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Finite Method for a 
Nonlinear Allocation Problem 1 

A. R. W A S H B U R N  2 

Communicated by D. G. Luenberger 

Abstract. The problem considered is as follows : m resources are to be 
allocated to n activities, with resource i contributing linearly to the 
potential for activity j according to the coefficient E (i, j). The objective 
is to minimize some nonlinear function of the potentials. If  the objective 
function is sufficiently well behaved, the problem can be solved in finitely 
many steps using the method described in this paper. 
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I. Introduction 

Consider  the following nonlinear p rogram:  

(NLP)  min f ( y ~ , . . . , y , ) ,  

s.t. ~ E(i,j)xu=yj, 1 <j<n, 
i = 1  

l <_i<_m, 

1 < i < m ,  

n 
Z xi+=bi, 

j = l  

Xij ~ O, 

It  is assumed in (NLP)  that  

bi>O, for all i, 

and 

1 <_j<n. 

(1) 

(2a) 

(2b) 

(2c) 

E(i,j)>O, for all ( i , j ) ,  
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with at least one positive E(i , j )  in each row i. It is further assumed that 
f ( y )  is continuous and decreasing in each of its arguments on some subset 
S of R" that includes the nonnegative orthant, y represents the vector 
(yl . . . . .  y , ) ;  similarly, x represents the collection of all mn of the xij, etc. 
The components of y will be called potentials, one for each column of E. 
Potentials are not logically necessary in defining (NLP), since the expressions 
defining y could simply be substituted into f ( y ) ,  but the generous notation 
will prove useful in the sequel. The components of b will be called resources, 
one for each row of E, and the components of x will be called allocations. 
Thus, (NLP) is the problem of allocating m resources to minimize a function 
of n potentials. 

(NLP) could be interpreted as a search problem by assuming that the 
search is to be conducted over a fixed time period by m distinct types of 
search resources, with bl units of search resource i available over the period. 
Specifically, assume that a single target is located with probability p/in one 
of n regions, that region j has area A/, and that the reward for finding the 
target in region j is Vj. Assume further that the amount of area swept per 
unit effort by a searcher of type i in region j is sij. If x~/is the allocation of 
search effort of type i to region j, then the total area swept in region j is 
~,7=~ x~jsi/. If the search in each region is random (Ref. 1), then the probabil- 
ity of no detection is exp(-y/), where 

y ,=  
i 1 

so, in this case 

E(i , j )  =si//A/. 

The average value not found is then 

/ ( y ) =  ~ Vjpjexp(-y/), 
j = l  

to be minimized. The case m = 1 already has specially-tailored solution pro- 
cedures (Ref. 2). This specialization of (NLP) where the objective function 
is a positively weighted sum of exponentials will be referred to as the 
exponential case. It will be the subject of the implementation described in 
Section 5. 

The US Air Force's Heavy Attack model (Refs. 3-4) is also essentially 
the exponential case, with resources being aircraft sorties and potentials 
being the average number of targets of type j killed, were it not for the fact 
that some of the potential will be wasted in attacking targets already dead. 
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The exponential case seems to arise frequently in military problems where 
weapons are to be assigned to targets. Reference 5 is another example. 

(NLP) has a continuous objective function and a compact, nonempty 
feasible set, so a solution certainly exists (Ref. 6). A variety of general 
techniques is available for solving problems like (NLP) where the constraints 
are linear (Refs. 7-10). By introducing an extra node to collect all of the 
potentials, the constraints of (NLP) can be expressed as those of a gen- 
eralized network where E(i,j) is the gain on edge ( i , j ) ,  so specialized non- 
linear techniques such as those of Ref. 11 are applicable. Rockafellar (Ref. 
12) discusses several methods for solving (NLP) when f ( - )  is convex and 
separable. Reference 13 refers to the case m =  1 as the resource allocation 
problem; several algorithms are offered, depending on the nature o f f ( .  ) 
and whether allocations are required to be integer valued. 

Our interest here is in developing a solution procedure for (NLP) that 
is finite (unlike most of the methods above) in the sense of requiring only 
a finite number of solutions of certain generally nonlinear equations. In the 
exponential case, this will amount to saying that only a finite number of 
logarithms and exponentials is required. Charnes and Cooper (Ref. 14) 
describe such an algorithm for the exponential case when rn = 1. The expo- 
nential case is also studied by the authors of Ref. 15, who develop solution 
methods for m = 1 and 2. Lebedev (Ref. 16) considers a generalization of 
(NLP) where the objective function contains linear terms independent of y;  
these extra terms are a valuable modeling capability, but would frustrate 
the efficient tree-based computational approach that we have in mind. 
Danskin (Ref. 17) offers an inductive algorithm for the case where f ( .  ) is 
separable, and Ref. 18 deals with the existence of cycles and unique solutions 
in the separable case. Efficient solution techniques require restrictive 
assumptions about m and especially about f ( .  ), as the above references 
attest and as the reader may observe in the sections that follow. 

2. Basic Feasible Solutions 

For any feasible x to (NLP) one can form an associated undirected 
bipartite graph G with m +n  nodes and an edge (i,j) connecting row node 
i to column n o d e j  if and only if x o >0. If  G has no cycles (Ref. 19), then 
x will be called acyclic. If G has no edge (i,j) for which E(i,j)=0, then x 
will be called conservative. 

Theorem 2.1. Given the assumptions of the first paragraph of Section 
1, (NLP) has an optimal solution for which x is acyclic and conservative. 
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Proof. Assume that x is optimal. We will show that, if x has a cycle, 
there is an alternate optimal solution x' with one or more fewer positive 
variables than x. By repeating this operation, an acyclic solution must even- 
tually be found. If  at any point x is not conservative, simply shift the offend- 
ing allocation x a to some other column J, where E(i, J )  > 0; by assumption, 
such a column can always be found. This will not change the number of 
positive variables and cannot decrease any potential, so the result of  this 
shift will still be optimal. 

If  the graph G associated with x has a cycle, then it must also have 
some subcycle for which the edges are all distinct. Let S be the set of  edges 
in that subcycle, and let RN and CN be the sets of  row nodes and column 
nodes, respectively, involved in S. For  i~RN, let C~ be the subset of S 
incident to i; for j~ CN, let Rj be the subset of  S incident to j. For  some 
column J in CN, consider the following linear program with a variable Ue 
for every edge e~S: 

(LP) max 

s.t. 

~, ueE(e), 
eERj 

E ueE(e) = E xeE(e), 
eeRj eeRj 

E Ue= E Xe, ieRN. 
eeCi eeCi 

j e C N - J ,  

The number of  edges in S is necessarily at least 4 and even. Let it be 2L, 
where L > 2. CN and RN can have at most L nodes each, so (LP) is a linear 
program with 2L variables and at most 2 L -  1 constraints. Therefore there 
is an optimal basic solution ue of  (LP) for which at least one variable is 0 
(Ref. 20). Let x' be the result of  allocating ue for edges e~S or Xe otherwise. 
Then, x' is feasible in (NLP) and at least as good as x, since all potentials 
are the same except that possibly the potential for column J is improved. 
Therefore, x' is optimal in (NLP). Since x' has at least one less positive 
variable than x, we must eventually discover an optimal acyclic solution by 
this technique. []  

A major advantage of  the acyclic solutions is that there can be at most 
n + m - 1 positive allocations x~j. To see this, consider that G must consist 
of  a number of connected components 7'1 . . . .  , TK, each of which is not 
connected to any of the others. There may be components that consist of  a 
single isolated node and no edges. Since each component is connected and 
has no cycles, it is a tree and G is therefore a forest. If  Tg has rk nodes, it 
must have exactly r k -  1 edges (Ref. 19), even if rk = 1. Therefore, the total 
number of edges is n + m - K, which is at most n + m - 1. 
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Definition 2.1. Any bipartite graph G with the following properties is 
a basis for (NLP): 

(i) the nodes of G are all of the m + n row and column nodes; 
(ii) row node I is isolated if and only if bz = 0; 
(iii) if E(i, j )  = 0, then there is no edge connecting (i, j )  ; 
(iv) there are no cycles. 

If  the component trees of G are T1 . . . . .  TK, then Rk and Cg will denote 
the rows and columns of Tk. Thus, R~ . . . . .  RK is a partition of { 1 . . . . .  m}, 
and C~ . . . . .  CK is a partition of { 1 . . . .  , n}. 

In this paper, a positive vector v will be a vector all of whose compo- 
nents are positive; in symbols, v > 0. For each basis G, there are positive m- 
vectors and n-vectors ~ and p such that 

;~e=E(i,j)pj, for edges (i,j) in G. (3) 

These multiplier vectors can be easily computed by first arbitrarily defining 
p j >  0 or 2.~> 0 for some node i or j in component k, and then using the 
contagion principle that (3) uniquely defines multipliers at nodes that are 
neighbors of nodes where multipliers are already defined [recall that 
E(i , j )  >0 for edges ( i , j )  in G, so division by E(i , j )  is permissible in (3)]. 
The multiplier vectors are of use in dealing with t he  following question: 
"For  what potentials y can feasible allocations x be found?" Lemma 2.1 
provides an answer. 

Lemma 2.1. Suppose that 7"1 , . . . ,  TK are the component trees of a 
basis G for (NLP), that ~ and p are associated multiplier vectors, and that 
x~j=0 unless (i,j)~G. Then: 

(A) if (2a) and (2b) hold, 

I.tjyj = ~ ~ib~, (4) 
j~Ck i~Rk 

(B) 

k = l  . . . . .  K; 

if (4) holds, there is a unique solution x to (2a) and (2b). 

Proofi Since ,~i=pjE(i,j),  whenever x q # 0 ,  
E(i , j )  in (2a) to obtain 

Y Z, xij=pjyj, jEC,.  
i~R k 

Also, multiply both sides of (2b) by A.~ to obtain 

Z ~iXij - ~ i b i '  i~Rk. 
jECk 

substitute ~.i/~,lj for 

(5) 

(6) 
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I fx  satisfies (5) and (6), it follows upon summing (5) for iERk and (6) for 
j ~ C~ that (4) must hold, since the sums are identical. This establishes Part 
(A). Since (5) and (6) for (i,j)E Tk are the constraints of a transportation 
problem with basis Tk, supplies s and demands pjyj, the quantities s 
are uniquely determined (Ref. 20). Since ~ >  0, the same is true of the 
allocations xij. [] 

Given a basis G and associated multiplier vectors ~ and/1, consider the 
following nonlinear program, where (2a)and (2b) are replaced by (4): 

(N(G)) min f(y), 

s.t. (4) and yj>0, j = l  . . . . .  n. 

The constraints of (N(G)) are compact, so a minimum certainly exists. 
(N(G)) is simpler than (NLP) because allocations are not involved, so one 
might hope to solve (NLP) by guessing a basis G, solving (N(G)) for y, and 
then solving (5)-(6) for x. For an arbitrary basis, some components of x 
might be negative, but nonetheless we have the following theorem. 

Theorem 2.2. If f (y) is convex on the nonnegative orthant of En and 
nonincreasing in each component of y, then there is some basis G and 
potentials y such that: 

(i) y is an optimal solution of (N(G)) ; 
(ii) there is an x such that (x, y) is an optimal solution of (NLP). 

Proof. Let (x, y) be an optimal, acyclic conservative solution of 
(NLP), let G be the corresponding basis, and let ~ and p be multipliers for 
G. By Lemma 2.1, y must be feasible in (N(G)). Let y' be optimal in (N(G)), 
so tha t f (y ' )  <f(y). By Lemma 2.1, there exist allocations x' on G such that 
(x', y') is feasible in (NLP), except that possibly x' does not satisfy the 
nonnegativity constraints. Let E >0 be such that Ex'+ ( 1 -  E)x is nonnega- 
tive; there exists such an E, because by assumption x > 0 on G. Let 

x*=ex'+(1-e)x and y*=Ey'+(1--E)y. 

Then (x*, y*) is feasible in (NLP), and 

f(y*) <_ Ef(y') + (1 - e)f(y), 

by convexity. Iff(y')<f(y), then f ( y * ) < f ( y ) ,  which contradicts the opti- 
mality of (x, y) in (NLP). Thereforef(y')  = f ( y ) ,  and y is optimal in (N(G)), 
which completes the proof. [] 
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Under the premises of Theorem 2.2, there is some basis G such that the 
optimal solution of (N(G)) corresponds in a direct way to an optimal solu- 
tion of (NLP). The latter could therefore be solved by exhaustively consider- 
ing all bases, solving (N(G)) for each one, and eliminating those for which 
there is no optimizing y with corresponding nonnegative allocations x. How- 
ever, it would be useful to have a procedure for producing a sequence of 
improving bases that terminates with an optimal basis, the idea being to 
avoid consideration of many bases that are feasible but not optimal, as in 
the simplex method of linear programming. To accomplish this, it will be 
necessary to make further assumptions about f ( .  ). 

3. Pivoting Procedure for Differentiable Functions 

From now on, we assume that f ( .  ) has continuous first derivatives, in 
addition to being strictly convex and decreasing in the nonnegative orthant 
of E,. (N(G)) then has a unique optimal solution y for each basis G on 
account of the strict convexity assumption, and by Lemma 2.1 the allocations 
x are also unique. If x > 0 on G, then G itself will be called positive; and if 
(x, y) is optimal in (NLP), then G will be called optimal. If G is such that 
x_>0, then a positive basis G' can always be obtained from G by simply 
dropping all edges from G for which xij = 0, and y will still be optimal in 
(N(G')). The goal of SIMPLX is to find a positive basis that is optimal. 

The Karush-Kuhn-Tucker (KKT) conditions are necessary and 
sufficient (Ref. 8) for optimality in either (NLP) or (N(G)) on account of 
the convexity assumption. Lettingfj (y) be the derivative o f f ( y )  with respect 
to yj, the KKT conditions for y to be an optimal solution of (N(G)) are 
that there should exist positive Lagrange multipliers ak, one for each compo- 
nent Tk of G, such that y is feasible in (N(G)) and 

f]( y) + akpj>_ O, j~Ct ,  k = l , . . .  ,K, (7) 

where ~ and p are multipliers for G, with equality holding if yj > 0. If G is 
a positive basis, then (7) can be strengthened to 

f j (y)+atpj=O, j eCt ,  k = l  . . . . .  K. (8) 

Note that, when Tt consists of the isolated column j, the system (4), (8) 
requires yj = 0 [since Rt is empty in (4)] and at  = - f s  (Y)/PJ- 

Now, suppose that (a, y) is a solution to (4), (8) for some positive basis 
G, and let ,~* and p* be defined by 

1~ = a t l~bi, i E R t ,  (9) 

p* =atpj, jeCt. (10) 
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If x is the allocation corresponding to y, then (x, y, A*, p*) satisfy all of the 
KKT conditions for (NLP), with A* and p* being the Lagrange multipliers 
for (2b) and (2a), re;pectively, except possibly for the requirement that 

A* >_E(i,j)p*, for 1 <_i<_m and 1 <j<_n. 

If this requirement is also satisfied, then G is optimal. 
Suppose then that 

A* <E(I, J)l.t*, 

with I and J necessarily being such that (/, J )  is not in G. If bl= 0, then 
A* can simply be increased to reverse the inequality; so, assume bt> 0. Since 
A*-E(I,  J)p* is the derivative of the optimized objective function with 
respect to xtj (Ref. 8), hereafter the reduced cost on nonbasic edge (/, J) ,  
the objective function can be decreased by increasing x~j from 0 to some 
positive level A that certainly does not exceed b~. This leads to consideration 
of programs (NLP(A)) and (N(G, A)), which are the same as (NLP) and 
(N(G)), except that xH is fixed at A, rather than 0. The latter program is 

(N(G, A)) min f (y ) ,  

s.t. y/>AE(L J)6/s, j= 1 . . . . .  n, ( l la)  

E I-tJ(yj-AE( I, J)6:j) 
jECk 

= ~ ~i(bi-A&,),  k = I , . . . , K ,  ( l lb)  
JeRk 

where ~ij is 1 if i=j, otherwise 0. Equations (8) and (11) are the necessary 
and sufficient KKT conditions for y to be an optimal solution of (N(G, A)). 

The SIMPLX algorithm for solving (NLP) begins with a positive basis 
G1, and produces an improving sequence of positive bases G1, G2 . . . . .  G* 
that terminates with an optimal basis. The process of obtaining Gi+x from 
G~ will be called a pivot. If Gi is not optimal, there is some edge (/, J )  not 
in G; with a negative reduced cost. Basically, what happens in a pivot is that 
one gradually increases A, dropping edges from the basis as allocations fall 
to 0, until finally edge (L J )  is added to the basis when A = bi or when the 
reduced cost on edge (/, J )  falls to 0. The algorithm below describes the 
pivoting operation precisely. 

SIMPLX Algorithm. 

Step 1. 

Step 2. 

Let H1 be the input positive basis, let A~ = 0, and let p = 1. 

With G=Hp, solve (8), (11) for (a, y), and let the solution be 
(a P(A), yP(A)) for Ap_< A _< b~. 
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Step 3. 

Step 4. 

Step 5. 

Step 6. 

Step 7. 

Step 8. 

Step 9. 

Use Lemma 2.1 to obtain xP(A), the unique allocations to Hp 
that, in conjunction with x~j = A, have potentials yP(A). 

Let A* be such that xP(A)>O on Hp fo r  Ap<A<A*, but 
xAB(A*) = 0 for some edge (A, B) in Hp. 

Let RCP(A) = ~ I ( A ) ~ I -  a~2(A)E(L J)12j, where I and J are 
in components kl and k2 of Hp, for Ap<A<A*. 

If RCP(A *) <0, let A' =A*. Otherwise, let A' be the smallest 
A exceeding Ap such that RCP(A)= O. 

Delete from lip all edges for which xP(A ' ) has null allocations 
to obtain Hp+l. 

Test i f  RC(A') < 0 and A' < bl. If so, let Ap+l = N, increment 
p, and return to Step 3. If not, go to Step 9. 

Add edge (L J )  to Hp+l to obtain the output positive basis 
H*, and stop. 

Theorem 3.1. If f ( .  ) is as described at the beginning of this section 
and if the input positive basis has a nonbasic edge (L J)  with negative 
reduced cost, then all of the operations of the above algorithm are well 
defined, and the output is a better positive basis than the input. 

The proof of Theorem 3.1 can be found in the Appendix. Additional 
observations about pivoting are given below. 

(a) The superscripts on x, y, a, RC, while useful in the proof of 
Theorem 3.1, are not logically necessary. In any given pivot, x(A), y(A), 
a(A), RC(A) can be defined to be continuous functions over [0, A'], where 
A' is the final value in Step 9. The superscripts will be omitted from here on 
except in the Appendix. 

(b) The multipliers (A,, p) for the input basis are multipliers for every 
basis Hp in a given pivot, but not for the output H*, because ~i< E(I, J)PJ. 
If J is in component T of the basis to which (/, J )  is added, however, then 
a set of multipliers for H* can be obtained by multiplying all multipliers 
for rows and columns of T by the factor LI/(E(L J)l.lj. 

(c) Since the objective function strictly improves with each new basis 
considered, no basis can be considered twice. Cycling is impossible. 

(d) The pivoting operation described above differs from the compar- 
able linear programming operation in that the number of edges that have 
to leave the basis in order for (/, J )  to enter is not always 1 ; it may be 0 or 
it may be larger than 1. It differs essentially in this respect from the convex 
simplex method (Ref. 7). In the CSM, the number of basic variables is 
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constant, and every pivot replaces one basic variable with one nonbasic 
variable. When a local minimum is encountered in CSM, the corresponding 
variable remains nonbasic, but positive. In SIMPLX, the number of basic 
variables is not constant, but the idea that nonbasic variables are zero is 
preserved, along with the one-to-one relationship between bases and solu- 
tions. This relationship implies that the number of pivots is bounded by the 
number of bases in SIMPLX, whereas the number of pivots required by the 
CSM may be unbounded. 

Theorem 3.1 and the above observations establish that (NLP) can be 
solved by repeated pivoting, with the number of bases considered in all 
pivots being bounded by the number of positive bases, itself finite. This fact 
is not in itself useful, however; after all, (NLP) could be solved in one step 
if the step were "find (x, y, Z*, ~*) such that the KKT for (NLP) are satis- 
fied." The SIMPLX procedure will be of value only if the solution of the 
system of equalities (8), (11) for (a, y) is, for some reason, simple enough 
to justify repeated solution. 

4. Separable Case 

In this section, f ( .  ) is assumed to be separable; that is, 

f ( y ) =  ~ hj(yj). (12) 
j = l  

To meet the assumptions of Theorem 3.1, it is also assumed that each hj ( . )  
is a decreasing, differentiable, strictly convex function on [0, ce). Then, 

f j (y)=hj(yj) ,  

where h~ ( . )  is the derivative of hj (-). Being monotone, hj ( ' )  has an inverse 
function gj (-), and (8) can be written as 

yj=gj(-ak~j) ,  j e C k a n d k = l , . . .  ,K. (13) 

In the pivot that terminates when (/, J)  is admitted to the basis, let 

se =usE(L J){JeC~} --Zz{IeRk}, k= 1 . . . . .  K, (14) 

where the {. } factors are 1 if the enclosed statement is true, else 0, and 
where C~ and Rk are as usual the rows and columns of the kth component 
of the basis. Substitute (13) and (14) into (1 lb) to obtain 

l~jgj(-akllj) = ~ 2ibi+skA, k = 1 , . . . ,  K. (15) 
jeCk ieRk 
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Solution of  (15) for a amounts to solution of  K equations, each a function 
of  one variable. Solution of such equations is simple enough that SIMPLX 
might be an attractive method even if the equations had to be solved numeri- 
cally, but of  course the best case for SIMPLX will be when there is a closed- 
form solution for a. The best example of  this is undoubtedly the exponential 
case. 

5. Implementation in the Exponential Case 

This is a special separable case where 

hj (yj)  = Vj e x p ( - y j )  ; 

any coefficients multiplying yj can be absorbed into the coefficients E(i, j ) .  
In this case, 

g j ( -ak~ j )= log (V j / l~ j )  - log(ak), 0 <  a k<  Vj//.tj. 

Let 

Ak = Y'. /z j,  Bk = E PJ log( Vj-/#j), 
j~Ck j~Ck 

Then Ak>0, and the solution of  (15) for ak is 

log(ak (A)) = (B~-  Dk - sk A) /Ak.  

Dk = ~ ,~ibi. 
i~Rk 

(16) 

Substitution of  (16) into (13) reveals that yj(A) is a linear function of  A, 
with the slope being s~/Ak. It follows that xij(A) is also a linear function 
of  A, so that A* in pivot Step 4 can easily be computed by comparing ratios. 
Now, let 

F= X, / (E(I ,  J)l~j) 

be the factor needed to calculate new multipliers when edge (/, J )  is finally 
added. Then, R C ( A ' ) = 0  in Step 6 if and only if 

log(ak~(A' )) + log(F) = log(a~2(A' )), (17) 

a linear equation in A'. Equation (17) has no solution if k' = k 2, in which case 
A*= A' in Step 6. If  k ' r  k 2, then the coefficient of  A' is positive (negative) on 
the left (right) side of (17); so, solve (17) for A' and, if A'>A*, change A' 
to A*. These are all simple operations. In no step of the pivoting procedure 
is it necessary to solve anything more complicated than a linear equation in 
one unknown. In particular, no line searches on A are required. 

A F O R T R A N  77 program (also called SIMPLX) has been written to 
implement SIMPLX in the exponential case. SIMPLX exploits the forest 
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Table 1. Values of E(i,j) for the example. 

j = l  j = 2  j = 3  j = 4  

i = 1  1 2 3 4 
i = 2  3 2 2 1 
i=3  0 1 0 1 

Table 2. Multipliers and allocations for the sixth basis. 

p =107.81 p=14.93 p=161.71 p =7.46 

Z= 29185 1.602 1.398 
,~ = 323.43 0.743 1.257 
J.= 14.93 1.000 

Table 3. Multipliers and allocations for the seventh basis. 

p =21.73 kt =48.89 p =32.59 /t =24.55 

2=97.78 1.009 0.890 1.101 
2=65.19 1.276 0.724 
2=48.89 1.000 

Table 4. Multipliers and allocations for the eighth basis. 

p = 24.99 /t = 37.49 /~ = 24.99 /1 = 18.74 

~.= 74.97 0.371 1.461 1.168 
,~ = 74.97 1.230 0.770 
Z = 37.49 1.000 

structure o f  the basis to minimize storage and facilitate computat ions.  The 
forest is actually represented as a single tree by introducing a g round  node 
to which all o f  the componen ts  o f  the basis are connected th rough  a roo t  
node  in each component .  Mos t  o f  the operat ions associated with tree 
manipula t ion  are similar to those encountered in t ransshipment  problems, 
well covered in Ref. 21. Fo r  example, the allocations are stored in ar ray  X, 
with X(k) representing the al location f rom node  k to its predecessor if k is 
a row, or  f rom the predecessor to k if k is a column. All arrays are o f  length 
n + m + 1 (node length), with the extra node being column 0 (see below). 
The forest always has n + m + 1 edges as well as n + m + 1 nodes, since each 
componen t  has an edge connect ing it to ground.  

The initial feasible basis consists o f  making  nonzero  allocations only 
to node 0, an artificial co lumn with a very small value. This is equivalent 
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Fig. 1. Initial basis for the example. 

to starting with all potentials for real columns being 0. The computational 
reward for beginning with a more advanced starting point appears to be 
small. 

-z -3 / 
/ -1 

/ J 
J 

\ f 
f 

--......... I 

Fig. 2. Second basis for the example. 
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Fig. 3. Third basis for the example. 

An example: suppose that 

(bi) = (3, 2, 1), (vj) = (1000, 1000, 2000, 2000), 

and that E(i,j) is as shown in Table 1. The initial basis is shown in Fig. 1 
as a tree where row nodes are distinguished from column nodes by the 
use of negative numbers, and where the ground node is represented by G. 
Application of the pivot algorithm results in deleting the ( -1 ,  0) arc and 
adding the ( -  1, 4) arc, resulting in the basis shown in Fig. 2, etc. The process 
terminates after the eighth basis, which is optimal. The multipliers and allo- 
cations for the last three bases are shown in Tables 2-4. Although allocations 
are stored in a node-length array in SIMPLX, Tables 2-4 show them in the 
more familiar matrix form. Not counting bases involving the artificial node 
0, there are 1336 bases when m = 3 and n--4. SIMPLX considers four of 
these, plus four more involving column 0, before arriving at an optimal 
solution. The objective function values for the last three iterations are 291.9, 
127.8, and 106.2 (the objective function is just the sum of all the #j's in the 
exponential case). Every pivot requires a single edge deletion in this example, 
as is typical of small problems. 

SIMPLX has been tested on randomly generated problems where E (i, j )  
is exponentially distributed with mean 1, Vjis uniformly distributed on [0, 1], 
and bt is uniformly distributed on [0, B], where B =  N/M. Making B =  N/M 
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Fig. 4. Fourth basis for the example. 
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-1 

2 
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keeps the average potential at 1/2 when all resources are evenly divided over 
the real columns. When B is very small, the objective function is essentially 
linear; when B is very large, the objective becomes the maximization of  the 
minimum potential; the selection B=  N/M was designed to avoid these 
linear extremes. M and N were varied from 4 to 100, with the number of  
nonlinear operations (logarithms and exponentials) N LE and the CPU time 
T on the Naval Postgraduate School Amdahl 5500 Model 700A Mainframe 
being recorded for each of 100 cases. NLE and T were then regressed loga- 
rithmically on M and N, the resulting regressions being 

T =  (2.0 p sec)M ~ '39N1.42, R 2 = 99%, (18) 

NLE = (2.32)M~ ~ R 2 = 99%. (19) 

The largest problems considered were with M =  100 and N =  100, where the 
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Fig. 5. Fifth basis for the example. 
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CPU time was in all cases less than a second. Such times are trivial if only 
one problem needs to be solved, but there are a variety of reasons why 
solution of (NLP) might be a frequently called subroutine in a larger pro- 
gram. The FAB algorithm for solving moving-target search problems (Ref. 
22) is an example. 

SIMPLX times were compared with the solution times of MINOS 5.2, 
a general purpose nonlinear solver, using the GAMS (Ref. 23~ interface on 
the same computer. The MINOS CPU time was taken to be resource usage 
as reported by GAMS. On a variety of randomly generated test problems, 
the MINOS/SIMPLX time ratio varied from 24 on a problem with 
(M, N) = (50, 90) to 78 on a problem with (M, N) = (10, 10), with the aver- 
age being about 40. The ratio depends on the method used to generate the 
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Fig. 6. Sixth basis for the example. 
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random coefficients and constraints, as well as M and N. MINOS does not 
exploit the network structure of  the constraints, so the large ratios should 
not be surprising. 

All of  the above computations were made in 1992. In 1994, a Beta-Test 
version o f a  GAMS interface to the GENOS network optimizer (Ref. 11) was 
provided to the author by the GAMS Development Corporation. GENOS 
exploits the network structure of  the constraints, so one would expect the 
G E N O S / S I M P L X  run time ratio to be substantially smaller than the 
MI NOS /S I MP LX ratio. Tests were performed on a 486 PC running at 
33 MHz with about 4 megabytes of  free memory available. The largest 
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Seventh basis for the example. 

square m x m problem solvable by GAMS/GENOS on that computer is 
23 x 23. Initial tests on such problems using the primal truncated Newton 
(PTN) option of GENOS with default optimization parameters resulted in 
final solutions on the order of 50% larger than optimal. After some trial 
and error, this problem was fixed by changing the GENOS parameter 
"NART" from its default of 2 to 50. Five randomly generated 23 x 23 
problems were then solved by both SIMPLX and GENOS. In all cases, 
except the third, the two solutions agreed to within six significant figures; 
in the third case, the GENOS solution was 0.4% high. The solution times 
in seconds were (0.38, 0.33, 0.33, 0.33, 0.33) for SIMPLX and (2.30, 2.20, 
6.87, 1.82, 2.09) for GENOS. The GENOS/SIMPLX ratio of average times 
is 3.06/0.34= 9, or only 6 if case 3 is omitted. Evidently, there is a large 
computational gain by GENOS in relation to MINOS in exploiting the 
network constraints, as well as by SIMPLX in relation to GENOS by exploit- 
ing the form of the objective function. GENOS also offers a simplicial 
decomposition option, but it did not seem to work as well as PTN; it is 
likely that the author simply failed to find the right combination of tuning 
parameters. 

The reason for keeping track of the number of exponentials and loga- 
rithms in running SIMPLX in 1992 was that it was initially anticipated that 
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Fig. 8. Eighth, optimal basis for the example. 

such nonlinear operations would require relatively large amounts of time. 
Actually, these operations account for only about 4% of the CPU time; 
apparently, SIMPLX is occupied mainly with manipulating and scaling the 
various arrays required to represent the current basis as a forest, rather than 
with nonlinear operations. This is encouraging for applications where the 
solution of  the system (8), (11) might be more difficult than in the exponen- 
tial case. 

6. Appendix: Proof of Theorem 3.1 

The index p is a pass counter, where by pass we mean the sequential 
execution of Steps 2-7. We will first show by induction that, on each pass, 

(a) lip is a basis; 
(b) xP(Ap) >0 ;  
(c) A?<bl ;  
(d) RC%~:) <0. 
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(a)-(d) are true by assumption on the first pass, so we must show that 
(a)-(d) are true on pass p + 1, assuming that there is one, if (a)-(d) are true 
on pass p. 

The feasible set of (N(H v, A)) is not empty as long as Ap_<A_<bl; so, 
since f ( .  ) is strictly convex, there exist a unique (aP(A), yP(A)) satisfying 
the KKT conditions (8), (11). Furthermore, yP(A) is a continuous function 
of A on the interval [Ap, bl], because f ( -  ) is continuous (Ref. 24, Theorem 
1.3.2), so the same can be said of aP(A) in Step 2, xP(A) in Step 3, and 
RCP(A) in Step 5. Since by assumption xP(Ap)>O, A*_Ap in Step 3, and 
furthermore A* _b/because  all allocations from row I must total 0 when 
A = b~. Thus, A* is well defined, and A* ~(Ap, bl]. Since RCP(A) is continu- 
ous and by assumption RCP(Ap)< 0, A' in Step 6 is also well defined and 
A'~(Ap, A*]. The edge deletions in Step 7 cannot isolate row I as long as 
A'< b~, because the basic allocations in row I must sum to bi-A', which is 
positive. The test condition after Step 7 thus assures that Hp+l is a basis, as 
well as Ap+l <bi, so (a) and (c) must hold on pass p +  1 if (a)-(d) hold on 
pass p. It remains to show that (b) and (d) must also hold on pass p+  1. 

By construction xP(Ap+l) > 0 on Hp§ but this is not the same thing as 
property (b), which requires xP+l(Ap+l) > 0 on Hp§ To prove (b), it suffices 
to demonstrate that allocations are continuous across pass boundaries. The 
simplest way to do this is to first establish the same fact about potentials. 
First note that, by construction, (xP(Ap+1),yP(Ap+I)) is feasible in 
(NLP(Ap+I)), and that Hp+l is the basis of xP(Ap+I). Therefore yP(Ap+l) is 
feasible in (N(Hp+ 1, Ap+l)) ; we omit the proof of this statement, which would 
closely parallel the proof of the first part of Lemma 2.1. But (N(Hp, Ap+l)) 
is a relaxation of (N(Hp+1, Ap+l)), SO yr(Ap+l) must also be optimal in 
(N(Hp+I, Ap+l)); that is, 

yp+l(Ap+l) =yP(Ap+I). 
The allocations xP(Ap+O are null on all edges except those in Hp+l, and 
together with XH=Ap+j, have potentials yP+l(Ap+l). Since the unique 
allocations with those properties are xP+l(Ap+~), it follows that xP(Ap§ 
xP+lAp+l); therefore, xp+l(Ap+l)>0 on Hp§ Thus, (b) is true on pas sp+  1 
if (a)-(d) are true on pass p. 

Since row I is not isolated in Hp§ there must be some column j such 
that (I,j)~Hp§ Edge (I,j) must also be in Hp, since every edge in Hp+l is 
also in lip. Therefore, RCP(A) in Step 5 can be rewritten as 

RCP(A) =fj(yP(A))g(I, J)-fj(yP(A))~.I/pj, 
an expression that is also true i fp + 1 is substituted for p. Since the potentials 
are continuous across pass boundaries, so is the reduced cost; that is, 

Rcp+l(Ap§ = RCP(Ap+I). 
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The test in Step 8 thus assures that (d) is true on pass p + 1 if (a)-(d) are 
true on pass p. This completes the inductive proof described earlier. 

We next show that the addition of (/, J )  to Hp§ in Step 9 does not 
introduce a cycle. If  A'= bz in Step 9, then there can be no arc (L j )  in Hp§ 
because such an arc would have a positive allocation, so the addition of 
(/, J )  to Hp§ in that case cannot cause a cycle. If A' < bl, then necessarily 
RCP(A ') = 0 on account of the definition of A' in Step 6 and the entrance 
condition for Step 9r This equality could not happen if I and J were in the 
same component of Hp, since in that case RCP(A')<O because 
7~-E(I ,  J )p j< O. Therefore I and J must be in different components of Hp, 
as well as in the smaller basis Hp§ so adding edge (/, J )  to Hp+l cannot 
introduce a cycle. With this fact, it is easy to verify that the output H* is a 
basis. Now, let x be the allocation to H* that consists of xp§ ') to Hp§ 
and A' to edge (/, J) ,  and let 

yP+'(Ap+~) =yP(A') 

be the potentials associated with x. Then x > 0 on H*, so H* is a positive 
basis. It remains only to verify that 

f(yp+l(Ap+l)) >f(yP(Ap)), p> 1. 

Since A* > Ap in Step 4 and RCP(Ap) < 0 in Step 5, it follows that Ap < A' in 
Step 6. Since RCP(A)<0, for Ap<A<A' ,  it follows that 

f A' RCP(A) dA<O. 
Ap 

Since this integral is also f(yP§247 it follows that the 
sequence f(yP(Ap)) is strictly decreasing. This completes the proof of 
Theorem 3.1. [] 

References 

1. KOOPMAN, B., Theory of Search, Part 2, Operations Research, Vol. 4, 
pp. 519-521, 1956. 

2. WASHBURN, A., Note on Constrained Maximization of a Sum, Operations 
Research, Vol. 29, pp. 411-414, 1981. 

3. CLASEN, R., GRAVES, G., and Lu, J., Sortie Allocation by a Nonlinear Program- 
ming Model for Determining a Munitions Mix, RAND Report R-1411-DDPAE, 
1974. 

4. BAUSCH, D., and BROWN, G., NDP FORTRAN and Phar Lap Tools, Interfaces, 
Vol. 15, pp. 20 25, 1988. 

5. JAMES, R., and SHAW, J., IHNe: An lterative Algorithm for the Weapon Assign- 
ment Problem, 28th ORSA/TIMS Meeting, New York, New York, 1989. 



726 JOTA: VOL. 85, NO. 3, JUNE 1995 

6. BAZARAA, M., and SHETTY, C., Nonlinear Programming: Theory and Algorithms, 
Wiley, New York, New York, 1975. 

7. ZANGWmL, W., Nonlinear Programming: A Unified Approach, Prentice-Hall, 
Englewood Cliffs, New Jersey, Chapter 8, 1970. 

8. SIMMONS, D., Nonlinear Programming for Operations Research , Prentice-Hall, 
Englewood Cliffs, New Jersey, Chapter 8, 1975. 

9. VoN HOHENBALKEN, B., Simplicial Decomposition in Nonlinear Programming 
Problems, Mathematical Programming, Vol. 13, pp. 49-68, 1977. 

10. HEARN, D., LAWPHONGPANICH, S., and VENTURA, J., Restricted Simplicial 
Decomposition: Computation and Extensions, Mathematical Programming Study, 
Vol. 31, pp. 99-118, 1987. 

11. AHLFELD, D., DEMBO, R., MULVEV, J., and ZENIOS, S., Nonlinear Programming 
on Generalized Networks, ACM Transactions on Mathematical Software, 
Vol. 13, pp. 350-367, 1987. 

12. ROCKAFELLAR, R., Network Flows and Monotropic Optimization, Wiley, New 
York, New York, Chapter 11, 1984. 

13. IBARAKI, T., and KATOH, N., Resource Allocation Problems, MIT Press, 
Cambridge, Massachusetts, 1988. 

14. CHARrqES, A., and COOPER, A., The Theory of Search: Optimum Distribution of 
Search Effort, Management Science, Vol. 5, pp. 44-50, 1958. 

15. BAKHTIN, I., KRASNOSEL'SKII, M., and LEVIN, A., Finding the Extremum of a 
Function on a Polyhedron, USSR Computational Mathematics and Mathematical 
Physics, Vol. 3, pp. 533 546, 1963. 

16. LEBEDEV, S., A Finite Method for Solving Nonlinear Transportation Problems, 
Ekonomika i Matematica Metody, Vol. 1, pp. 71-82, 1965. 

17. DANSKIN, J., The Theory of Max-Min, Springer Verlag, New York, New York, 
pp. 85-100, 1967. 

18. EINBU, J., Optimal Allocations of Continuous Resources to Several Activities with 
a Concave Return Function: Some Theoretical Results, Mathematics of Opera- 
tions Research, Vol. 3, pp. 82-88, 1978. 

19. BERGE, C., The Theory of Graphs, Wiley, New York, New York, p. 152, 1962. 
20. BAZARAA, M., and JARVIS, J., Linear Programming and Network Flows, Wiley, 

New York, New York, 1977. 
21. BRADLEY, G.~ BROWN, G., and GRAVES, G., Design and Implementation of 

Large-Scale Primal Transshipment Problems, Management Science, Vol. 24, 
pp. 1-34, 1977. 

22. WASHBURN, A., Search for a Moving Target: The FAB Algorithm, Operations 
Research, Vol. 31, pp. 739-751, 1983. 

23. BROOKE, A., KENDRICK, D., and MEERAUS, A., GAMS: A User's Guide, Scien- 
tific Press, Redwood City, California, 1988. 

24. DANTZIG, G., FOLKMAN, J., and SHAPIRO, N., On the Continuity of the Mini- 
mum Set of a Continuous Function, Journal of Mathematical Analysis and Appli- 
cations, Vol. 17, pp. 519-548, 1967. 


