
The LP/POMDP Marriage: Optimization
with Imperfect Information

Kirk A. Yost,1 Alan R. Washburn2

1U.S. Air Force

2Operations Research Department, Naval Postgraduate School,
Monterey, California 93943-5000

Received May 1999; revised June 2000; accepted 6 June 2000

Abstract: A new technique for solving large-scale allocation problems with partially observable
states and constrained action and observation resources is introduced. The technique uses a master
linear program (LP) to determine allocations among a set of control policies, and uses partially
observable Markov decision processes (POMDPs) to determine improving policies using dual
prices from the master LP. An application is made to a military problem where aircraft attack
targets in a sequence of stages, with information acquired in one stage being used to plan attacks
in the next. c© 2000 John Wiley & Sons, Inc. Naval Research Logistics 47: 607–619, 2000

Keywords: linear program; Markov decision process; information

1. INTRODUCTION

We introduce a technique for solving optimization problems where constrained resources must
be sequentially allocated to control a large number of objects, each of which has a finite number
of states. The resources have random effects on the objects, and the outcomes are not known
with certainty; that is, the object states are only partially observable. Our work is motivated by a
military problem where weapons and sensors must be gradually allocated to targets, an example
of which is given in Section 5. Another application might be in medicine, where treatments with
random effects are made on the basis of error-prone tests by equipment whose availability is
sometimes severely constrained.

While the literature has tended to treat such situations using decision-theoretic approaches
(e.g., Marshall and Oliver [13]), these methods do not explicitly handle constrained resources,
nor do they allow such resources to be shared among different objects. A problem of this class
might be cast as a stochastic program with recourse (e.g., Klein Haneveld [9]) where one engages
a three-step process: (i) making an initial resource allocation; (ii) observing the outcomes once
the realization of some random variables generates a scenario; and (iii) reacting with a second,
follow-on decision involving resource adjustments or reallocation. However, the structure of our
problem makes this approach difficult for two reasons. First, the outcomes in step (ii) cannot be
determined with certainty in our problem, so the recourse mechanism in step (iii) is not viable.

Correspondence to: A.R. Washburn

c© 2000 John Wiley & Sons, Inc.

608 Naval Research Logistics, Vol. 47 (2000)

Second, the random variables of step (ii) depend on the allocations of step (i) in our problem,
whereas they are assumed to be independent of those allocations in a recourse formulation. These
difficulties appear to be insurmountable, so we have not pursued this line of thinking further.

Previous work in this area includes Jonsbraten [10], who studied a well-drilling application
with partial observability using a decision tree with constraints. Jonsbraten, Wets, and Woodruff
[11] developed a stochastic programming model where the random elements do depend on the
actions taken; they note that the literature in this area is very sparse, and cite only one paper on
the Markovian case (Pflug [16]).

Castanon [4] considers the allocation of one aircraft sensor type to find targets of multiple types.
He combines POMDPs with Lagrange multipliers to meet the single sensor constraint, noting that
finding a way to generalize the technique for larger problems is a subject for further research.

The LP/POMDP technique introduced by Yost [19] can be thought of as a logical descendent
of Castanon’s work where the Lagrange multipliers are the dual variables of a linear program
(LP), rather than exogenously determined. The LP/POMDP technique employs a master linear
program (LP) to assign costs to resources through its dual variables, and a set of POMDPs using
these resource costs to find improving columns for the master LP. The resulting algorithm is a
column-generation method that can be used to solve certain large allocation problems that would
otherwise be intractable.

We begin by describing the case where there is only one object, even though the technique will
perform at its best on problems where there are many.

2. CORE PROBLEM FOR A SINGLE OBJECT

Let I be a set of m constrained resources, and let R and Y ≡ (Y1, Y2, . . . , Ym) be m+1 random
variables, with R being a reward and Yi being the amount of resources of type i consumed. The
joint distribution of R and Y depends on which policy is chosen. We make no assumptions about
R and Y other than that each has a known expected value for every policy. The object is to choose
a policy within some finite feasible set S, possibly at random, to maximize E(R) subject to
E(Y) ≤ b, where b is an appropriately dimensioned vector of resources and E() is the expected
value operator. Denote E(R) and E(Yi) when using policy s as ERs and EYsi, respectively.
With this notation, we can express our problem as a linear program LP(S) where the variable xs

represents the probability of choosing policy s:

LP(S) : maximize
∑
s∈S

ERs xs

subject to
∑
s∈S

EYsi xs ≤ bi ∀i ∈ I,

∑
s∈S

xs = 1, and

xs ≥ 0 ∀s ∈ S.

The sums in the objective function and resource constraints are E(R) and E(Yi), respectively,
by the conditional expectation theorem. We assume that b ≥ 0 and that there is a null policy in S
that consumes no resources, so LP(S) has a feasible solution. The value of LP(S) will in general
be greater than the value of the restricted problem in which the variables are required to be 0 or
1; that is, it is significant that the decision maker is permitted to choose a strategy at random as

Yost and Washburn: Optimization with Imperfect Information 609

long as the expected consumption of resources meets the constraints. Given that EYsi already
represents an expected value, solving LP(S) as a 0/1 integer program would not in general have
the effect of guaranteeing that resources never be exceeded, and that is not our intention at this
point anyway. We will comment further on this in Section 7.

The set S is assumed to be so large that enumeration of all possible policies is out of the
question. In such cases, the best approach is usually to find an ε-optimal algorithm. This requires
upper and lower bounds on the maximized objective function value v(S). A lower bound is readily
available by solving LP(T), where T is any subset of S. To obtain an upper bound, consider the
following Lagrangian relaxation LPU(S;λ), where λ = (λ1, . . . , λm):

LPU(S;λ) : maximize
∑
s∈S

ERs xs +
∑
i∈I

λi

(
bi −

∑
s∈S

EYsi xs

)

subject to
∑
s∈S

xs = 1, and

xs ≥ 0 ∀s ∈ S.

Let u(S;λ) be the optimal value of LPU(S;λ). As long as λ ≥ 0, u(S;λ) ≥ v(S), with equality
in the case where λ is equal to the optimal dual variables of the resource constraints of LP(S)
(e.g., Parker and Rardin [15]). Furthermore, since LPU(S;λ) contains one simple constraint, the
optimal value is given by

u(S;λ) =
∑
i∈I

λibi + max
s∈S

{
ERs −

∑
i∈I

λi EYsi

}
. (1)

For any given set of resource prices λ, finding the upper bound u(S;λ) is a matter of solving
the maximization part of (1), which may be possible (see Section 3) in spite of the large size of
S. If some policy that solves (1) is already in T , then LP(S) and LP(T) have the same solution;
otherwise, some solution of (1) not already in T can be added to T and the process repeated. More
formally, we can write a dynamic column generation algorithm for solving LP(S) (Gilmore and
Gomory [7, 8]):

Input: An initial subset T 1 of S and a nonnegative tolerance ε.
Output: An ε-optimal solution of LP(S).
Step 1: Set k = 1.
Step 2: Solve LP(T k) for v(T k) and a set of dual prices λk.
Step 3: Solve (1) for u(S;λk) and an optimizing policy s.
Step 4: If u(S;λk) − v(T k) ≤ ε, stop.
Step 5: Let T k+1 = T k ∪ {s}.
Step 6: Add 1 to k and go to Step 2.

If s ∈ T k, then u(S;λk) = u(T k;λk) = v(T k) and the algorithm stops in Step 4. The union
operation in Step 5 is therefore always nontrivial, so the algorithm will stop after at most |S| steps
even if ε = 0. However, there is little comfort in this finite convergence property on account of the
assumed large size of S. The main utility of the algorithm is in computing nearly optimal solutions

610 Naval Research Logistics, Vol. 47 (2000)

after a number of steps that is much smaller than |S|. Regardless of the stopping criterion, v(T k)
will always be a lower bound on v(S) because T k is a subset of S.

3. APPLYING PARTIALLY OBSERVABLE MARKOV
DECISION PROCESSES (POMDPS)

The algorithm described in Section 2 makes no reference to time or information. It is a generic
column-generation scheme that might be useful in any circumstance where LP(S) is hard to
solve while (1) is not. However, the characteristics of the kind of problems described in the
Introduction—sequential decisions and partial observability—make the set of strategies available
in a Markov Decision Process an attractive choice for S. Since the state is only partially observable,
the POMDP generalization is especially attractive.

A POMDP involves a sequence of decisions U0, . . . , UN−1 and a sequence of observations
Z0, . . . , ZN−1, with a decision-making policy being admissible if Uk depends only on the
observable history Ik ≡ (Z0, Z1, . . . , Zk, U0, U1, . . . , Uk−1), for k = 0, . . . , N − 1 (e.g.,
Bertsekas [1]). The observation Zk depends stochastically on the true state Xk of the process
at time k, but the true state Xk is known only to the extent that it can be deduced from Ik. The set
of admissible policies S is typically enormous, but POMDPs are solvable as a practical matter
on account of the Markovian nature of state evolution and the way observations are generated.
The crucial result is that the state probability distribution given Ik is a sufficient statistic for the
decision Uk [1], which has the effect of converting the POMDP into an ordinary Markov Decision
Process over a much larger but observable (via Bayes Theorem) state space.

The specification of a POMDP, as originally formalized by Smallwood and Sondik [18], re-
quires a scalar reward function G(k, U, X) that is interpreted to be the net reward at time k for
making decision U when the true state of the process is X . In our case G(k, U, X) will be the
difference between a reward r(k, U, X) and the cost of the resources consumed; specifically
G(k, U, X) ≡ r(k, U, X)−λy(k, U, X), where y(k, U, X) is an m-vector representing expected
resource consumption and λ is an m-vector of prices for those resources. The expected total net
profit for a given policy s is then the accumulation of all net profits:

p(s;λ) = E

[
r(XN) +

N−1∑
k=0

G(k, Uk, Xk)

]
, (2)

where r(XN) represents a terminal reward that depends only on the final state. The random
variables Uk and Xk have a joint distribution that depends on s. The optimal policy is the policy
in S that maximizes the expected total net profit, which maximum we denote p(S;λ). In spite of
the large size of S, efficient techniques are available for calculating p(S;λ).

The accumulated net profit can also be written as the difference R − λY , where R is the
accumulated reward [including r(XN)], and Y is the vector of accumulated resource consumption.
Recalling the definitions of ERs and EYsi from Section 1, the POMDP solution of (2) is equivalent
to

p(S;λ) = max
s∈S

{
ERs −

m∑
i=1

λi EYsi

}
. (3)

This provides the link between the POMDP and the master LP. Solving the POMDP is
equivalent to solving LPU(S;λ), and the solution provides an upper bound on v(S) through

Yost and Washburn: Optimization with Imperfect Information 611

the relation

u(S;λ) =
m∑

i=1

λibi + p(S;λ). (4)

Furthermore, the maximizing policy also defines a new column to be included in the master LP.
Let wk be the dual value of the equality constraint in the solution of LP(T k). The dual of

LP(T k) includes the constraints wk ≥ ERs −∑m
i=1 EYsi λk

i ∀s. From (3), wk must therefore be
p(T k;λk), and consequently Step 3 of the algorithm could be written as

3. If p(S;λk) − wk ≤ ε, stop.

In other words, if the POMDP cannot find a new column with a reduced cost greater than ε, the
algorithm terminates with an ε-optimal solution.

The LP/POMDP algorithm as so far specified can be regarded as a method for including
resources in a POMDP that are constrained, rather than priced. This is a potentially important
extension from the viewpoint of POMDP applications. The POMDP literature, with the notable
exception of [4], assumes a known cost structure. A common situation in reality (as will be
demonstrated in our example problem) is that there is no marginal cost structure for actions or
observations; there are merely availability constraints.

Lovejoy [12] and Cassandra [2] provide good surveys of the POMDP literature. The POMDP
problem has been shown to be PSPACE-complete by Papadimitirou and Tsitsiklis [14], and even
the best of the current algorithms has difficulty when there are many states. By the basic theory of
linear programming, there exists an optimal solution for LP(S) that involves at most m + 1 basic
variables. We assume m is much smaller than |S|, so it should come as no surprise that most of the
computation time involved in solving LP(S) is spent in the column generation phase (POMDP
calculations), rather than in the master LP. The LP/POMDP algorithm must solve a sequence of
POMDPs, so the size of the state space will in practice have to be kept small.

4. SCALING UP TO MULTIPLE OBJECTS

Consider next a problem where there is a set J of classes of identical objects, with Nj being
the number of objects in class j. Each class j has a separate set Sj of feasible policies, with
each policy affecting only a single object in j. Let S = ∪j∈JSj . Also let the decision variable
xsj be the expected number of objects in class j to which policy s is applied. Note that the
decision variables are not necessarily integer-valued and that they do not completely determine
a method for choosing a collection of policies, since many joint distributions may have the same
marginal expected values. The nonoptimized degrees of freedom are useful, as will be explained
in Section 7, but only the averages xsj are involved in the optimization. Finally, assume that
both rewards and resource consumption are additive over classes. Then, since sums and expected
values commute, the expanded master LP for maximizing the total expected reward is (with dual
variables in parentheses):

LP2(S) : maximize
∑
j∈J

∑
s∈Sj

ERsjxsj

subject to
∑
j∈J

∑
s∈Sj

EYsjixsj ≤ bi ∀i ∈ I, (λi)

∑
s∈Sj

xsj = Nj ∀j ∈ J, and (wj)

612 Naval Research Logistics, Vol. 47 (2000)

xsj ≥ 0 ∀j ∈ J, s ∈ Sj

ERsj is the expected reward when policy s is applied to an object of type j, so by the conditional
expectation theorem the objective function can be interpreted as ‘‘average total reward.’’ Similarly,
since EYsji is the average consumption of resource type i when policy s is applied to an object
of type j, the expression bounded by bi is still the average amount of resource type i used in
applying policies to all objects.

The upper bound LP is now:

LPU2(S;λ) : maximize
∑
j∈J

∑
s∈Sj

ERsj xsj +
∑
i∈I

λi

bi −

∑
j∈J

∑
s∈Sj

EYsji xsj

subject to
∑
s∈Sj

xsj = Nj ∀j ∈ J, and

xsj ≥ 0 ∀j ∈ J, s ∈ Sj

Note that the upper bound LP decomposes into |J | separate optimizations. The algorithm of
Section 1 still applies, except that a separate POMDP must be solved for each object class. Let

pj(Sj ;λ) = max
s∈Sj

{
ERsj −

m∑
i=1

λi EYsji

}
. (5)

The overall upper bound is given by

u(S;λ) =
m∑

i=1

λibi +
∑
j∈J

Njpj(Sj ;λ). (6)

The multiple-object decomposition algorithm, with natural generalizations of the notation used
in Section 1 (notably T kj is the subset of Sj used in step k, T k is the set of all such subsets, and
wkj is the jth component of wk), is as follows:

Input: Initial nonempty subsets T 1j of Sj , j ∈ J , and a nonnegative tolerance ε.
Output: An ε-optimal solution of LP2(S).
Step 1: Set k = 1.
Step 2: Solve LP2(T k) for v(T k) and a set of dual prices λk, wk.
Step 3: For all j ∈ J , solve POMDP (4) for pj(Sj ;λk) and an optimizing policy sj .
Step 4: If u(S;λk) − v(T k) ≤ ε, stop.
Step 5: For all j ∈ J , if pj(Sj ;λk) > wkj , let T j,k+1 = T j,k ∪{sj}; else let T j,k+1 = T j,k.
Step 6: Add 1 to k and go to Step 2.

The multiple-object algorithm stops in Step 4 if none of the object classes generates a new policy
in Step 3, so it is finite. A total of |J | POMDPs must now be solved in Step 3, so the computational

Yost and Washburn: Optimization with Imperfect Information 613

burden increases when multiple object classes are considered. However, increasing Nj does not
complicate the structure of the master LP, and does not affect the POMDP computations at all,
so the algorithm will be at its best on problems where there are few classes but many objects per
class.

As an aside, we note that the POMDPs could be solved in parallel, since the resource prices
decouple the computations.

5. THE BDA PROBLEM

The task of assigning weapons and sensors to targets is a crucial one in the military, and is
becoming more so. Modern armaments are lethal and can be employed from very long distances,
but they are also expensive and in short supply. The long standoff distances require examination
by sensors—Bomb Damage Assessment or BDA—to determine the outcome of the attack. The
tradeoffs between sensors and weapons have been difficult to analyze and are of great current
interest (see, e.g., Scott [17]). The LP/POMDP methodology can be useful for making these
tradeoffs because it permits the incorporation of constraints on sensors as well as other more
traditional combat resources.

The objects to be controlled are the targets. They all have two states (live or dead) and are
divided into |J | classes (bridge, tank column, command bunker, and so on). Each target in class
j has a value Cj , and the terminal reward r(XN) is Cj if the terminal state is dead, otherwise 0.
There are three types of resource. Two of these are aircraft and sensors, availabilities of which
are constrained in each stage. The third resource is various kinds of weapons that can be dropped
or launched from the aircraft, with total weapon consumption over all stages being constrained.
The overall goal is to maximize the expected total value of targets destroyed.

Each action is either a strike, a look, or a pause. A strike is any permissible combination of
aircraft, weapon, and target. Let A be the set of available strikes, with pa denoting the known
probability that strike a kills the intended target. Each strike consumes one aircraft sortie and at
least one weapon of some kind. Similarly let L be the set of looks, each of which is the assignment
of a sensor that will assess its target to be either ‘‘live’’ or ‘‘dead.’’ Each look l is assumed to have
known error probabilities αl ≡ Pr (assess target as live | target is actually dead) and βl ≡ Pr
(assess target as dead | target is actually live). The pause action consumes no resource and has no
effect on the target.

Each target is assumed to be initially live, and the sole purpose of a look at stage k is to
provide information about the target’s state Xk at that time. We assume here that information
gained from an observation can be used in the next stage, but note that the POMDP formulation
can accommodate sensors with larger response delays. This is an important generality, since
timeliness of information is one of its important attributes.

The BDA problem would be considerably simplified if the error probabilities αl and βl were
taken to be 0, but modeling verity demands that these parameters be permitted to be positive. Figure
1 shows two views of an aircraft shelter struck by bombs in the Gulf War. The shelter appears to be
heavily damaged, but in fact is still functional. On the other hand, penetrating bombs sometimes
produce only a small hole on the outside of a shelter while completely destroying the interior and
its contents. One must allow for the possibility of both type 1 and type 2 errors.

To show the hopelessness of trying to enumerate all possible policies in a problem of this sort,
suppose there is only one target, suppose that |A| = |L| = 1, and let Nk be the number of possible
policies in a k-stage problem. Then N1 = 3, since one can either strike, look, or pause with one
stage left, and Nk satisfies the recursion Nk+1 = 2Nk + N2

k for k > 0. The coefficient of 2 is
because the strike and pause options can each be followed by Nk k-stage policies, and the power

614 Naval Research Logistics, Vol. 47 (2000)

Figure 1. Exterior (left) and interior (right) photographs of an aircraft shelter hit by two bombs in the Gulf
War (Cohen [6]). Apparently heavy damage is actually not.

of 2 is because the look option must be prepared for two possible assessments. One of the 15
possible 2-stage policies is ‘‘look, then strike if the look assesses live, or pause if the look assesses
dead.’’ The sequence Nk is 3, 15, 255, 65535, 4.3 ∗ 109, Clearly policy enumeration will not
be the method of choice in any realistically scaled problem.

Our example is on the scale of the attack-planning problem for a DESERT STORM-sized
scenario. It has 9 stages (3 attack waves a day for 3 days, the length of a typical planning cycle),
9 aircraft types, 42 weapon types, 65 target types, and 10 sensor types. The master LP has 81
constraints for aircraft (one for each type and each stage), 42 weapon constraints, 65 target
constraints, and 90 sensor constraints (one for each type and each stage), so m = 278. This
problem contains the characteristics we have been discussing, as |S| is intractably large while m
is relatively small.

Since each target has only two states, the probability p of being alive is a sufficient statistic,
and will itself be referred to as the target’s state hereafter. Let F j

n(p, λ) be the expected net reward
of the optimal policy over the last n stages for a target of type j in state p, the difference between
the value of the targets killed and the resources required to kill them. Thus pj(Sj ;λ) from Eq. (5)
is F j

9 (1, λ). The associated POMDP dynamic programming recursion DP j(λ) is as follows:

DPj(λ) : F j
0 (p, λ) = Cj(1 − p),

for 1 ≤ n ≤ 9, F j
n(p, λ) = max

F j
n−1(p, λ) (pause)

maxa∈A F j
n−1([1 − pa]p, λ) − λa (strike)

maxl∈L E[F j
n−1(Z, λ)] − λl (look)

(7)

In this recursion, λa and λl are the costs of actions a and l. The effect of an attack is to reduce p
by the factor (1−pa), the probability that the target survives the attack. A look produces a random
state Z when there are n − 1 stages remaining, with two possibilities for Z because each look
can result in either a ‘‘live’’ or ‘‘dead’’ assessment. The expectation is computed using Bayes’

Yost and Washburn: Optimization with Imperfect Information 615

Table 1. Solution statistics for the BDA problem on a 333 MHz Pentium II PC.

Section of algorithm Exact POMDP solutions Approx POMDP solutions

Master LPs (s) 31 28
POMDP subproblems (s) 1976 145
Total solution time (s) 2028 188
Initial columns 2214 2214
Columns generated 3373 2802
Total iterations 76 79

Theorem:

E[Fn−1(Z), λ] = [(1 − βl)p + αl(1 − p)]Fn−1

(
(1 − βl)p

(1 − βl)p + αl(1 − p)
, λ

)

+ [βlp + (1 − αl)(1 − p)]Fn−1

(
βlp

βlp + (1 − αl)(1 − p)
, λ

)
. (8)

6. IMPLEMENTATION AND COMPUTATIONAL RESULTS

Recent POMDP literature (e.g., Cassandra [3]) notes that while getting exact solutions to a
POMDP can be very difficult, approximate solutions with bounds are much easier to compute.
We employ Cheng’s [5] ‘‘linear support algorithm,’’ which works well for two-state POMDPs
and can be adjusted to produce a solution with any desired level of accuracy. This is a crucial
point, since it is wasteful to solve DPj(λ) to optimality in the early stages of the decomposition
when λ is changing rapidly. A better strategy is to approximate the solution of DPj(λ) while
still providing improving columns to the master LP. It is not necessary that DPj(λ) be solved
exactly on every occasion, as long as an upper bound of controllable accuracy is available when
computation stops.

Each solution of the collection of POMDPs (one for each target class) produces an upper bound
on v(S). Since each LP solution produces a lower bound on v(S), this establishes a ‘‘gap’’ G
that is the difference of the two bounds, and a relative gap RG that is just G divided by the upper
bound. In our implementation, we gradually increase the accuracy of the POMDP solutions as the
decomposition progresses, using the relative gap RG as a guide to how accurately the POMDPs
should be solved. Table 1 shows the solution times for the BDA problem using both exact and
approximate POMDP solutions. The code is written in Microsoft Visual Basic 5.0, and the master
LPs were solved using the CPLEX 5.0 Callable Library. Both cases start with the same initial set
of policies, and both terminate when RG < .001. The strategy of adjusting the POMDP accuracy
cuts the solution time by over an order of magnitude.

The LP/POMDP algorithm generates only a few thousand columns in addition to the initial
columns, a tiny fraction of those available in S. The decomposition has slow tail convergence,
as is characteristic of column-generation schemes. It reaches a 0.05 relative gap in 38 s and a
0.01 gap in 80 s. Nearly all of this time is spent solving POMDPs, rather than LPs. Reducing the
relative gap from 0.001 to 0 increases the solution time from 188 to 652 s, thereby increasing the
lower bound by only 0.006%.

One feature of the optimal policies is worthy of comment. An optimal policy will sometimes
pause for one or two stages before first striking a target. The reason for this is that the price of

616 Naval Research Logistics, Vol. 47 (2000)

early strikes invariably turns out to be higher than the price of late ones, in spite of the fact that
strikes are equally constrained in each stage. The reason for this decreasing strike price is that
valuable targets may require multiple rounds of shooting and looking, which requires getting
started immediately. Therefore, it makes sense to delay strike activity for less valuable targets that
do not require that kind of treatment. This subtle but realistic tendency happens naturally in the
LP/POMDP formulation, and is impossible to generate in an ordinary POMDP where resource
prices are the same in each stage.

7. RIGID POLICY APPROXIMATION

The inequality constraints in LP2(S) state that resources must not be exhausted on the average,
which we will refer to as the ‘‘soft’’ version of the constraints. The ‘‘rigid’’ version would require
that resources never be exhausted. The quantity y(k, U, X) was earlier defined as the mean
resource consumption at time k if decision U is taken when the object under consideration is in
state X . The resource quantities consumed may by implication be random, so the rigid problem
is not well defined by the inputs discussed so far. The notion of ‘‘policy’’ needs to be enlarged
in the rigid version to permit decisions made about one target to depend on observations made
about another, and additional assumptions need to be made about joint distributions of random
variables.

Whether the rigid or soft version is superior as a model depends on circumstances. For example,
there has been a long debate within the Air Force about whether aircraft attrition is better modeled
as a penalty in the objective function or as an explicit constraint. Putting attrition in the objective
function raises the question of how to penalize it, while including a rigid constraint of (say) one
lost aircraft would force the assignment of at most one sortie per stage in order to prevent even the
possibility of multiple losses. A compromise position might be that attrition should be modeled
as a soft constraint rather than a rigid one. In other words, only the average attrition might be
constrained. There is a similar issue with respect to the availability of aircraft sorties within a
given period, since aircraft usage always has a certain amount of flexibility in the short term. The
soft/rigid modeling question can be argued either way.

However, there can be no debate about the relative tractability of the soft and rigid versions. We
speculate that rigid versions of problems on the scale of our BDA problem will never be solvable,
since rigid constraints force the consideration of a single large POMDP involving all objects,
rather than a separate small POMDP for each one.

In spite of its theoretical intractability, any rigid problem can at least be approximated through
the soft version. The optimal value of the soft formulation is an upper bound on the optimal value
of the rigid formulation, since an upper bound on any random variable is also an upper bound on
its mean.

There are a variety of ways to use soft policies as a template for rigid ones. In problems where
stages are linked only by cumulative constraints of the type that link weapons consumption in
the BDA problem, its makes sense to utilize only the first stage of a soft solution’s policies, then
evaluate the resulting resource consumption and target states based on the observations made so
far, and then consider another soft problem with one less stage. The rest of this section gives the
details of an example of this type of incremental rigid policy for the BDA problem.

The BDA problem has some characteristics that make it an apt subject for an incremental
rigid policy. The current consumption of resources by each action is deterministic, for one thing,
and in addition the initial resource constraints are all integral. This means that the POMDP
will generate no policies that gamble with feasibility. The optimized soft decision variables xsj

may still be nonintegral, however, so they cannot be applied directly to the rigid problem. We

Yost and Washburn: Optimization with Imperfect Information 617

resolve this difficulty by basing the actions in the current stage on a solution of LP2(S) where
only policies that result in the consumption of resources in the current stage are required to be
integral. Specifically, we solve LP2(S) to a specified gap, then, using the generated columns S′

only, we solve a mixed-integer program MP2(S′) that requires integral assignments for policies
using resources in the current stage (policies that begin with any action other than ‘‘pause’’). The
associated actions are guaranteed to be feasible in the current stage, even in the rigid problem.
After simulating the results of the allocations computed for the current stage and updating the
state of each object, the entire procedure is repeated with one less stage, and so on.

As the number of remaining stages is gradually reduced in the incremental procedure, a given
class of targets may fragment into individuals in many states on account of the randomness
inherent in strikes and observations, as well as treatment by different policies. The number of
constraints in LP2(S) must therefore grow to include one for every (class, state) pair. However,
the POMDP solutions do not grow in difficulty because the POMDP solution for each target class
already covers all states. Our experience is that solution times for LP2(S) are still smaller than
POMDP times, even when LP2(S) grows in size and complexity due to the integrality restrictions
and multiple allocation constraints.

The following procedure describes a Monte Carlo simulation of the incremental strategy:

Input: Data required for a 9-stage BDA problem.
Output: Terminal states for one replication of the incremental rigid strategy.
Step 1: Set n = 9. Initialize all resources and states for all targets.
Step 2: Solve LP2(S) for the current n-stage problem. Let S′ be the set of strategies generated.
Step 3: Solve MP2(S′) to get integral policy assignments for the first of n stages.

Figure 2. Rigid simulation outcomes compared to the soft solution in the BDA Problem.

618 Naval Research Logistics, Vol. 47 (2000)

Step 4: Simulate outcomes for the current stage and update object states and resources
remaining.

Step 5: Let n = n − 1.
Step 6: Output states and quit if n = 0, or go to Step 4 if n = 1, or else go to Step 2.

Figure 2 shows the distribution of 180 such repetitions for the BDA problem. As expected,
the soft solution is larger than the sample mean. However, the sample mean is within 5% of the
soft solution, and would presumably be even closer if more sophisticated rigid strategies were
employed. The BDA problem is on a large enough scale that the best rigid and soft solutions do
not differ substantially from each other.

8. SUMMARY

The LP/POMDP marriage is a technique for solving large-scale allocation problems with par-
tially observable states and constrained action and observation resources. The technique uses the
strengths of LP in determining implicit resource prices, and the strengths of POMDPs in deter-
mining optimal policies extended in time. The technique can handle arbitrarily large numbers
of objects as long as the number of possible states of each object remains small. It determines
an optimal ‘‘soft’’ solution where resource constraints are satisfied on the average. The BDA
example demonstrates the possibility of using the soft solution as an incremental guide to a rigid
one in problems where a rigid solution is desired.

REFERENCES

[1] D.P. Bertsekas, Dynamic programming and stochastic control, Academic, New York, 1976, pp. 111–
128.

[2] A.R. Cassandra, Optimal policies for partially observable Markov Decision Processes, Technical Re-
port CS-94-14, Brown University, August 1994.

[3] A.R. Cassandra, Exact and approximate algorithms for partially observable Markov Decision Pro-
cesses, Ph.D. thesis, Brown University, May 1998, 313 pp.

[4] D.A. Castanon, Approximate dynamic programming for sensor management, Proc 36th IEEE Conf
Decision Control, San Diego, December 1997, pp. 1208–1213.

[5] H.-T. Cheng, Algorithms for partially observable Markov Decision Processes, Ph.D. thesis, University
of British Columbia, August 1988, pp. 52–61.

[6] E. Cohen (Editor), Gulf War airpower survey, Volume II, Operations and effectiveness, Part II, De-
partment of the Air Force, Washington, DC, 1993, pp. 39–43.

[7] P.C. Gilmore and R.E. Gomory, A linear programming approach to the cutting stock problem, Oper
Res 9 (1961), 849–859.

[8] P.C. Gilmore and R.E. Gomory, A linear programming approach to the cutting stock problem—Part
II, Oper Res 11 (1963), 863–888.

[9] W.K. Klein Haneveld, Stochastic linear programming models, Duality in stochastic linear and dynamic
programming, Springer-Verlag, Berlin, 1986, pp. 22–47.

[10] T.W. Jonsbraten, Optimal selection and sequencing of oil wells under reservoir uncertainty, Technical
Report, Department of Business Administration, Stavanger College, Stavanger, Norway, July 1997.

[11] T.W. Jonsbraten, R.J.-B. Wets, and D.L. Woodruff, A class of stochastic programs with decision
dependent random elements, Technical Report, University of California Davis, August 1997.

[12] W.S. Lovejoy, A survey of algorithmic methods for partially observed Markov decision processes,
Ann Oper Res 28(1) (1991), 47–65.

[13] K.T. Marshall and R.M. Oliver, Decision making and forecasting, McGraw-Hill, New York, 1995.

Yost and Washburn: Optimization with Imperfect Information 619

[14] C.H. Papadimitriou and J.N. Tsitsiklis, The complexity of Markov decision processes, Math Oper Res
12 (1987), 441–450.

[15] R.G. Parker and R.R. Rardin, Discrete optimization, Academic, San Diego, 1988, pp. 205–230.
[16] G. Pflug, On-line optimization of simulated Markov processes, Math Oper Res 15 (1990), 381–395.
[17] W.B. Scott, Computer/IW efforts could shortchange aircraft programs, Aviation Week and Space

Technology (19 January 1998), 59.
[18] R. Smallwood and E.J. Sondik, The optimal control of partially observable Markov decision processes

over a finite horizon, Oper Res 21 (1973), 1071–1088.
[19] K.A. Yost, Solution of large-scale allocation problems with partially observable outcomes, Ph.D. thesis,

Naval Postgraduate School, September 1998.

