor,” 
and refers to the idea of simply overwhelm- 
ing uncertainty with firepower. In many 
operations, we plan to attack critical targets 
with an extraordinary number of weapons 
over extended periods, not because the tar- 
gets are difficult, but because we are not 
confident that we can get good information 
quickly on the effects of the attacks. 
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The second approach is to “play weather- 
man.” Here, the planner simply reports a prob- 
ability to the decision maker, who presumably 
can allocate resources based on this informa- 
tion. However, this method has some risk. In 
his book Crusade (1993, p. 234), Rick Atkinson 
documents General Norman Schwartzkopf’s 
response (expletives deleted) after being 
briefed that a particular Iraqi unit was “64% 
effective:” 

Not 65%? Not 63%? ****, you don‘t know what 
the **** you‘re talking about, do you? 

Now, it is not clear whether General Schwartz- 
kopf was disagreeing with the implied accu- 
racy of the estimate or the way it was pre- 
sented. Regardless, it is clear that merely 
reporting probabilities of target status to a com- 
mander faced with hundreds or thousands of 
allocation decisions is not particularly helpful. 
We recommend the article by Lewis (1994) for 
additional discussion of this issue. 

Consider the situation shown in Figure 1, 
which shows two aircraft shelters attacked in 
DESERT STORM. The outward appearances of 
the shelters are completely contrary to the ef- 
fects achieved. The functional shelter appears 
to be destroyed, while the opposite is true for 
the other shelter. Yet, a campaign planner 

would have to decide, on the basis of inconclu- 
sive imagery, whether or not to reattack these 
targets. In this situation, the information avail- 
able makes the probability of making an error 
high. 

CURRENT MODELING APPROACHES 
What does the analytical community have 

to offer to air planners facing such decisions? 
The answer as implemented in many current 
campaign models is: not much. 

Many models employ parameters that go 
by the name of “C4ISR degrades,” or “percep- 
tion factors,” that attempt to capture informa- 
tion effects, but these parameters are largely not 
measurable. These parameters have come to be 
known as “interesting rheostat knobs” (IRKS). 
These models can only be used to determine the 
criticality of the IRKS, which cannot be tied to 
information resources. As an example, the 
1995-97 Deep Attack Weapons Mix Study 
(DAWMS) employed 5 different IRKS to repre- 
sent C4ISR effects in a model. One, the “dead or 
alive” factor, represented reductions in ex- 
pected kills per sortie due to both “underesti- 
mate[s] and overestimate[s] of target damage as 
well as inefficiencies introduced by untimely 
reporting of target status” (IDA 1996). This fac- 

apparently 
dead 

outside inside 

apparently 
live 

Figure 1. Two aircraft shelters attacked in DESERT STORM. The top shelter appears to be extensively 
damaged, but the inside is untouched. The bottom shelter has what appears to be an inconsequential hole in the 
roof, but the contents are completely destroyed (Cohen 1993). 
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tor varied between 0 and 1, but was not defined 
as anything measurable (or even derivable) by 
any other means than expert judgment. Not 
surprisingly, this IRK turned out to be crucial in 
the final results produced by DAWMS. 

Other examples are the infamous SFINT 
(scaling factor-interdiction) and SFCAS (scal- 
ing factor-close air support) parameters in the 
TACWAR campaign model (TRAC 1994, pp. 
D-25-D-26). These factors are commonly used 
to reduce sortie effectiveness due to C4ISR 
problems, but they are not tied to any measur- 
able resource or activity. Interestingly enough, 
the version of TACWAR currently running in 
the Joint Staff sets SFINT and SFCAS using the 
IRKS developed for DAWMS. 

REQUIREMENTS FOR AN 
INTEGRATED MODEL 

We do not intend to denigrate the model- 
ing approaches described above. Models em- 
ploying IRKS (even nested IRKS, in the TAC- 
WAR example above) are honest and useful 
attempts to evaluate C4ISR effects. Experienced 
modelers also know that IRKS provide very 
quick sensitivity analysis. If the IRK does not 
effect the results at its extremes, then it is un- 
likely that installing a large functional model to 
replace the IRK would be worthwhile. 

But what happens when we attempt to re- 
place sensor IRKS with measurable parameters? 
At the system level, we can estimate the prob- 
abilities that a sensor responds, the distribution 
of the timeliness of the response, and the prob- 
ability of a correct assessment. Unfortunately, 
this still leaves us with an incomplete decision 
tool. As General Schwartzkopf’s quote indi- 
cates, we cannot easily translate a large number 
of probabilities into attack decisions. Since we 
cannot currently do this translation, we settle 
for modeling approaches that reduce C4ISR to 
noise factors that degrade results. 

Furthermore, there is very little available 
work on modeling the allocation of sensors. A 
notable exception is the Sensor-Platform Allo- 
cation Model (Rice 1997), which uses a linear 
program (LP) to match sensors to targets to 
provide coverages. While the coverage require- 
ments are inputs into this model, it at least 
attempts to find a good allocation. Many mod- 
els use fixed rules for assigning sensor re- 
sources and leave the user to discover a good 
set of assignments. 
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Consequently, we would like an integrated 
model that, based on the probability that a target 
is in a particular state, decides whether to at- 
tack (and with what), look (and with what), or 
to ignore the target. This avoids the problem 
noted by General Schwartzkopf, because the 
model recommends actions based on probabil- 
ities, rather than merely computing the proba- 
bilities. Furthermore, such a model could help 
investigate the relationships between transfor- 
mation (attack) and sensor (information) re- 
sources. 

Such a model requires performance data 
for the sensors. We characterize our BDA sen- 
sor systems using two different parameters. 
The first is throughput, or the number of targets 
the sensor can assess per unit time. This defini- 
tion is important because it specifies the num- 
ber of assessments available for campaign plan- 
ning. We do not use bit rates, bandwidth, or 
even images produced; all we care about is the 
finished assessments. In this sense, we are de- 
scribing the output of the entire sensor system 
(often called the promulgation, exploitation, 
and dissemination system, or PEDS). The sec- 
ond is the assessment probabilities of the sensor 
system. We assume that the sensor system as- 
sesses a target as being in a discrete state (e.g., 
functioning or destroyed), and that probabili- 
ties of correct assessments given the target state 
are available. 

COMPUTATIONAL CHALLENGES 
The introduction of target state probabili- 

ties also introduces tremendous computational 
difficulties. To illustrate these, consider the fol- 
lowing small scenario: we have 1 target, with 
two possible states (functioning or destroyed). 
We use a 3-day planning horizon with 3 oper- 
ating periods per day, so we have 9 possible 
“stages.” In each stage, we can either attack the 
target with 1 of 2 weapon types, look at it with 
1 of 2 sensor types, or pause until the next 
stage. The weapons have known probabilities 
of kill, and the sensors have known error prob- 
abilities (reporting a functioning target as de- 
stroyed, or vice versa). 

We call a rule for taking an action based on 
the probability the target is destroyed and the 
stage a policy. One measure of the difficulty of 
solving this problem is the number of available 
policies. Even for this simple problem, the an- 
swer is surprisingly large: there are 8.3 X 1O27o 
possible policies! 
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To see why this is, let N be an index for the 
stages and S, be the number of possible poli- 
cies. The recursive expression for the number of 
policies for this example is 

s1 = 5 
SN = 3&-l+ 2$-l, N = 2, . . .9. 

The sensor looks result in two possible out- 
comes, so any particular policy must specify an 
action for either possible target assessment, re- 
sulting in the squared term in the recursion. 

Our current doctrine only considers a lim- 
ited number of policies, such as “shoot-shoot,” 
or “shoot-look-shoot.” Yet, with many different 
types of aircraft, weapons, and sensors avail- 
able, there are many more plausible policies. 
Consider the policy in Figure 2, which reflects 
many realities in modern air warfare. The pol- 
icy begins with an attack using a plentiful asset 
(the F-16 with an unguided weapon). If UAV 1 
(a plentiful but somewhat inaccurate sensor) 
assesses the target as destroyed, the policy 
stops. If it assesses it as alive, we look again. If 
the target still appears alive, we send in the 
more precise, but less plentiful, UAV 2. If it 
confirms the target is still alive, we assign a 
scarce, high-value F-117 and a laser-guided 
GBU-27 bomb to the target. 

Given the attack probabilities of kill and the 
assessment probabilities of each sensor, we can 
compute the expected sensor looks and sorties 
consumed and the probability the target is de- 
stroyed by this policy. But now consider a real 
campaign problem, with hundreds of aircraft- 
weapon combinations, thousands of targets, 
and lo-20 sensor types. We cannot even begin 
to compute all the possible policies. 

THE MASTER ALLOCATION 
PROBLEM 

Assume for the moment that we can gen- 
erate the entire collection of possible attack pol- 
icies. Then, we could solve the allocation prob- 
lem using a relatively simple model. 

The DOD possesses many optimization 
models that allocate aircraft and weapons to 
targets, such as HEAVY ATTACK (Brown, 
Coulter, and Washburn 1994), the Conventional 
Target Evaluation Model (Cotsworth 1993), and 
the Conventional Forces Assessment Model 
(Yost 1996). These models all use “shoot” or 
“shoot-shoot” policies as input, but they could 
be easily extended to handle sensors. Consider 
the following formulation of such an LP: 

5 4 

Stages Left 

3 2 1 0 

0 

shoot WI 
F-l 6, Mk-84 

stop 
.-.- 

%. 0 

look w,*******..,. 
UAV 1 N. 

stop 
. . . . . . . . . . . . BDA live 

**----o 
-.- BDA dead 

*... 
%* 

look WI *‘**..,. 
stop 

UAV 1 “*.-.-.a 
%. 

*._ 
look WI -‘***.... 
UAV 2 ‘**... 

stop 

‘- 

shoot WI 
F-l 17, GBU-27 

Figure 2. A complex policy. The planner may start by attacking the target with a plentiful asset (the F-16 using 
unguided Mk-84 bombs). I f  the BDA from UAV 1 indicates the target is destroyed, we stop; otherwise, we look 
again. If  the target is still alive, we use the more precise, but less plentiful, UAV 2. If  it still indicates the target 
is alive, we resort to using a precision attack with an F-117 and a laser-guided GBU-27 bomb. 
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l Sets And Set Indices 

iE1 
WEW 

gEG 
OEO 
s E s* 

t 

l Data 

5 

PDp 

ESigst 

SORTi, 

EWwgs 

WPN, 

TGT, 

ELogst 

LOOK,, 

EAis 

MAXATT~ 

l Variables 

xgs 

aircraft types 
weapon types 
target types 
sensor types 
possible policies for target type g 
time period; t = 1, 2, . . . T 

value of gth target type per 
target 
probability of destroying target 
g using policy s 
expected number of aircraft i 
sorties required by policy s 
against target g in period t 
number of sorties of ith aircraft 
type available in period t 
expected number of type w 
weapons expended using 
policy s against target g 
number of weapons of type w 
available 
number of targets of type g 
available 
expected number of sensor o 
looks at target g required by 
policy s in period t 
number of type o sensor looks 
available in period t 
expected attrition of aircraft i 
using policy s 
maximum expected attrition 
allowed for aircraft of type i 

number of type g targets 
attacked using policy s 

l Objective Function 

max 2 2 VgJ’Dgsxgs 
x LEG s&S, 

0 Constraints 

(1) 

c c ES, Igst~gs 5 SORTit, for all i, t(sdJ 
gEG sES, 

(2) 

c c EWwgSxgs 5 WPN,, for all w(wd,) 
gEG SES, 

(3) 

c xgs = TGT,, for all g(td,) (4) 
S&S, 
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c c EL Dgst~gs I: LOO&, for all 0, t(ld,,) 
gEG sESs 

(5) 

2 2 EAisXgs I MAXATTi, for all i(ad,) 
LEG SES, 

(6) 

xgs 2 0, for all g E G, s E S, (7) 

The objective function (1) maximizes the 
expected value of destroyed targets. The sortie 
constraint (2) limits expected sortie consump- 
tion for each aircraft type and time period. The 
weapon constraint (3) limits expected weapon 
consumption across the time horizon. The pol- 
icy allocation constraint (4) limits the assign- 
ment of policies to available targets; we include 
a “null” policy that assigns no resources to a 
target for feasibility. The sensor constraint (5) 
constrains expected sensor looks by type and 
time period, and the attrition constraint (6) lim- 
its expected losses by aircraft type. 

The dual variables associated with each set 
of constraints are listed in parentheses. These 
variables, which give marginal resource costs, 
are important in this article and are defined 
below: 

marginal cost of a sortie of type i in 
period t 

WdW marginal cost of a weapon of type w 

tdg marginal cost of a target of type g 
14, marginal cost of a look from sensor 

type o in period t 

ad, marginal cost of attriting an aircraft of 
typei 

By assuming the aircraft, weapons, sensors, 
and targets of each type are indistinguishable (a 
common assumption for this class of models), 
we end up with an optimization model with a 
relatively small number of constraints. Note 
also that the details of the policies play no role 
in the LP; all that is required is the probability 
of target destruction and the expected re- 
sources used. The policy shown in Figure 2 
could easily be represented in this LP. 

Basic LP theory tells us that solving the LP 
with any subset of the possible policies yields a 
lower bound on an optimal solution. These pol- 
icies can come from current doctrine; it is 
straightforward to generate the expected re- 
sults of “shoot-shoot” or “shoot-look-shoot” 
tactics for various combinations of weapons 
and sensors. As a result, we can quickly pro- 
duce a lower bound on the optimal solution. 
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FINDING IMPROVING POLICIES 
We must now confront the main issue, 

which are the sizes of the sets S . The huge 
number of possible policies prom its generat- -%* 
ing all policies in this set for inclusion into an 
optimization. Even our trivial example con- 
tained 8.3 X 1O27o possibilities; an instance of 
the master LP with a realistic number of plat- 
forms, weapons, sensors, and target types 
would be unmanageable. 

As noted above, we can easily construct a 
starting set of policies to run the LP and pro- 
duce a lower bound. The challenge is to search 
the remaining policies to find those that can 
potentially improve the solution. But, we do 
not have to find very many of these policies. 
Basic LP theory also tells us that there exists an 
optimal solution to the LP that contains at most 
as many nonzero variables as there are con- 
straints (e.g., Bazarra, Jarvis, and Sherali 1990, 
pp. 53-54). The LP above only contains con- 
straints for each type of resource, so the row 
size of the problem is small (several hundred 
for the problem we solve later). 

We clearly need a separate search proce- 
dure to find policies that can improve the LP 
solutions. The sample policy shown Figure 2 is 
a decision tree; at each stage and state, we have 
to make a decision on which resource to use. 
We know the performance parameters of the 
attack and sensor resources, so we can compute 
the expected consumptions and results of any 
policy by traversing the tree. What we lack are 
costs we can use to choose among resources at 
each decision node. 

The master LP, however, explicitly defines 
the value of each target. If we could find values 
on the same scale for the aircraft, weapon, and 
sensor resources, we should be able to solve for 
policies that can improve the LP solution by 
solving the corresponding decision trees. With 
this in mind, we define the following additional 
notation for the “policy subproblem,” which 
searches for improving policies: 

a E ATK, set of allowable attack tactics 
for target type g 

P pause action 
n stage, or number of time 

periods remaining; n = 0, 1, 

NW,, ” ” 
T 

number of type w weapons 
required by tactic a 

NSai number of type i aircraft sorties 
required by tactic a 

p&g probability of attrition of 
aircraft type i using tactic a 
against target type g 

PKag probability of destroying a 
target of type g using tactic a 

% probability sensor type o reports 
the target is functioning, given 
that the target is destroyed 

PO probability sensor type o reports 
the target is destroyed, given 
that the target is functioning 

7T probability the target is 
destroyed 

In the following, we assume the attacks and 
sensor looks are independent. Furthermore, we 
assume (without loss of generality) that the 
attacking aircraft has no capability of assessing 
a target, and that the sensor errors are indepen- 
dent of target type. In each stage, we can either 
attack the target, pause, or look at the target 
with a sensor, but the only mechanism that can 
change a target’s true state is an attack. All 
targets are assumed to be functioning at the 
start of the time horizon. 

At any stage, we can determine the proba- 
bility a target is destroyed based on the action 
we take and the existing probability of destruc- 
tion. Denote the current probability the target is 
destroyed as rr. If we pause, then the updated 
probability the target is destroyed (denoted r’) 
is unchanged. If we attack the target, then the 
updated probability is 

d = T + PK,,( 1 - r). 

If we look at the target, we have to consider 
each of the possible assessment responses. Us- 
ing Bayes’ Theorem, T’, given 7~ and an assess- 
ment the target is still functioning, is 

67n. 
,lT’ = (1 - PO)(l - 7r) + 6,rr’ 

Conversely, r’, given 7~ and an assessment the 
target is destroyed, is 

(1 - &7>~ 
*’ = &(l - 7T) + (1 - 8,)7r’ 

The denominators of the two expressions give 
the probability of assessing the target as func- 
tioning and destroyed, respectively. 

While this problem can be solved as a de- 
cision tree, it is more efficient to use stochastic 
dynamic programming (SDP) to find a solution. 
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SDP requires fewer operations than enumerat- 
ing a decision tree, and the SDP can be written 
compactly. Using the probabilities above, we 
write the formulation of this SDP as 

vu&(r) = (value of target g)~, 

uaZf(7~) = max of 

cause) calf-i(n), 

attack) max {-(cost of attack,,,) 
@SAX, 

+ vaZ~-,(T + PK,[l - 7r]), 

-(cost of look,,,) 

+ [(l - PO)(l - r) + S,ri-]Val$-i 

1ook)max ’ 1 (1 - &)(I - n) + 8,~ 
0 

+ [(l - PO)(l - rr) + S,7r]vaZ~-, 

I( 
(1 - &h 

PO0 ) 1 - 4 + (1 - 67)~ 
n = 1, 2, . . . T. 

Solving this SDP will yield a policy that 
gives the maximum expected “payoff” for pros- 
ecuting a target of type g. The SDP solution will 
define, for each time period and value of rr, the 
optimal action to take, similar to the policy 
shown in Figure 2. The SDP balances the value 
of the target with costs of the resources and 
their expected amount of use in the policy; if 
the target’s value is low and the resource costs 
are high, the optimal policy is to ignore the 
target. Conversely, if the target’s value is high 
and the resource values are low, the optimal 
policy can expend considerable resources and 
still achieve positive expected value. 

We still need costs for attacks and looks. 
Fortunately, the master LP provides these re- 
source values via the marginal costs given by 
the dual variables. We can use these costs as 
proxies for the values of the aircraft sorties and 
attrition, weapon expenditures, and sensor 
looks. For example, the total expected sortie 
cost for the policy in Figure 2 would be the dual 
cost of an F-16 sortie with 5 stages left 
(sd,-,~,.+,+,), plus the probability that the 
F-117 sortie is used in the policy times the dual 
cost of the sortie (sd,-ii,,). 

Referring back to the formulation of the LP 
and the additional notation above, we can com- 
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pute the attack and look costs using the mar- 
ginal costs: 

cost of attackag, = sortie cost 

+ weapons cost + attrition cost 

= NS,iSdi,T-,+1 + NW,,wd, 

+ NS,J’AQigadi 

n = 1,2, . . . T, u E AT&; 

cost of lookOgn = sensor look cost 

= N,,m+l, n 

= 1, 2, . . . T. 

The attack cost is the cost of the sorties 
expended, weapons expended, and expected 
attrition, as “priced” by the master LP. Simi- 
larly, the cost of a sensor look is the LP-deter- 
mined dual cost from the sensor constraints for 
each stage. Once we have solved for the policy, 
we can enumerate the resulting decision tree 
and compute the expected consumptions, so 
determining the expected use of each resource 
is straightforward. 

THE COMPLETE DECOMPOSITION 
ALGORITHM AND BOUNDS 

The master LP and the SDP above can be 
combined to form a complete decomposition 
algorithm as shown in Figure 3. Starting with 
an initial set of attack policies, the master LP 
assigns costs to the resources via the dual vari- 
ables. The subproblems then find improving 
policies for each target type and introduce them 
to the master LP. The new LP solution then 
adjusts the marginal costs. 

It is necessary to develop a stopping crite- 
rion for this scheme, as the huge number of 
possible policies can result in very long tail 
convergence. The criterion suggested in Figure 
3 is to stop when the difference between an 
upper and lower bound is small. 

Solving the master LP with any subset of 
the policies yields a lower bound on the solu- 
tion. To get an upper bound, we can use La- 
grangian relaxation (e.g., Fisher 1985). In La- 
grangian relaxation, some of the constraints of 
the problem are rewritten as penalty terms in 
the objective function (hence “relaxing” the 

Page 83 



OPTIMIZING ASSIGNMENT OF AIR-TO-GROUND ASSETS AND BDA SENSORS 

Target importance, resource costs, 
lower bound 

Improving policies, 
upper bound 

Quit when 
(upper bound - lower bond) 

small 

Figure 3. Basic decomposition scheme for the sensor-shooter model. Starting with a small set of initial policies, 
the LP produces implicit costs on sensor and attack resources via the dual variables. The SDP subproblem then 
produces the best policy for each type of target for those costs. The algorithm produces upper and lower bounds 
-and stops when they become sufficiently &se. 

problem). The relaxed version of the master LP 
iS 

mm 
x 

st 2 xgs= TGT,forallgEG 
S&S, 

x,?OforallgEG,sES,. 

To see that this LP provides an upper 
bound, consider a different version of the orig- 
inal master LP, but with the objective function 
shown above. Since the new objective function 
differs only in that it contains additional non- 
negative terms, its optimal value must be at 
least as large as the original LP. Relaxing all but 
the target constraints yields the upper bound 
LP, but relaxing constraints in an optimization 

cannot decrease its optimal value. Therefore, 
the LP above provides an upper bound for any 
intermediate set of dual variable values. 

Furthermore, this LP decomposes into IGI 
separate optimizations, one for each target 
type. The solution of each target type optimi- 
zation is 

ug = val$[l], 

where the argument 1 indicates that the target 
is assumed functional at the start of the optimi- 
zation. Since ug contains expected target payoff 
as well as the costs of the expected resources 
consumed, the upper bound can be rewritten as 

upper bound 
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This bound is the current marginal costs 
multiplied by the right-hand-sides of the con- 
straints, plus the number of targets of each type 
times the value of the current optimal policy for 
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each target type. The global upper bound is the 
minimum of all upper bounds generated; each 
is a bound on the optimal solution, and there is 
no guarantee that the sequence of upper 
bounds will decrease. Nonetheless, each relax- 
ation is an upper bound, so their minimum is as 
well. 

our example, these probabilities correspond to 
the sensor assessment probabilities. 

This decomposition is guaranteed to con- 
verge. Each possible policy is a column in the 
LP, and the SDP subproblems explicitly search 
all possible policies for each target type. If the 
subproblems cannot produce at least one policy 
that prices favorably in the master LP, then 
there can be no further improvement, and we 
have found the optimal solution. The decom- 
position is really no different than any other 
linear program; we merely choose to search the 
available columns (policies) in a separate step 
to avoid generating an unmanageable (and un- 
necessary) number of them. 

The dynamics of a POMDP are shown in 
Figure 4. The object we are controlling begins in 
a known state (or has a known distribution 
over its states). We take an action, which results 
in a probabilistic state change. The object then 
transitions, and we make an observation that is 
subject to error. We incur some cost based on 
the resources used in the action and observa- 
tion, and receive a terminal reward based on 
the final state of the object. 

THE SDP SUBPROBLEM AS A 
POMDP 

In our application, solving the POMDP 
means finding the policy that maximizes the 
expected total reward (i.e., the expected termi- 
nal reward--the expected action and observa- 
tion costs). The introduction of partial observ- 
ability, however, makes the POMDP much 
more difficult to solve than the corresponding 
MDP. Since we now must make decisions 
based on the probability of a target being in a 
certain state, we have a continuous state space 
rather than the simple (functioning, destroyed) 
state space in the MDP. This means that the 
normal MDP solution approach (SDP) cannot 
be applied directly to the POMDP. 

We still have more challenges to overcome 
with the subproblems. The state of the target, T, 
is continuous on the interval [O,l]. Therefore, it 
is not possible to iterate across all possible 
states, and standard stochastic dynamic pro- 
gramming iteration will not work. Systems 
such as this are known in the literature as Par- 
tially Observable Markov Decision Processes 
(POMDPs); Sondik (1971) formalized the the- 
ory of these systems. 

The POMDP is a generalization of the more 
common Markov Decision Process (MDP) 
model. An MDP consists of an object with a 
finite set of states, a set of available actions with 
probabilistic outcomes, a specified time hori- 
zon, and a set of transition probabilities. The 
object’s state is based solely on its previous 
state and the action taken. More importantly, 
the decisionmaker in the MDP model has per- 
fect information on the state of the object. In our 
problem, this would make sensors unneces- 
sary; we would know immediately the outcome 
of any attack. 

Make observation. 

t 
Object transitions 

to new state 

t 

, Incur cost 

1 

, 

Update history 
t=t+1 

I 

t I 
Yes 

The POMDP model extends the MDP by 
introducing observation errors, which result in 
“partial observability.” A POMDP contains an 
additional set of observation probabilities, 
which are the probabilities of observing each 
state when the-object is in a particular state. In 

Figure 4. The dynamics of a T-stage POMDP. The 
object we are controlling begins in a known state (or 
has a known distribution over its states). We take an 
action, the object then transitions, and we make an 
observation that is subject to error. We incur some 
cost based on the resources used in the action and 
observation, and receive a terminal reward based on 
the final state of the object. 
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A description of exact solution techniques 
for POMDPs is beyond the scope of this article. 
In general, it is very difficult to get an exact 
solution for POMDPs with large numbers of 
states or long time horizons, and this issue is 
the most likely cause for the lack of POMDP 
applications. A complete technical description 
of the exact solution scheme for the sensor- 
shooter problem is given in Yost (1998); we also 
recommend POMDP survey papers by Lovejoy 
(1991a) and Cassandra (1994). 

It is important to note, however, that the 
subproblem can easily be solved by SDP by 
quantizing the target states (e.g., 0, 0.1, 0.2, . . . 
1.0). This, coupled with an interpolation 
scheme for determining the value function, al- 
lows the use of standard dynamic program- 
ming iteration. This is a very attractive imple- 
mentation option, particularly if the precision 
of input performance data (such as sensor error 
probabilities) does not justify the computa- 
tional demands of an exact method. Also, the 
finer the quantization, the closer the policies 
will be to an exact optimum. 

A drawback with quantization schemes is 
that the upper bound generated by the relaxed 
LP is no longer a global upper bound, because 
the quantized subproblems only search a sub- 
set of all possible policies. Lovejoy (1991b) and 
Hauskrecht (1998) offer methods that can com- 
pute legitimate upper bounds, but a much sim- 
pler mechanism is to stop the decomposition 
when the change in the optimal value of suc- 
cessive lower bound LPs is below some toler- 
ance. 

The reader may wonder if it is possible to 
solve the entire problem as a single POMDP. 
Unfortunately, this is even more intractable 
than trying to generate all possible policies for 
an LP. Trying to solve a POMDP for, say, m 
targets each with n states requires a state space 
of size nm, with additional states required to 
keep track of weapons and sensors. Thus, the 
POMDP model alone cannot solve this prob- 
lem. 

AN INSTANCE OF THE SENSOR- 
SHOOTER PROBLEM 

With the LP providing costs of resources 
and the POMDP producing improving policies 
based on those costs, the decomposition can 
solve the sensor-shooter problem in an inte- 
grated fashion, and can do so quickly. Our 

notational example is constructed from real 
USAF pl arming data for a theater campaign. 
The allocation problem contains 9 strike aircraft 
types, 42 weapon types, 65 target types, and 10 
BDA sensor types. The planning horizon is 72 
hours, and contains 3 attack waves in each 24- 
hour period, for a total of 9 stages. For every 
combination of aircraft, weapon, and target 
type, we have several feasible attack tactics; 
there are a total of 5203 feasible aircraft-weap- 
on-target-tactic combinations. 

This instance has an essentially infinite 
number of policies (approximately 10762). Yet, 
the structure of the master LP ensures we will 
only pick a small number of these policies. 
There are only 287 constraints (9 X 9 = 81 sortie 
availability constraints, 42 weapons availability 
constraints, 65 target availability constraints, 
10 X 9 = 90 sensor availability constraints, and 
9 aircraft attrition constraints). Consequently, 
an optimal solution exists that uses at most 287 
policies; the difficulty is finding this small set 
among the huge number of possible policies. 

We initialize the decomposition by com- 
puting a set of initial policies heuristically. In 
this example, we determine the 3 best “shoot 
once” policies for each target type for each time 
period, and then add the 3 best “shoot-look- 
shoot” policies for each target type and each 
applicable time interval. Finally, we include the 
best attack tactic for each aircraft and weapon 
type to ensure we generate dual costs for all 
resources in the optimization. This results in an 
initial set of 2214 policies, which are columns in 
the master LP. 

Once we run the LP with the initial policies, 
we generate a set of marginal costs for sorties, 
sensor looks, weapons, target attacks, and air- 
craft attrition. With these costs and the value of 
each target, we solve the POMDP for each tar- 
get type, yielding 65 new policies (one for each 
target type). We add these policies to the mas- 
ter LP, rerun it, and then use the new marginal 
costs to resolve the POMDPs for new policies. 
We terminate the decomposition when the dif- 
ference between the upper and lower bounds is 
less than 0.1%. 

In our implementation, we do not discard 
any policies, including the initial ones; we keep 
all generated columns in the master LP. Many 
decomposition schemes in the literature inves- 
tigate schemes to control column growth, but 
we have not found this to be an issue in our test 
problems. 
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COMPUTATIONAL RESULTS 
Despite the huge number of possible poli- 

cies, this approach is very efficient. Figure 5 
below shows the results of running the problem 
above; the decomposition converges in 98 iter- 
ations and only requires about 120 seconds of 
total time on a 300 MhZ Pentium-II PC. Ap- 
proximately 60% of the time was spent solving 
the POMDP subproblems; the rest of the time 
was used to solve the master LPs. The POMDPs 
were solved using Visual Basic 5.0 (Microsoft 
1997); the master LPs were solved using the 
CPLEX callable library (ILOG 1997). 

In this example, we used an exact method 
known as the “linear support algorithm” 
(Cheng 1988) to solve the POMDP subprob- 
lems. We note, however, that quantizing the 
target states would produce results very close 
to those shown in Figure 5. During our re- 
search, we experimented with several schemes 
that gave near-exact results with much faster 
subproblem solution times. While using a 
quantization scheme complicates the problem 
of producing a valid upper bound, the algo- 

rithm could just as easily terminate when im- 
provement between successive iterations be- 
comes small. 

Of more interest are the results. The objec- 
tive function value is nearly triple that achieved 
with the initial policies, which reflect current 
doctrine. While this answer is derived from 
notional data, it gives strong evidence of our 
earlier claim that sensor allocations and attack 
allocations should not be computed separately. 

We also implement the decomposition as 
part of a simulation. As we mentioned above, 
the typical campaign simulation follows preset 
rules to determine how C4ISR assets are em- 
ployed. Instead, we use the decomposition to 
determine BDA and attack allocations in each 
stage, simulate the outcomes, and then recom- 
pute new policies based on the simulated out- 
comes. 

Recall from the discussion of the subprob- 
lem that we started with each target assumed in 
state 1 (fully functional). This is not a require- 
ment, as the POMDP subproblem can start in 
any state. In our simulation, we solve the de- 
composition for the 9-stage problem, but only 
implement the first-stage decisions. We then 
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Figure 5. Results of the Decomposition with POMDP Solutions Exact to a Numerical Tolerance. The decom- 
position is initialized with 2,214 policies generated by a heuristic, and takes 98 iterations to solve to within a 
0.1% decomposition gap (difference between the upper and lower bound). The POMDP subproblems generate 
a total of 4,507 policies, and the final objective function value is nearly triple the objective function value 
achieved using only the heuristically-generated policies. 
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simulate the attack and look outcomes, restart 
the decomposition for the remaining stages, 
and repeat the process until all stages have 
been simulated. 

Yost (1998) shows that solving the decom- 
position gives an upper bound on the average 
objective function value. However, this yields 
no information on the distribution of objective 
function outcomes or allocations. The simula- 
tion described above allows us to estimate these 
distributions. Figure 6 below shows the distri- 
bution of total target value destroyed for 150 
repetitions using the sample data. 

Figure 6 also shows that the sample mean 
from the simulation is fairly close to the upper 
bound on the mean objective function value 
given by solving the decomposition. Most time- 
staged, deterministic optimizations do not do 
so well, because they in essence assume perfect 
information from stage to stage. However, this 
decomposition is different because the POMDP 
subproblems produce policies that optimize 
based on the attack and sensor probabilities. 
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To further demonstrate the value of the 
optimization-simulation approach, consider 
Figure 7. This is similar to Figure 6, but com- 
pares three different cases: having perfect BDA 
sensors (no error rates); having no BDA sen- 
sors; and having realistic BDA sensors. 

The results follow our expectations; as the 
sensors improve, so do our results. The sample 
distributions, however, also allow us to mea- 
sure variation and assess risk. The no sensor 
case, which corresponds to pure attack policies, 
has a sample mean similar to the other two 
cases. Nonetheless, the no sensor case has much 
more variation and does much worse more of- 
ten than the other two cases. 

The optimization-simulation approach 
mentioned above is particularly attractive be- 
cause we are dealing with’ probabilistic target 
states. In existing weapons optimization mod- 
els, the number of remaining targets is passed- 
from time period to time period and is com- 
puted using expectations. In the technique 
above, the optimization takes actions based on 

49600 51200 52800 54400 56000 57600 59200 60800 62400 

Objective Function Value 

Figure 6. Sample distribution of objective function values from the sensor-shooter simulation. This graph 
results from rurming the decomposition, simulating the outcomes for a stage of attacks and sensor looks, and 
reoptimizing for the next stage. The sample mean is given by (a); the original solution from running the 
decomposition, which gives an upper bound on the mean, is given by (b). Using simulation allows estimating 
the distribution of objective function values; also, we see the simulation sample mean is within 6% of the upper 
bound on the mean. The black bars indicate the sample cases where the objective function exceeded the upper 
bound on the mean. 
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Figure 7. Comparison of simulation outcomes for perfect sensor, realistic sensor, and no sensor cases. This 
gives the sample distributions of objective function outcomes under the three cases. The case with no sensors, 
which corresponds to pure attack policies, has the most variation and the lowest mean. The case with realistic 
sensors performs better, while the perfect sensor case has the highest mean outcome and the least variation. 

the estimated states of the targets, which are The following modification to the subproblem 
expressed as probabilities. implements this rule: 

EXTENSIONS AND RELATED 
APPLICATIONS 

An important point to make about the de- 
composition is the ease with which it handles 
very complex nonlinear relationships in the 
subproblems. The SDP shown in this article 
was extended in Yost (1998) to include plat- 
forms that could simultaneously attack and as- 
sess a target (e.g., a strike aircraft with targeting 
video), sensors with differing response times, 
and probabilities of sensors providing a re- 
sponse. 

Another timely example is modeling of col- 
lateral damage. Suppose each attack has “no 
guide” probability, denoted NG,,, and if the 
weapon fails to guide, it can cause substantial 
(and undesired) collateral damage. If the 
weapon causes collateral damage, then all at- 
tacks against the particular target must cease. 

( -(cost of attack,,,) 1 

Cattack) azr; 
+ (1 - NG,,)vaZ~-, 

(7T + PK,,[l - n-j) 
8 + NGJp 

n = 1, 2, . . . T. 

Including this has no effect on the master allo- 
cation problem. It remains linear, and only con- 
siders the expected payoff and resources con- 
sumed. 

The methodology presented in this article 
also directly solves several other models pre- 
sented in the literature. Evans (1996) discusses 
BDA and sortie requirements, and this method- 
ology addresses issues he raises about the dif- 
ferences between bad BDA and no BDA. Aviv 
and Kress (1997) analyze various shooting and 
looking policies; this methodology is a general- 
ization of the problem they study. 
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CONCLUSION 
We contend that the allocation of modern 

long-range weapons should not be considered 
independently of the allocation of BDA sensor 
resources. Unfortunately, including BDA sen- 
sors requires maintaining probabilities of target 
states and enormously complicates the alloca- 
tion problem. 

Yet, the latter case is the reality of modern 
warfare. We must frequently make decisions 
based on incomplete or inconclusive informa- 
tion (such as shown in Figure l), and many 
times it is not obvious whether we should at- 
tack, gather more information, or skip a target. 
The decision is a function of the value of the 
target and the value of the available resources, 
and, for a single target, we can use military 
judgement to come to a decision. It is when we 
have to make hundreds or thousands of such 
decisions that the problem becomes over- 
whelming. 

The problem is too large to be solved as a 
monolithic linear program or as a single deci- 
sion process. Nonetheless, by combining the LP 
and the POMDP, we can decompose the prob- 
lem and solve the sensor-shooter problem in an 
integrated fashion. This theory not only helps 
us analyze the tradeoffs between information 
and transformation resources, but aids in find- 
ing the correct balance between the two. Fi- 
nally, modeling the subproblem as a POMDP 
allows us to consider rules and relationships 
that would be difficult (or impossible) to imple- 
ment in a conventional optimization. 
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